BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nurminen TA, Holopainen JM, Zhao H, Kinnunen PK. Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc. 2002;124:12129-12134. [PMID: 12371852 DOI: 10.1021/ja017807r] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Kornhuber J, Hoertel N, Gulbins E. The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2021. [PMID: 34608263 DOI: 10.1038/s41380-021-01309-5] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Becker KA, Gellhaus A, Winterhager E, Gulbins E. Ceramide-Enriched Membrane Domains in Infectious Biology and Development. In: Quinn PJ, Wang X, editors. Lipids in Health and Disease. Dordrecht: Springer Netherlands; 2008. pp. 523-38. [DOI: 10.1007/978-1-4020-8831-5_20] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
3 Ramirez DMC, Ogilvie WW, Johnston LJ. NBD-cholesterol probes to track cholesterol distribution in model membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010;1798:558-68. [DOI: 10.1016/j.bbamem.2009.12.005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
4 Ira, Johnston LJ. Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta 2008;1778:185-97. [PMID: 17988649 DOI: 10.1016/j.bbamem.2007.09.021] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 5.0] [Reference Citation Analysis]
5 Grassmé H, Riethmüller J, Gulbins E. Biological aspects of ceramide-enriched membrane domains. Progress in Lipid Research 2007;46:161-70. [DOI: 10.1016/j.plipres.2007.03.002] [Cited by in Crossref: 131] [Cited by in F6Publishing: 120] [Article Influence: 8.7] [Reference Citation Analysis]
6 Peñate Medina T, Gerle M, Humbert J, Chu H, Köpnick AL, Barkmann R, M Garamus V, Sanz B, Purcz N, Will O, Appold L, Damm T, Suojanen J, Arnold P, Lucius R, Willumeit-Römer R, Açil Y, Wiltfang J, Goya GF, Glüer CC, Peñate Medina O. Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers (Basel) 2020;12:E3767. [PMID: 33327621 DOI: 10.3390/cancers12123767] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Nusshold C, Uellen A, Bernhart E, Hammer A, Damm S, Wintersperger A, Reicher H, Hermetter A, Malle E, Sattler W. Endocytosis and intracellular processing of BODIPY-sphingomyelin by murine CATH.a neurons. Biochim Biophys Acta 2013;1831:1665-78. [PMID: 23973266 DOI: 10.1016/j.bbalip.2013.08.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
8 Walters MJ, Wrenn SP. Effect of Sphingomyelinase-Mediated Generation of Ceramide on Aggregation of Low-Density Lipoprotein. Langmuir 2008;24:9642-7. [DOI: 10.1021/la800714w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
9 Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains--structure and function. Biochim Biophys Acta. 2009;1788:178-183. [PMID: 18786504 DOI: 10.1016/j.bbamem.2008.07.030] [Cited by in Crossref: 164] [Cited by in F6Publishing: 157] [Article Influence: 11.7] [Reference Citation Analysis]
10 Lang F, Ullrich S, Gulbins E. Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 2011;15:1061-71. [PMID: 21635197 DOI: 10.1517/14728222.2011.588209] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.3] [Reference Citation Analysis]
11 Bionda C, Hadchity E, Alphonse G, Chapet O, Rousson R, Rodriguez-Lafrasse C, Ardail D. Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic Biol Med 2007;43:681-94. [PMID: 17664132 DOI: 10.1016/j.freeradbiomed.2007.04.031] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.2] [Reference Citation Analysis]
12 Mencarelli C, Martinez-Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci. 2013;70:181-203. [PMID: 22729185 DOI: 10.1007/s00018-012-1038-x] [Cited by in Crossref: 121] [Cited by in F6Publishing: 117] [Article Influence: 12.1] [Reference Citation Analysis]
