BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y. Blends of Linear and Long-Chain Branched Poly( l -lactide)s with High Melt Strength and Fast Crystallization Rate. Ind Eng Chem Res 2012;51:10088-99. [DOI: 10.1021/ie300526u] [Cited by in Crossref: 62] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Yang X, Liu S, Yu E, Wei Z. Toughening of Poly(l-Lactide) with Branched Polycaprolactone: Effect of Chain Length. ACS Omega 2020;5:29284-91. [PMID: 33225159 DOI: 10.1021/acsomega.0c04070] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
2 Najafi N, Heuzey M-, Carreau P, Therriault D. Quiescent and shear-induced crystallization of linear and branched polylactides. Rheol Acta 2015;54:831-45. [DOI: 10.1007/s00397-015-0874-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Zhao X, Li J, Liu J, Zhou W, Peng S. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Int J Biol Macromol 2021;193:874-92. [PMID: 34728305 DOI: 10.1016/j.ijbiomac.2021.10.154] [Reference Citation Analysis]
4 Hong J, Haam S, Lim G, Ryu J. Preparation of High-Elongation and High-Toughness Poly(l-lactide) Using Multi-Arm Methyl-β-Cyclodextrin-Poly(l-lactide). Macromol Res 2020;28:257-65. [DOI: 10.1007/s13233-020-8041-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
5 Wu DD, Guo Y, Huang AP, Xu RW, Liu P. Effect of the multi-functional epoxides on the thermal, mechanical and rheological properties of poly(butylene adipate-co-terephthalate)/polylactide blends. Polym Bull 2021;78:5567-91. [DOI: 10.1007/s00289-020-03379-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Athanasoulia II, Christoforidis MN, Korres DM, Tarantili PA. The effect of hydroxyapatite nanoparticles on crystallization and thermomechanical properties of PLLA matrix. Pure and Applied Chemistry 2017;89:125-40. [DOI: 10.1515/pac-2016-0912] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
7 Han Y, Shi J, Mao L, Wang Z, Zhang L. Improvement of Compatibility and Mechanical Performances of PLA/PBAT Composites with Epoxidized Soybean Oil as Compatibilizer. Ind Eng Chem Res 2020;59:21779-90. [DOI: 10.1021/acs.iecr.0c04285] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
8 Doganci MD, Caner D, Doganci E, Ozkoc G. Effects of hetero‐armed star‐shaped PCL‐PLA polymers with POSS core on thermal, mechanical, and morphological properties of PLA. J Appl Polym Sci 2021;138:50712. [DOI: 10.1002/app.50712] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Jiang G, Li H, Wang F. Structure of PBAT/PPC blends prepared by in-situ reactive compatibilization and properties of their blowing films. Materials Today Communications 2021;27:102215. [DOI: 10.1016/j.mtcomm.2021.102215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Wu F, Zhang B, Yang W, Liu Z, Yang M. Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer 2014;55:5760-72. [DOI: 10.1016/j.polymer.2014.08.070] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 6.1] [Reference Citation Analysis]
11 Yang J, Shen Y, He W, Zhang N, Huang T, Zhang J, Wang Y. Synergistic effect of poly(ethylene glycol) and graphene oxides on the crystallization behavior of poly( l -lactide). J Appl Polym Sci 2013;130:3498-508. [DOI: 10.1002/app.39371] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
12 Yang L, Zhen W. Poly(lactic acid)/p-phenylenediamine functionalized graphene oxidized nanocomposites: Preparation, rheological behavior and biodegradability. European Polymer Journal 2019;121:109341. [DOI: 10.1016/j.eurpolymj.2019.109341] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
13 Valapa R, Hussain S, Krishnan Iyer P, Pugazhenthi G, Katiyar V. Non-isothermal crystallization kinetics of sucrose palmitate reinforced poly(lactic acid) bionanocomposites. Polym Bull 2016;73:21-38. [DOI: 10.1007/s00289-015-1468-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
14 Al-itry R, Lamnawar K, Maazouz A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. European Polymer Journal 2014;58:90-102. [DOI: 10.1016/j.eurpolymj.2014.06.013] [Cited by in Crossref: 128] [Cited by in F6Publishing: 61] [Article Influence: 16.0] [Reference Citation Analysis]
15 Khajeheian M, Kuusipalo J, Rosling A. Blends of linear and peroxide-modified branched polylactide for extrusion coating. Packag Technol Sci 2018;31:41-51. [DOI: 10.1002/pts.2353] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
16 Hu S, Li P, Wei Z, Wang J, Wang H, Wang Z. Antimicrobial activity of nisin-coated polylactic acid film facilitated by cold plasma treatment: Antimicrobial activity of nisin-coated polylactic acid film facilitated by cold plasma treatment. J Appl Polym Sci 2018;135:46844. [DOI: 10.1002/app.46844] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 Xu P, Luo X, Zhou Y, Yang Y, Ding Y. Enhanced cold crystallization and dielectric polarization of PLA composites induced by P[MPEGMA-IL] and graphene. Thermochimica Acta 2017;657:156-62. [DOI: 10.1016/j.tca.2017.10.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
