BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Madala PK, Tyndall JDA, Nall T, Fairlie DP. Update 1 of: Proteases Universally Recognize Beta Strands In Their Active Sites. Chem Rev 2010;110:PR1-PR31. [DOI: 10.1021/cr900368a] [Cited by in Crossref: 118] [Cited by in F6Publishing: 106] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Löser R, Pietzsch J. Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes. Front Chem 2015;3:37. [PMID: 26157794 DOI: 10.3389/fchem.2015.00037] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
2 Cordara G, van Eerde A, Grahn EM, Winter HC, Goldstein IJ, Krengel U. An Unusual Member of the Papain Superfamily: Mapping the Catalytic Cleft of the Marasmius oreades agglutinin (MOA) with a Caspase Inhibitor. PLoS One 2016;11:e0149407. [PMID: 26901797 DOI: 10.1371/journal.pone.0149407] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
3 Craik DJ, Swedberg JE, Mylne JS, Cemazar M. Cyclotides as a basis for drug design. Expert Opin Drug Discov 2012;7:179-94. [PMID: 22468950 DOI: 10.1517/17460441.2012.661554] [Cited by in Crossref: 83] [Cited by in F6Publishing: 75] [Article Influence: 8.3] [Reference Citation Analysis]
4 Swedberg JE, Harris JM. Natural and engineered plasmin inhibitors: applications and design strategies. Chembiochem. 2012;13:336-348. [PMID: 22238174 DOI: 10.1002/cbic.201100673] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
5 Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opinion on Drug Discovery 2020;15:471-86. [DOI: 10.1080/17460441.2020.1722638] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Steiner A, Schlepckow K, Brunner B, Steiner H, Haass C, Hagn F. γ-Secretase cleavage of the Alzheimer risk factor TREM2 is determined by its intrinsic structural dynamics. EMBO J 2020;39:e104247. [PMID: 32830336 DOI: 10.15252/embj.2019104247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Uniacke-lowe T, Fox PF. Chymosin, Pepsins and Other Aspartyl Proteinases: Structures, Functions, Catalytic Mechanism and Milk-Clotting Properties. Cheese. Elsevier; 2017. pp. 69-113. [DOI: 10.1016/b978-0-12-417012-4.00004-1] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021;50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
9 Yudin AK. Macrocycles: lessons from the distant past, recent developments, and future directions. Chem Sci 2015;6:30-49. [PMID: 28553456 DOI: 10.1039/c4sc03089c] [Cited by in Crossref: 274] [Cited by in F6Publishing: 68] [Article Influence: 34.3] [Reference Citation Analysis]
10 Cömert Önder F, Ay M, Aydoğan Türkoğlu S, Tura Köçkar F, Çelik A. Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β -lactamase enzyme inhibition studies. Journal of Enzyme Inhibition and Medicinal Chemistry 2015;31:90-8. [DOI: 10.3109/14756366.2015.1004060] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
11 Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016;60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
12 Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014;114:6661-714. [PMID: 24901537 DOI: 10.1021/cr400695p] [Cited by in Crossref: 279] [Cited by in F6Publishing: 249] [Article Influence: 34.9] [Reference Citation Analysis]
13 Prior AM, Hori T, Fishman A, Sun D. Recent Reports of Solid-Phase Cyclohexapeptide Synthesis and Applications. Molecules 2018;23:E1475. [PMID: 29912160 DOI: 10.3390/molecules23061475] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
14 Diao H, Xiao S, Li R, Zhao F, Ye X. Distinct spatiotemporal expression of serine proteases Prss23 and Prss35 in periimplantation mouse uterus and dispensable function of Prss35 in fertility. PLoS One 2013;8:e56757. [PMID: 23451081 DOI: 10.1371/journal.pone.0056757] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