13 Grassmé H, Becker KA, Zhang Y, Gulbins E. Ceramide in bacterial infections and cystic fibrosis. Biol Chem 2008;389:1371-9. [PMID: 18783339 DOI: 10.1515/BC.2008.162] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
14 Grammatikos G, Teichgräber V, Carpinteiro A, Trarbach T, Weller M, Hengge UR, Gulbins E. Overexpression of Acid Sphingomyelinase Sensitizes Glioma Cells to Chemotherapy. Antioxidants & Redox Signaling 2007;9:1449-56. [DOI: 10.1089/ars.2007.1673] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
15 Escribá PV, González-Ros JM, Goñi FM, Kinnunen PK, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 2008;12:829-75. [PMID: 18266954 DOI: 10.1111/j.1582-4934.2008.00281.x] [Cited by in Crossref: 245] [Cited by in F6Publishing: 217] [Article Influence: 17.5] [Reference Citation Analysis]
16 Corre I, Guillonneau M, Paris F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int J Mol Sci 2013;14:22678-96. [PMID: 24252908 DOI: 10.3390/ijms141122678] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
17 Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene 2003;22:7070-7. [PMID: 14557812 DOI: 10.1038/sj.onc.1207146] [Cited by in Crossref: 299] [Cited by in F6Publishing: 277] [Article Influence: 15.7] [Reference Citation Analysis]
18 Carpinteiro A, Dumitru C, Schenck M, Gulbins E. Ceramide-induced cell death in malignant cells. Cancer Letters 2008;264:1-10. [DOI: 10.1016/j.canlet.2008.02.020] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 6.2] [Reference Citation Analysis]
19 Cabral LM, Wengert M, da Ressurreição AA, Feres-Elias PH, Almeida FG, Vieyra A, Caruso-Neves C, Einicker-Lamas M. Ceramide is a potent activator of plasma membrane Ca2+-ATPase from kidney-promixal tubule cells with protein kinase A as an intermediate. J Biol Chem 2007;282:24599-606. [PMID: 17606608 DOI: 10.1074/jbc.M701669200] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
20 Uhlig S, Gulbins E. Sphingolipids in the lungs. Am J Respir Crit Care Med. 2008;178:1100-1114. [PMID: 18755926 DOI: 10.1164/rccm.200804-595so] [Cited by in Crossref: 111] [Cited by in F6Publishing: 60] [Article Influence: 7.9] [Reference Citation Analysis]
21 Kornhuber J, Medlin A, Bleich S, Jendrossek V, Henkel AW, Wiltfang J, Gulbins E. High activity of acid sphingomyelinase in major depression. J Neural Transm 2005;112:1583-90. [DOI: 10.1007/s00702-005-0374-5] [Cited by in Crossref: 86] [Cited by in F6Publishing: 77] [Article Influence: 5.1] [Reference Citation Analysis]
22 Bock J, Szabó I, Gamper N, Adams C, Gulbins E. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 2003;305:890-7. [PMID: 12767914 DOI: 10.1016/s0006-291x(03)00763-0] [Cited by in Crossref: 78] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
23 Peñate-Medina T, Kraas E, Luo K, Humbert J, Zhu H, Mertens F, Gerle M, Rohwedder A, Damoah C, Will O, Acil Y, Kairemo K, Wiltfang J, Glüer CC, Scherließ R, Sebens S, Peñate-Medina OP. Utilizing ICG Spectroscopical Properties for Real-Time Nanoparticle Release Quantification <i>In vitro</i> and <i>In vivo</i> in Imaging Setups. Curr Pharm Des 2020;26:3828-33. [PMID: 32188378 DOI: 10.2174/1381612826666200318170849] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
24 Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR, Asemi Z, Khatami A, Bokharaei-Salim F, Mirzaei H, Hamblin MR. Exosomal miRNAs: novel players in viral infection. Epigenomics 2020;12:353-70. [PMID: 32093516 DOI: 10.2217/epi-2019-0192] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
25 Manley S, Gordon VD. Making Giant Unilamellar Vesicles via Hydration of a Lipid Film. Current Protocols in Cell Biology 2008;40. [DOI: 10.1002/0471143030.cb2403s40] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
