BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Andersson MP, Bennetzen MV, Klamt A, Stipp SLS. First-Principles Prediction of Liquid/Liquid Interfacial Tension. J Chem Theory Comput 2014;10:3401-8. [DOI: 10.1021/ct500266z] [Cited by in Crossref: 43] [Cited by in F6Publishing: 21] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Powrel J, Adhikari NP. Elastic property of sickle and normal hemoglobin protein: Molecular dynamics. AIP Advances 2022;12:045308. [DOI: 10.1063/5.0086539] [Reference Citation Analysis]
2 Turchi M, Karcz AP, Andersson MP. First-principles prediction of critical micellar concentrations for ionic and nonionic surfactants. J Colloid Interface Sci 2022;606:618-27. [PMID: 34416454 DOI: 10.1016/j.jcis.2021.08.044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
3 Cao Y, Padoin N, Soares C, Noël T. On the performance of liquid-liquid Taylor flow electrochemistry in a microreactor – A CFD study. Chemical Engineering Journal 2022;427:131443. [DOI: 10.1016/j.cej.2021.131443] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Ashworth IW, Curran TT, Ford JG, Tomasi S. Prediction of N -Nitrosamine Partition Coefficients for Derisking Drug Substance Manufacturing Processes. Org Process Res Dev 2021;25:871-83. [DOI: 10.1021/acs.oprd.0c00535] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Binabdi A, Palm-Henriksen G, Olesen KB, Andersson MP, Sølling TI. Molecular Transport across Oil-Brine Interfaces Impacts Interfacial Tension: Time-Effects in Buoyant and Pendant Drop Measurements. Langmuir 2021;37:585-95. [PMID: 33382630 DOI: 10.1021/acs.langmuir.0c03325] [Reference Citation Analysis]
6 Andersson MP, Hassenkam T, Matthiesen J, Nikolajsen LV, Okhrimenko DV, Dobberschütz S, Stipp SLS. First-Principles Prediction of Surface Wetting. Langmuir 2020;36:12451-9. [PMID: 32975124 DOI: 10.1021/acs.langmuir.0c01241] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Nielsen RF, Nazemzadeh N, Sillesen LW, Andersson MP, Gernaey KV, Mansouri SS. Hybrid machine learning assisted modelling framework for particle processes. Computers & Chemical Engineering 2020;140:106916. [DOI: 10.1016/j.compchemeng.2020.106916] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
8 Nielsen AR, Jelavić S, Murray D, Rad B, Andersson MP, Ceccato M, Mitchell AC, Stipp SLS, Zuckermann RN, Sand KK. Thermodynamic and Kinetic Parameters for Calcite Nucleation on Peptoid and Model Scaffolds: A Step toward Nacre Mimicry. Cryst Growth Des 2020;20:3762-71. [PMID: 33192182 DOI: 10.1021/acs.cgd.0c00029] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sølling TI, Olesen KB, Palm-henriksen G, Abdel-azeim S, Skov AB. Crystalizing the interface – The first X-Ray structure of an oil/surfactant/brine transition layer. Journal of Petroleum Science and Engineering 2020;188:106953. [DOI: 10.1016/j.petrol.2020.106953] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Hantal G, Fábián B, Sega M, Jedlovszky P. Contribution of the two liquid phases to the interfacial tension at various water-organic liquid-liquid interfaces. Journal of Molecular Liquids 2020;306:112872. [DOI: 10.1016/j.molliq.2020.112872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Colombano S, Davarzani H, van Hullebusch ED, Huguenot D, Guyonnet D, Deparis J, Ignatiadis I. Thermal and chemical enhanced recovery of heavy chlorinated organic compounds in saturated porous media: 1D cell drainage-imbibition experiments. Sci Total Environ 2020;706:135758. [PMID: 31818577 DOI: 10.1016/j.scitotenv.2019.135758] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
12 Lippincott DJ, Landstrom E, Cortes-clerget M, Lipshutz BH, Buescher K, Schreiber R, Durano C, Parmentier M, Ye N, Wu B, Shi M, Yang H, Andersson M, Gallou F. Surfactant Technology: With New Rules, Designing New Sequences Is Required! Org Process Res Dev 2020;24:841-9. [DOI: 10.1021/acs.oprd.9b00454] [Cited by in Crossref: 15] [Article Influence: 5.0] [Reference Citation Analysis]