18 Athanasoulia II, Tarantili PA. Thermal transitions and stability of melt mixed TiO 2 /Poly(L‐lactic acid) nanocomposites. Polym Eng Sci 2018;59:704-13. [DOI: 10.1002/pen.24986] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
19 Chen C, Ke D, Zheng T, He G, Cao X, Liao X. An Ultraviolet-Induced Reactive Extrusion To Control Chain Scission and Long-Chain Branching Reactions of Polylactide. Ind Eng Chem Res 2016;55:597-605. [DOI: 10.1021/acs.iecr.5b04094] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
20 Yue J, Gan L, Liu C, Ma X, Wang D, Huang J. Heat-counteracted strategy for tailoring the cell structure and properties of sustainable poly(butylene succinate) foams. Polymer 2018;155:50-7. [DOI: 10.1016/j.polymer.2018.09.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Bai J, Fang H, Zhang Y, Wang Z. Studies on crystallization kinetics of bimodal long chain branched polylactides. CrystEngComm 2014;16:2452. [DOI: 10.1039/c3ce42319k] [Cited by in Crossref: 40] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
22 Michalski A, Brzezinski M, Lapienis G, Biela T. Star-shaped and branched polylactides: Synthesis, characterization, and properties. Progress in Polymer Science 2019;89:159-212. [DOI: 10.1016/j.progpolymsci.2018.10.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 15] [Article Influence: 18.3] [Reference Citation Analysis]
23 Muthuraj R, Misra M, Mohanty AK. Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation. J Polym Environ 2014;22:336-49. [DOI: 10.1007/s10924-013-0636-5] [Cited by in Crossref: 62] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
24 Sun X, Chen L, Wang R, Jiang M, Sun M, Liang W. Control of hydrolytic degradation of polyglycolic acid using chain extender and anti‐hydrolysis agent. J of Applied Polymer Sci. [DOI: 10.1002/app.52398] [Reference Citation Analysis]
25 Khajeheian MB, Kotkamo S, Kuusipalo J, Rosling A. Synthesis and Characterization of Linear and Tri-Block PLLA–PEG–PLLA Blends. Polymer-Plastics Technology and Engineering 2015;55:379-90. [DOI: 10.1080/03602559.2015.1055502] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
26 Wu D, Huang A, Fan J, Xu R, Liu P, Li G, Yang S. Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) blends. Journal of Polymer Engineering 2021;41:95-108. [DOI: 10.1515/polyeng-2020-0161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Wu D, Xu R, Zhang Y, Shi S. Influence of branching on the mechanical, rheological and crystallization properties of poly(butylene adipate-co-terephthalate). J Therm Anal Calorim. [DOI: 10.1007/s10973-022-11231-9] [Reference Citation Analysis]
28 Wang X, Liu W, Li H, Du Z, Zhang C. Role of maleic- anhydride-grafted- polypropylene in supercritical CO 2 foaming of poly (lactic acid) and its effect on cellular morphology. Journal of Cellular Plastics 2016;52:37-56. [DOI: 10.1177/0021955x14539526] [Cited by in Crossref: 15] [Article Influence: 1.9] [Reference Citation Analysis]
29 Athanasoulia I, Tarantili PA. Preparation and characterization of polyethylene glycol/poly(L-lactic acid) blends. Pure and Applied Chemistry 2017;89:141-52. [DOI: 10.1515/pac-2016-0919] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
30 Jikei M, Terata C, Matsumoto K. Synthesis and properties of long-chain branched poly(l-lactide)s by self-polycondensation of AB2 macromonomers. Materials Today Communications 2019;20:100528. [DOI: 10.1016/j.mtcomm.2019.05.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Zhang S, Chen Z, Wu F, Yang W, Liu Z, Yang M. The molecular weight dependence of the crystallization behavior of four-arm poly(L-lactide). Colloid Polym Sci 2016;294:1865-70. [DOI: 10.1007/s00396-016-3936-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Yang D, Liu W, Zhu H, Wu G, Chen S, Wang X, Wang Y. Toward Super-Tough Poly( l -lactide) via Constructing Pseudo-Cross-link Network in Toughening Phase Anchored by Stereocomplex Crystallites at the Interface. ACS Appl Mater Interfaces 2018;10:26594-603. [DOI: 10.1021/acsami.8b06343] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 5.8] [Reference Citation Analysis]
33 Ojijo V, Ray SS. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 2015;80:1-17. [DOI: 10.1016/j.polymer.2015.10.038] [Cited by in Crossref: 98] [Cited by in F6Publishing: 49] [Article Influence: 14.0] [Reference Citation Analysis]
34 Valapa R, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V. Influence of graphene on thermal degradation and crystallization kinetics behaviour of poly(lactic acid). J Polym Res 2015;22. [DOI: 10.1007/s10965-015-0823-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
35 Fang H, Zhang Y, Bai J, Wang Z. Shear-Induced Nucleation and Morphological Evolution for Bimodal Long Chain Branched Polylactide. Macromolecules 2013;46:6555-65. [DOI: 10.1021/ma4012126] [Cited by in Crossref: 85] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
