BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bailey GA, Price EW, Zeglis BM, Ferreira CL, Boros E, Lacasse MJ, Patrick BO, Lewis JS, Adam MJ, Orvig C. H(2)azapa: a versatile acyclic multifunctional chelator for (67)Ga, (64)Cu, (111)In, and (177)Lu. Inorg Chem 2012;51:12575-89. [PMID: 23106422 DOI: 10.1021/ic302225z] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Pena-Bonhome C, Fiaccabrino D, Rama T, Fernández-Pavón D, Southcott L, Zhang Z, Lin KS, de Blas A, Patrick BO, Schaffer P, Orvig C, Jaraquemada-Peláez MG, Rodríguez-Blas T. Toward (68)Ga and (64)Cu Positron Emission Tomography Probes: Is H(2)dedpa-N,N'-pram the Missing Link for dedpa Conjugation? Inorg Chem 2023. [PMID: 36662237 DOI: 10.1021/acs.inorgchem.2c04123] [Reference Citation Analysis]
2 Davey PRWJ, Paterson BM. Modern Developments in Bifunctional Chelator Design for Gallium Radiopharmaceuticals. Molecules 2022;28. [PMID: 36615397 DOI: 10.3390/molecules28010203] [Reference Citation Analysis]
3 Kalmykova TP, Egorova BV, Kalmykov SN. Ligands Bearing Picolinate Groups as Potential Chelators for Application in Nuclear Medicine. Moscow Univ Chem Bull 2022;77:1-37. [DOI: 10.3103/s0027131422010047] [Reference Citation Analysis]
4 Alberto R. Organometallic Chemistry of Drugs Based on Technetium and Rhenium. Comprehensive Organometallic Chemistry IV 2022. [DOI: 10.1016/b978-0-12-820206-7.00029-9] [Reference Citation Analysis]
5 Prado VS, Leitao RCF, Silva F, Gano L, Santos IC, Marques FLN, Paulo A, Deflon VM. Gallium and indium complexes with new hexadentate bis(semicarbazone) and bis(thiosemicarbazone) chelators. Dalton Trans 2021;50:1631-40. [PMID: 33480908 DOI: 10.1039/d0dt04028b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
6 Tripathy S, Patel DK, Kesharwani R, Das MK. Nanoparticle-based radio immune therapy in cancer care. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00013-x] [Reference Citation Analysis]
7 Hu A, Keresztes I, MacMillan SN, Yang Y, Ding E, Zipfel WR, DiStasio RA Jr, Babich JW, Wilson JJ. Oxyaapa: A Picolinate-Based Ligand with Five Oxygen Donors that Strongly Chelates Lanthanides. Inorg Chem 2020;59:5116-32. [PMID: 32216281 DOI: 10.1021/acs.inorgchem.0c00372] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
8 Grenier L, Beyler M, Platas‐iglesias C, Closson T, Gómez DE, Seferos DS, Liu P, Ornatsky OI, Baranov V, Tripier R. Highly Stable and Inert Complexation of Indium(III) by Reinforced Cyclam Dipicolinate and a Bifunctional Derivative for Bead Encoding in Mass Cytometry. Chem Eur J 2019;25:15387-400. [DOI: 10.1002/chem.201903969] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
9 Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coordination Chemistry Reviews 2019;383:104-31. [DOI: 10.1016/j.ccr.2018.12.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
10 Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. European Journal of Medicinal Chemistry 2018;157:1406-25. [DOI: 10.1016/j.ejmech.2018.08.051] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
11 Zhang Y, Feng H, Liu X, Huang L. A Highly Chemoselective Synthesis of Cyclic Divalent Propargylamines by Copper-Catalyzed Annulation/Double A 3 -Couplings: A Highly Chemoselective Synthesis of Cyclic Divalent Propargylamines by Copper-Catalyzed Annulation/Double A 3 -Couplings. Eur J Org Chem 2018;2018:2039-46. [DOI: 10.1002/ejoc.201800393] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
12 Bhatt NB, Pandya DN, Wadas TJ. Recent Advances in Zirconium-89 Chelator Development. Molecules 2018;23:E638. [PMID: 29534538 DOI: 10.3390/molecules23030638] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 12.2] [Reference Citation Analysis]
13 Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 2016;45:15702-24. [PMID: 26865360 DOI: 10.1039/c5dt04706d] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 14.8] [Reference Citation Analysis]
14 Sharma AK, Schultz JW, Prior JT, Rath NP, Mirica LM. Coordination Chemistry of Bifunctional Chemical Agents Designed for Applications in 64Cu PET Imaging for Alzheimer's Disease. Inorg Chem 2017;56:13801-14. [PMID: 29112419 DOI: 10.1021/acs.inorgchem.7b01883] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
15 Gillet R, Roux A, Brandel J, Huclier-markai S, Camerel F, Jeannin O, Nonat AM, Charbonnière LJ. A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and 64 Cu Labeling. Inorg Chem 2017;56:11738-52. [DOI: 10.1021/acs.inorgchem.7b01731] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