13 Gooya R, Silvestri A, Moaddel A, Andersson MP, Stipp SLS, Sørensen HO. Unstable, Super Critical CO2-Water Displacement in Fine Grained Porous Media under Geologic Carbon Sequestration Conditions. Sci Rep 2019;9:11272. [PMID: 31375705 DOI: 10.1038/s41598-019-47437-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Koller TM, Prucker T, Cui J, Klein T, Fröba AP. Interfacial tensions and viscosities in multiphase systems by surface light scattering (SLS). Journal of Colloid and Interface Science 2019;538:671-81. [DOI: 10.1016/j.jcis.2018.11.095] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
15 Singh N, Sharma S, Vovusha H, Li H, Schwingenschlögl U. Recent Insights from Computational Materials Chemistry into Interfaces Relevant to Enhanced Oil Recovery. Adv Theory Simul 2019;2:1800183. [DOI: 10.1002/adts.201800183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Klamt A, Schwöbel J, Huniar U, Koch L, Terzi S, Gaudin T. COSMOplex: self-consistent simulation of self-organizing inhomogeneous systems based on COSMO-RS. Phys Chem Chem Phys 2019;21:9225-38. [PMID: 30994133 DOI: 10.1039/c9cp01169b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Gros J, Dissanayake AL, Daniels MM, Barker CH, Lehr W, Socolofsky SA. Oil spill modeling in deep waters: Estimation of pseudo-component properties for cubic equations of state from distillation data. Mar Pollut Bull 2018;137:627-37. [PMID: 30503477 DOI: 10.1016/j.marpolbul.2018.10.047] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
18 Makkonen L, Kurkela J. Another look at the interfacial interaction parameter. Journal of Colloid and Interface Science 2018;529:243-6. [DOI: 10.1016/j.jcis.2018.06.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
19 Andersson M, Eckert F, Reinisch J, Klamt A. Prediction of aliphatic and aromatic oil-water interfacial tension at temperatures >100 °C using COSMO-RS. Fluid Phase Equilibria 2018;476:25-9. [DOI: 10.1016/j.fluid.2017.06.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
20 Steinmetz D, Creton B, Lachet V, Rousseau B, Nieto-Draghi C. Simulations of Interfacial Tension of Liquid-Liquid Ternary Mixtures Using Optimized Parametrization for Coarse-Grained Models. J Chem Theory Comput 2018;14:4438-54. [PMID: 29906108 DOI: 10.1021/acs.jctc.8b00357] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
21 Járvás G, Kontos J, Babics G, Dallos A. A novel method for the surface tension estimation of ionic liquids based on COSMO-RS theory. Fluid Phase Equilibria 2018;468:9-17. [DOI: 10.1016/j.fluid.2018.04.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Andersson MP, Gallou F, Klumphu P, Takale BS, Lipshutz BH. Structure of Nanoparticles Derived from Designer Surfactant TPGS-750-M in Water, As Used in Organic Synthesis. Chemistry 2018;24:6778-86. [PMID: 29504665 DOI: 10.1002/chem.201705524] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 10.0] [Reference Citation Analysis]
23 Pedersen KS, Imbrogno J, Fonslet J, Lusardi M, Jensen KF, Zhuravlev F. Liquid–liquid extraction in flow of the radioisotope titanium-45 for positron emission tomography applications. React Chem Eng 2018;3:898-904. [DOI: 10.1039/c8re00175h] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
24 Smith JD, Ansari TN, Andersson MP, Yadagiri D, Ibrahim F, Liang S, Hammond GB, Gallou F, Handa S. Micelle-enabled clean and selective sulfonylation of polyfluoroarenes in water under mild conditions. Green Chem 2018;20:1784-90. [DOI: 10.1039/c7gc03514d] [Cited by in Crossref: 38] [Article Influence: 9.5] [Reference Citation Analysis]
25 Goussard V, Duprat F, Gerbaud V, Ploix J, Dreyfus G, Nardello-rataj V, Aubry J. Predicting the Surface Tension of Liquids: Comparison of Four Modeling Approaches and Application to Cosmetic Oils. J Chem Inf Model 2017;57:2986-95. [DOI: 10.1021/acs.jcim.7b00512] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.6] [Reference Citation Analysis]