26 Bollinger CR, Teichgräber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta. 2005;1746:284-294. [PMID: 16226325 DOI: 10.1016/j.bbamcr.2005.09.001] [Cited by in Crossref: 229] [Cited by in F6Publishing: 225] [Article Influence: 13.5] [Reference Citation Analysis]
27 Chiantia S, Ries J, Chwastek G, Carrer D, Li Z, Bittman R, Schwille P. Role of ceramide in membrane protein organization investigated by combined AFM and FCS. Biochim Biophys Acta 2008;1778:1356-64. [PMID: 18346453 DOI: 10.1016/j.bbamem.2008.02.008] [Cited by in Crossref: 76] [Cited by in F6Publishing: 67] [Article Influence: 5.4] [Reference Citation Analysis]
28 Kamiya K, Takeuchi S. Giant liposome formation toward the synthesis of well-defined artificial cells. J Mater Chem B 2017;5:5911-23. [DOI: 10.1039/c7tb01322a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 8] [Article Influence: 7.6] [Reference Citation Analysis]
29 Opreanu M, Lydic TA, Reid GE, McSorley KM, Esselman WJ, Busik JV. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Invest Ophthalmol Vis Sci 2010;51:3253-63. [PMID: 20071681 DOI: 10.1167/iovs.09-4731] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 3.8] [Reference Citation Analysis]
30 Kornhuber J, Gulbins E. New Molecular Targets for Antidepressant Drugs. Pharmaceuticals (Basel) 2021;14:894. [PMID: 34577594 DOI: 10.3390/ph14090894] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Heneweer C, Peñate Medina T, Tower R, Kalthoff H, Kolesnick R, Larson S, Peñate Medina O. Acid-Sphingomyelinase Triggered Fluorescently Labeled Sphingomyelin Containing Liposomes in Tumor Diagnosis after Radiation-Induced Stress. Int J Mol Sci 2021;22:3864. [PMID: 33917976 DOI: 10.3390/ijms22083864] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018;59:1325-40. [PMID: 29853528 DOI: 10.1194/jlr.R083915] [Cited by in Crossref: 69] [Cited by in F6Publishing: 36] [Article Influence: 17.3] [Reference Citation Analysis]
33 Jin S, Yi F, Li PL. Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 2007;9:1417-26. [PMID: 17638544 DOI: 10.1089/ars.2007.1660] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 1.7] [Reference Citation Analysis]
34 Pienimaeki-Roemer A, Ruebsaamen K, Boettcher A, Orsó E, Scherer M, Liebisch G, Kilalic D, Ahrens N, Schmitz G. Stored platelets alter glycerophospholipid and sphingolipid species, which are differentially transferred to newly released extracellular vesicles. Transfusion 2013;53:612-26. [PMID: 22804622 DOI: 10.1111/j.1537-2995.2012.03775.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
35 Dumitru CA, Zhang Y, Li X, Gulbins E. Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid Redox Signal 2007;9:1535-40. [PMID: 17678446 DOI: 10.1089/ars.2007.1692] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 3.0] [Reference Citation Analysis]
36 Janas T, Janas MM, Sapoń K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Letters 2015;589:1391-8. [DOI: 10.1016/j.febslet.2015.04.036] [Cited by in Crossref: 217] [Cited by in F6Publishing: 208] [Article Influence: 31.0] [Reference Citation Analysis]
37 Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, Adams C, Carpinteiro E, Gulbins A, Keitsch S, Sehl C, Soddemann M, Wilker B, Kamler M, Bertsch T, Lang KS, Patel S, Wilson GC, Walter S, Hengel H, Pöhlmann S, Lang PA, Kornhuber J, Becker KA, Ahmad SA, Fassbender K, Gulbins E. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep Med 2020;1:100142. [PMID: 33163980 DOI: 10.1016/j.xcrm.2020.100142] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 17.5] [Reference Citation Analysis]
38 Babenko N. Brain, Fish Oil-Enriched Diet, and Sphingolipids. Fish and Fish Oil in Health and Disease Prevention. Elsevier; 2016. pp. 263-72. [DOI: 10.1016/b978-0-12-802844-5.00024-5] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