16 Bandara N, Sharma AK, Krieger S, Schultz JW, Han BH, Rogers BE, Mirica LM. Evaluation of 64Cu-Based Radiopharmaceuticals that Target Aβ Peptide Aggregates as Diagnostic Tools for Alzheimer's Disease. J Am Chem Soc 2017;139:12550-8. [PMID: 28823165 DOI: 10.1021/jacs.7b05937] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
17 Amoroso AJ, Fallis IA, Pope SJ. Chelating agents for radiolanthanides: Applications to imaging and therapy. Coordination Chemistry Reviews 2017;340:198-219. [DOI: 10.1016/j.ccr.2017.01.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
18 Jaraquemada-peláez MDG, Wang X, Clough TJ, Cao Y, Choudhary N, Emler K, Patrick BO, Orvig C. H 4 octapa: synthesis, solution equilibria and complexes with useful radiopharmaceutical metal ions. Dalton Trans 2017;46:14647-58. [DOI: 10.1039/c7dt02343j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
19 Le Fur M, Beyler M, Molnár E, Fougère O, Esteban-gómez D, Tircsó G, Platas-iglesias C, Lepareur N, Rousseaux O, Tripier R. The role of the capping bond effect on pyclen nat Y 3+ / 90 Y 3+ chelates: full control of the regiospecific N-functionalization makes the difference. Chem Commun 2017;53:9534-7. [DOI: 10.1039/c7cc05088g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
20 Meyer JP, Adumeau P, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: The First 10 Years. Bioconjug Chem 2016;27:2791-807. [PMID: 27787983 DOI: 10.1021/acs.bioconjchem.6b00561] [Cited by in Crossref: 160] [Cited by in F6Publishing: 165] [Article Influence: 22.9] [Reference Citation Analysis]
21 Mohamadi A, Miller LW. Brightly Luminescent and Kinetically Inert Lanthanide Bioprobes Based on Linear and Preorganized Chelators. Bioconjug Chem 2016;27:2540-8. [PMID: 27684450 DOI: 10.1021/acs.bioconjchem.6b00473] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
22 Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Seminars in Nuclear Medicine 2016;46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 8.3] [Reference Citation Analysis]
23 Zhu Y, Shi Y. A fluorous ethylenediamine promoted direct C H arylation of unactivated arenes with aryl halides. Journal of Fluorine Chemistry 2016;188:10-3. [DOI: 10.1016/j.jfluchem.2016.05.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
24 Krasikova RN, Aliev RA, Kalmykov SN. The next generation of positron emission tomography radiopharmaceuticals labeled with non-conventional radionuclides. Mendeleev Communications 2016;26:85-94. [DOI: 10.1016/j.mencom.2016.03.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
25 Nallathamby PD, Mortensen NP, Palko HA, Malfatti M, Smith C, Sonnett J, Doktycz MJ, Gu B, Roeder RK, Wang W, Retterer ST. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale 2015;7:6545-55. [PMID: 25790032 DOI: 10.1039/c4nr06441k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
26 Ramogida CF, Boros E, Patrick BO, Zeisler SK, Kumlin J, Adam MJ, Schaffer P, Orvig C. Evaluation of H 2 CHXdedpa, H 2 dedpa- and H 2 CHXdedpa-N,N′-propyl-2-NI ligands for 64 Cu( ii ) radiopharmaceuticals. Dalton Trans 2016;45:13082-90. [DOI: 10.1039/c6dt00932h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
27 Burke BP, Seemann J, Archibald SJ. Advanced Chelator Design for Metal Complexes in Imaging Applications. Insights from Imaging in Bioinorganic Chemistry. Elsevier; 2016. pp. 301-39. [DOI: 10.1016/bs.adioch.2015.11.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
28 Roux A, Nonat AM, Brandel J, Hubscher-bruder V, Charbonnière LJ. Kinetically Inert Bispidol-Based Cu(II) Chelate for Potential Application to 64/67 Cu Nuclear Medicine and Diagnosis. Inorg Chem 2015;54:4431-44. [DOI: 10.1021/acs.inorgchem.5b00207] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
29 Kálmán FK, Végh A, Regueiro-Figueroa M, Tóth É, Platas-Iglesias C, Tircsó G. H4octapa: highly stable complexation of lanthanide(III) ions and copper(II). Inorg Chem 2015;54:2345-56. [PMID: 25692564 DOI: 10.1021/ic502966m] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
30 Ramogida CF, Cawthray JF, Boros E, Ferreira CL, Patrick BO, Adam MJ, Orvig C. H 2CHX dedpa and H 4CHX octapa—Chiral Acyclic Chelating Ligands for 67/68 Ga and 111 In Radiopharmaceuticals. Inorg Chem 2015;54:2017-31. [DOI: 10.1021/ic502942a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 5.5] [Reference Citation Analysis]