26 Alasiri H, Chapman WG. Dissipative particle dynamics (DPD) study of the interfacial tension for alkane/water systems by using COSMO-RS to calculate interaction parameters. Journal of Molecular Liquids 2017;246:131-9. [DOI: 10.1016/j.molliq.2017.09.056] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
27 Lu JY, Ge Q, Li H, Raza A, Zhang T. Direct Prediction of Calcite Surface Wettability with First-Principles Quantum Simulation. J Phys Chem Lett 2017;8:5309-16. [DOI: 10.1021/acs.jpclett.7b02270] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 4.6] [Reference Citation Analysis]
28 Klamt A. The COSMO and COSMO‐RS solvation models. WIREs Comput Mol Sci 2017;8. [DOI: 10.1002/wcms.1338] [Cited by in Crossref: 69] [Cited by in F6Publishing: 83] [Article Influence: 13.8] [Reference Citation Analysis]
29 Remesal ER, Suárez JA, Márquez AM, Sanz JF, Rincón C, Guitián J. Molecular dynamics simulations of the role of salinity and temperature on the hydrocarbon/water interfacial tension. Theor Chem Acc 2017;136. [DOI: 10.1007/s00214-017-2096-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Silvestri A, Stipp SLS, Andersson MP. Predicting CO 2 –H 2 O Interfacial Tension Using COSMO-RS. J Chem Theory Comput 2017;13:804-10. [DOI: 10.1021/acs.jctc.6b00818] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
31 Andersson MP, Dideriksen K, Sakuma H, Stipp SL. Modelling how incorporation of divalent cations affects calcite wettability-implications for biomineralisation and oil recovery. Sci Rep 2016;6:28854. [PMID: 27352933 DOI: 10.1038/srep28854] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
32 Handa S, Andersson MP, Gallou F, Reilly J, Lipshutz BH. HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. Angew Chem 2016;128:4998-5002. [DOI: 10.1002/ange.201510570] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
33 Sripradite J, Miller SA, Johnson MD, Tongraar A, Crans DC. How Interfaces Affect the Acidity of the Anilinium Ion. Chem Eur J 2016;22:3873-80. [DOI: 10.1002/chem.201504804] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Klamt A. COSMO-RS for aqueous solvation and interfaces. Fluid Phase Equilibria 2016;407:152-8. [DOI: 10.1016/j.fluid.2015.05.027] [Cited by in Crossref: 48] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
35 Vysotsky YB, Kartashynska ES, Belyaeva EA, Vollhardt D, Fainerman VB, Miller R. Analysis of Temperature and Alkyl Chain Length Impacts on the Morphological Peculiarities of Nonionic Surfactant Clusterization. A Quantum Chemical Approach. J Phys Chem C 2015;119:18404-13. [DOI: 10.1021/acs.jpcc.5b05458] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
36 Vysotsky YB, Kartashynska ES, Vollhardt D. Theoretical description of 2D-cluster formation of nonionic surfactants at the air/water interface. Colloid Polym Sci 2015;293:3065-89. [DOI: 10.1007/s00396-015-3630-8] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
37 Razbani MA. Modeling Interfacial Tension of n-Alkane/Water-Salt System Using Artificial Neural Networks. Journal of Dispersion Science and Technology 2015;36:1665-72. [DOI: 10.1080/01932691.2014.991444] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
38 Vysotsky YB, Belyaeva EA, Kartashynska ES, Fainerman VB, Smirnova NA. Quantum chemical approach in the description of the amphiphile clusterization at the air/liquid and liquid/liquid interfaces with phase nature accounting. I. Aliphatic normal alcohols at the air/water interface. J Phys Chem B 2015;119:3281-96. [PMID: 25640463 DOI: 10.1021/jp512099x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
39 Klamt A, Diedenhofen M. Calculation of solvation free energies with DCOSMO-RS. J Phys Chem A 2015;119:5439-45. [PMID: 25635509 DOI: 10.1021/jp511158y] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]