39 Bock J, Liebisch G, Schweimer J, Schmitz G, Rogler G. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function. World J Gastroenterol 2007; 13(39): 5217-5225 [PMID: 17876892 DOI: 10.3748/wjg.v13.i39.5217] [Cited by in CrossRef: 22] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
40 Henry B, Möller C, Dimanche-Boitrel MT, Gulbins E, Becker KA. Targeting the ceramide system in cancer. Cancer Lett. 2013;332:286-294. [PMID: 21862212 DOI: 10.1016/j.canlet.2011.07.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 4.3] [Reference Citation Analysis]
41 Gassert E, Avota E, Harms H, Krohne G, Gulbins E, Schneider-Schaulies S. Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 2009;5:e1000623. [PMID: 19834551 DOI: 10.1371/journal.ppat.1000623] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.0] [Reference Citation Analysis]
42 Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 2009;28:1043-1054. [PMID: 19300439 DOI: 10.1038/emboj.2009.45] [Cited by in Crossref: 334] [Cited by in F6Publishing: 344] [Article Influence: 25.7] [Reference Citation Analysis]
43 Szabò I, Adams C, Gulbins E. Ion channels and membrane rafts in apoptosis. Pflugers Arch 2004;448:304-12. [PMID: 15071744 DOI: 10.1007/s00424-004-1259-4] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 2.9] [Reference Citation Analysis]
44 Stancevic B, Kolesnick R. Ceramide-rich platforms in transmembrane signaling. FEBS Lett 2010;584:1728-40. [PMID: 20178791 DOI: 10.1016/j.febslet.2010.02.026] [Cited by in Crossref: 188] [Cited by in F6Publishing: 178] [Article Influence: 15.7] [Reference Citation Analysis]
45 Carpinteiro A, Gripp B, Hoffmann M, Pöhlmann S, Hoertel N, Edwards MJ, Kamler M, Kornhuber J, Becker KA, Gulbins E. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem 2021;296:100701. [PMID: 33895135 DOI: 10.1016/j.jbc.2021.100701] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
46 Goñi FM, Montes L, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Progress in Lipid Research 2012;51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
47 Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta. 2008;1785:182-206. [PMID: 18166162 DOI: 10.1016/j.bbcan.2007.11.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 134] [Article Influence: 3.0] [Reference Citation Analysis]
48 Ira, Zou S, Ramirez DM, Vanderlip S, Ogilvie W, Jakubek ZJ, Johnston LJ. Enzymatic generation of ceramide induces membrane restructuring: Correlated AFM and fluorescence imaging of supported bilayers. J Struct Biol 2009;168:78-89. [PMID: 19348948 DOI: 10.1016/j.jsb.2009.03.014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
49 Józefowski S, Sobota A, Kwiatkowska K. How Mycobacterium tuberculosis subverts host immune responses. Bioessays 2008;30:943-54. [PMID: 18800365 DOI: 10.1002/bies.20815] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 3.0] [Reference Citation Analysis]
50 Gulbins E, Li PL. Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol. 2006;290:R11-R26. [PMID: 16352856 DOI: 10.1152/ajpregu.00416.2005] [Cited by in Crossref: 150] [Cited by in F6Publishing: 144] [Article Influence: 9.4] [Reference Citation Analysis]
51 Becker KA, Riethmüller J, Zhang Y, Gulbins E. The role of sphingolipids and ceramide in pulmonary inflammation in cystic fibrosis. Open Respir Med J. 2010;4:39-47. [PMID: 20556203 DOI: 10.2174/1874306401004020039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 0.3] [Reference Citation Analysis]
52 Dumitru CA, Gulbins E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 2006;25:5612-25. [PMID: 16636669 DOI: 10.1038/sj.onc.1209568] [Cited by in Crossref: 119] [Cited by in F6Publishing: 113] [Article Influence: 7.4] [Reference Citation Analysis]