31 Kadiyala KG, Tyagi T, Kakkar D, Chadha N, Chuttani K, Roy BG, Thirumal M, Mishra AK, Datta A. Picolinic acid based acyclic bifunctional chelating agent and its methionine conjugate as potential SPECT imaging agents: syntheses and preclinical evaluation. RSC Adv 2015;5:33963-73. [DOI: 10.1039/c4ra13690j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
32 Rodríguez-rodríguez A, Garda Z, Ruscsák E, Esteban-gómez D, de Blas A, Rodríguez-blas T, Lima LMP, Beyler M, Tripier R, Tircsó G, Platas-iglesias C. Stable Mn 2+ , Cu 2+ and Ln 3+ complexes with cyclen-based ligands functionalized with picolinate pendant arms. Dalton Trans 2015;44:5017-31. [DOI: 10.1039/c4dt02985b] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 6.4] [Reference Citation Analysis]
33 Silva F, Campello MPC, Gano L, Fernandes C, Santos IC, Santos I, Ascenso JR, João Ferreira M, Paulo A. Chemical, radiochemical and biological studies of new gallium( iii ) complexes with hexadentate chelators. Dalton Trans 2015;44:3342-55. [DOI: 10.1039/c4dt02274b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
34 Enrique M, Mariana O, Mirshojaei SF, Ahmadi A. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. Journal of Drug Targeting 2014;23:191-201. [DOI: 10.3109/1061186x.2014.988216] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
35 Price EW, Zeglis BM, Cawthray JF, Lewis JS, Adam MJ, Orvig C. What a difference a carbon makes: H₄octapa vs H₄C3octapa, ligands for In-111 and Lu-177 radiochemistry. Inorg Chem 2014;53:10412-31. [PMID: 25192223 DOI: 10.1021/ic501466z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
36 Price EW, Ferreira CL, Adam MJ, Orvig C. High-denticity ligands based on picolinic acid for 111 In radiochemistry. Can J Chem 2014;92:695-705. [DOI: 10.1139/cjc-2013-0542] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
37 Price EW, Zeglis BM, Lewis JS, Adam MJ, Orvig C. H6phospa-trastuzumab: bifunctional methylenephosphonate-based chelator with 89Zr, 111In and 177Lu. Dalton Trans 2014;43:119-31. [PMID: 24104523 DOI: 10.1039/c3dt51940f] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
38 Lima LMP, Beyler M, Oukhatar F, Le Saec P, Faivre-chauvet A, Platas-iglesias C, Delgado R, Tripier R. H2Me-do2pa: an attractive chelator with fast, stable and inert nat Bi 3+ and 213 Bi 3+ complexation for potential α-radioimmunotherapy applications. Chem Commun 2014;50:12371-4. [DOI: 10.1039/c4cc05529b] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
39 Price EW, Cawthray JF, Adam MJ, Orvig C. Modular syntheses of H 4 octapa and H 2 dedpa, and yttrium coordination chemistry relevant to 86 Y/ 90 Y radiopharmaceuticals. Dalton Trans 2014;43:7176-90. [DOI: 10.1039/c4dt00239c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
40 Boros E, Rybak-Akimova E, Holland JP, Rietz T, Rotile N, Blasi F, Day H, Latifi R, Caravan P. Pycup--a bifunctional, cage-like ligand for (64)Cu radiolabeling. Mol Pharm 2014;11:617-29. [PMID: 24294970 DOI: 10.1021/mp400686z] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
41 Ramogida CF, Orvig C. Tumour targeting with radiometals for diagnosis and therapy. Chem Commun (Camb) 2013;49:4720-39. [PMID: 23599005 DOI: 10.1039/c3cc41554f] [Cited by in Crossref: 164] [Cited by in F6Publishing: 170] [Article Influence: 16.4] [Reference Citation Analysis]
42 Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev 2014;43:260-90. [PMID: 24173525 DOI: 10.1039/c3cs60304k] [Cited by in Crossref: 557] [Cited by in F6Publishing: 582] [Article Influence: 55.7] [Reference Citation Analysis]
43 Dale AV, Pandya DN, Kim JY, Lee H, Ha YS, Bhatt N, Kim J, Seo JJ, Lee W, Kim SH, Yoon YR, An GI, Yoo J. Non-cross-bridged tetraazamacrocyclic chelator for stable (64)cu-based radiopharmaceuticals. ACS Med Chem Lett 2013;4:927-31. [PMID: 24900586 DOI: 10.1021/ml400142s] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
44 Price EW, Zeglis BM, Cawthray JF, Ramogida CF, Ramos N, Lewis JS, Adam MJ, Orvig C. H(4)octapa-trastuzumab: versatile acyclic chelate system for 111In and 177Lu imaging and therapy. J Am Chem Soc 2013;135:12707-21. [PMID: 23901833 DOI: 10.1021/ja4049493] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 6.8] [Reference Citation Analysis]