36 Andrzejewski J, Cheng J, Anstey A, Mohanty AK, Misra M. Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate- co -terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation. ACS Sustainable Chem Eng 2020;8:6576-89. [DOI: 10.1021/acssuschemeng.9b04925] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
37 Di Maio L, Garofalo E, Scarfato P, Incarnato L. Effect of polymer/organoclay composition on morphology and rheological properties of polylactide nanocomposites. Polym Compos 2015;36:1135-44. [DOI: 10.1002/pc.23424] [Cited by in Crossref: 41] [Cited by in F6Publishing: 14] [Article Influence: 5.9] [Reference Citation Analysis]
38 Li B, Zhao G, Wang G, Zhang L, Gong J. Fabrication of high-expansion microcellular PLA foams based on pre-isothermal cold crystallization and supercritical CO2 foaming. Polymer Degradation and Stability 2018;156:75-88. [DOI: 10.1016/j.polymdegradstab.2018.08.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
39 You J, Yu W, Zhou C. Accelerated Crystallization of Poly(lactic acid): Synergistic Effect of Poly(ethylene glycol), Dibenzylidene Sorbitol, and Long-Chain Branching. Ind Eng Chem Res 2014;53:1097-107. [DOI: 10.1021/ie402358h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
40 Iñiguez-franco F, Auras R, Ahmed J, Selke S, Rubino M, Dolan K, Soto-valdez H. Control of hydrolytic degradation of Poly(lactic acid) by incorporation of chain extender: From bulk to surface erosion. Polymer Testing 2018;67:190-6. [DOI: 10.1016/j.polymertesting.2018.02.028] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
41 Liu W, Li H, Wang X, Du Z, Zhang C. Effect of Chain Extension on the Rheological Property and Thermal Behaviour of Poly(lactic acid) Foams. Cellular Polymers 2013;32:343-68. [DOI: 10.1177/026248931303200602] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
42 Kundys A, Plichta A, Florjańczyk Z, Zychewicz A, Lisowska P, Parzuchowski P, Wawrzyńska E. Multi-arm star polymers of lactide obtained in melt in the presence of hyperbranched oligoglycerols: Multi-arm star polymers of lactide. Polym Int 2016;65:927-37. [DOI: 10.1002/pi.5126] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
43 Phuphuak Y, Miao Y, Zinck P, Chirachanchai S. Balancing crystalline and amorphous domains in PLA through star-structured polylactides with dual plasticizer/nucleating agent functionality. Polymer 2013;54:7058-70. [DOI: 10.1016/j.polymer.2013.10.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
44 Liu W, Zhu X, Gao H, Su X, Wu X. Preparation and characterization of PLA foam chain extended through grafting octa(epoxycyclohexyl) POSS onto carbon nanotubes. Cellular Polymers 2020;39:117-38. [DOI: 10.1177/0262489320912521] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
45 Shi X, Jing Z, Zhang G. Influence of PLA stereocomplex crystals and thermal treatment temperature on the rheology and crystallization behavior of asymmetric poly(L-Lactide)/poly(D-lactide) blends. J Polym Res 2018;25. [DOI: 10.1007/s10965-018-1467-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
46 Scoponi G, Guzman-puyol S, Caputo G, Ceseracciu L, Athanassiou A, Heredia-guerrero JA. Highly biodegradable, ductile all-polylactide blends. Polymer 2020;193:122371. [DOI: 10.1016/j.polymer.2020.122371] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
47 Najafi N, Heuzey M, Carreau PJ, Therriault D, Park CB. Rheological and foaming behavior of linear and branched polylactides. Rheol Acta 2014;53:779-90. [DOI: 10.1007/s00397-014-0801-3] [Cited by in Crossref: 61] [Cited by in F6Publishing: 26] [Article Influence: 7.6] [Reference Citation Analysis]
48 Liu W, Chen P, Wang X, Wang F, Wu Y. Effects of Poly(butyleneadipate-co-terephthalate) as a Macromolecular Nucleating Agent on the Crystallization and Foaming Behavior of Biodegradable Poly(lactic acid). Cellular Polymers 2017;36:75-96. [DOI: 10.1177/026248931703600202] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
49 Hua S, Chen F, Liu Z, Yang W, Yang M. Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: synthesis, characterization and properties. RSC Adv 2016;6:1973-83. [DOI: 10.1039/c5ra23182e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
50 Nouri S, Dubois C, Lafleur PG. Homocrystal and stereocomplex formation behavior of polylactides with different branched structures. Polymer 2015;67:227-39. [DOI: 10.1016/j.polymer.2015.04.065] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
51 Scoponi G, Francini N, Athanassiou A. Production of Green Star/Linear PLA Blends by Extrusion and Injection Molding: Tailoring Rheological and Mechanical Performances of Conventional PLA. Macromol Mater Eng 2021;306:2000805. [DOI: 10.1002/mame.202000805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Jiang R, Chen Y, Yao S, Liu T, Xu Z, Park CB, Zhao L. Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction. Polymer 2019;179:121628. [DOI: 10.1016/j.polymer.2019.121628] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 6.3] [Reference Citation Analysis]