53 Iessi E, Marconi M, Manganelli V, Sorice M, Malorni W, Garofalo T, Matarrese P. On the role of sphingolipids in cell survival and death. Int Rev Cell Mol Biol 2020;351:149-95. [PMID: 32247579 DOI: 10.1016/bs.ircmb.2020.02.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
54 Taniguchi Y, Ohba T, Miyata H, Ohki K. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006;1758:145-53. [DOI: 10.1016/j.bbamem.2006.02.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 2.5] [Reference Citation Analysis]
55 Grassmé H, Henry B, Ziobro R, Becker KA, Riethmüller J, Gardner A, Seitz AP, Steinmann J, Lang S, Ward C, Schuchman EH, Caldwell CC, Kamler M, Edwards MJ, Brodlie M, Gulbins E. β1-Integrin Accumulates in Cystic Fibrosis Luminal Airway Epithelial Membranes and Decreases Sphingosine, Promoting Bacterial Infections. Cell Host Microbe 2017;21:707-718.e8. [PMID: 28552668 DOI: 10.1016/j.chom.2017.05.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
56 Riske KA, Döbereiner HG. Diacylglycerol-rich domain formation in giant stearoyl-oleoyl phosphatidylcholine vesicles driven by phospholipase C activity. Biophys J 2003;85:2351-62. [PMID: 14507699 DOI: 10.1016/S0006-3495(03)74659-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
57 Säily VM, Ryhänen SJ, Lankinen H, Luciani P, Mancini G, Parry MJ, Kinnunen PK. Impact of reductive cleavage of an intramolecular disulfide bond containing cationic gemini surfactant in monolayers and bilayers. Langmuir 2006;22:956-62. [PMID: 16430254 DOI: 10.1021/la052398o] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
58 Dumitru CA, Weller M, Gulbins E. Ceramide metabolism determines glioma cell resistance to chemotherapy. J Cell Physiol 2009;221:688-95. [DOI: 10.1002/jcp.21907] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
59 Ferranti CS, Cheng J, Thompson C, Zhang J, Rotolo JA, Buddaseth S, Fuks Z, Kolesnick RN. Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis. J Cell Biol 2020;219:e201903176. [PMID: 32328634 DOI: 10.1083/jcb.201903176] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
60 Cuschieri J, Maier RV. Oxidative stress, lipid rafts, and macrophage reprogramming. Antioxid Redox Signal 2007;9:1485-97. [PMID: 17638545 DOI: 10.1089/ars.2007.1670] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 2.9] [Reference Citation Analysis]
61 Peters S, Schlegel J, Becam J, Avota E, Sauer M, Schubert-Unkmeir A. Neisseria meningitidis Type IV Pili Trigger Ca2+-Dependent Lysosomal Trafficking of the Acid Sphingomyelinase To Enhance Surface Ceramide Levels. Infect Immun 2019;87:e00410-19. [PMID: 31160362 DOI: 10.1128/IAI.00410-19] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
62 Popov J, Vobornik D, Coban O, Keating E, Miller D, Francis J, Petersen NO, Johnston LJ. Chemical Mapping of Ceramide Distribution in Sphingomyelin-Rich Domains in Monolayers. Langmuir 2008;24:13502-8. [DOI: 10.1021/la8007552] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
63 Peñate Medina TA, Korhonen JT, Lahesmaa R, Puolakkainen M, Peñate Medina O, Kinnunen PK. Identification of Sphingomyelinase on the Surface of Chlamydia pneumoniae: Possible Role in the Entry into Its Host Cells. Interdiscip Perspect Infect Dis 2014;2014:412827. [PMID: 24757444 DOI: 10.1155/2014/412827] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
64 Riethmüller J, Riehle A, Grassmé H, Gulbins E. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 2006;1758:2139-47. [PMID: 17094939 DOI: 10.1016/j.bbamem.2006.07.017] [Cited by in Crossref: 117] [Cited by in F6Publishing: 110] [Article Influence: 7.3] [Reference Citation Analysis]
65 Pils V, Terlecki-Zaniewicz L, Schosserer M, Grillari J, Lämmermann I. The role of lipid-based signalling in wound healing and senescence. Mech Ageing Dev 2021;198:111527. [PMID: 34174292 DOI: 10.1016/j.mad.2021.111527] [Cited by in F6Publishing: 1] [Reference Citation Analysis]