15 Dhillon A, Sharma K, Rajulapati V, Goyal A. Proteolytic Enzymes. Current Developments in Biotechnology and Bioengineering. Elsevier; 2017. pp. 149-73. [DOI: 10.1016/b978-0-444-63662-1.00007-5] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 Quesne MG, Ward RA, de Visser SP. Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front Chem 2013;1:39. [PMID: 24790966 DOI: 10.3389/fchem.2013.00039] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
17 Lu S, Faris JD, Sherwood R, Edwards MC. Dimerization and protease resistance: new insight into the function of PR-1. J Plant Physiol 2013;170:105-10. [PMID: 22921679 DOI: 10.1016/j.jplph.2012.08.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
18 Albareda M, Pacios LF, Palacios JM. Computational analyses, molecular dynamics, and mutagenesis studies of unprocessed form of [NiFe] hydrogenase reveal the role of disorder for efficient enzyme maturation. Biochim Biophys Acta Bioenerg 2019;1860:325-40. [PMID: 30703364 DOI: 10.1016/j.bbabio.2019.01.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
19 Vinther TN, Norrman M, Strauss HM, Huus K, Schlein M, Pedersen TÅ, Kjeldsen T, Jensen KJ, Hubálek F. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization. PLoS One 2012;7:e30882. [PMID: 22363506 DOI: 10.1371/journal.pone.0030882] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
20 Luo SY, Araya LE, Julien O. Protease Substrate Identification Using N-terminomics. ACS Chem Biol 2019;14:2361-71. [PMID: 31368682 DOI: 10.1021/acschembio.9b00398] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
21 Costa Pessoa J, Garribba E, Santos MF, Santos-silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coordination Chemistry Reviews 2015;301-302:49-86. [DOI: 10.1016/j.ccr.2015.03.016] [Cited by in Crossref: 115] [Cited by in F6Publishing: 79] [Article Influence: 16.4] [Reference Citation Analysis]
22 Białkowska AM, Krysiak J, Florczak T, Szulczewska KM, Wanarska M, Turkiewicz M. The psychrotrophic yeast Sporobolomyces roseus LOCK 1119 as a source of a highly active aspartic protease for the in vitro production of antioxidant peptides. Biotechnol Appl Biochem 2018;65:726-38. [PMID: 29569743 DOI: 10.1002/bab.1656] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
23 Strisovsky K. Why cells need intramembrane proteases - a mechanistic perspective. FEBS J 2016;283:1837-45. [DOI: 10.1111/febs.13638] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
24 Bahulayan D, Arun S. An easy two step synthesis of macrocyclic peptidotriazoles via a four-component reaction and copper catalyzed intramolecular azide–alkyne [3+2] click cycloaddition. Tetrahedron Letters 2012;53:2850-5. [DOI: 10.1016/j.tetlet.2012.03.116] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
25 Nielsen DS, Hoang HN, Lohman R, Hill TA, Lucke AJ, Craik DJ, Edmonds DJ, Griffith DA, Rotter CJ, Ruggeri RB, Price DA, Liras S, Fairlie DP. Improving on Nature: Making a Cyclic Heptapeptide Orally Bioavailable. Angew Chem 2014;126:12255-9. [DOI: 10.1002/ange.201405364] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
26 Suskiewicz MJ, Sussman JL, Silman I, Shaul Y. Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 2011;20:1285-97. [PMID: 21574196 DOI: 10.1002/pro.657] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 4.8] [Reference Citation Analysis]
27 Baxter D, Ullman CG, Mason JM. Library construction, selection and modification strategies to generate therapeutic peptide-based modulators of protein-protein interactions. Future Med Chem 2014;6:2073-92. [PMID: 25531969 DOI: 10.4155/fmc.14.134] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
28 Fuchs JE, von Grafenstein S, Huber RG, Margreiter MA, Spitzer GM, Wallnoefer HG, Liedl KR. Cleavage entropy as quantitative measure of protease specificity. PLoS Comput Biol 2013;9:e1003007. [PMID: 23637583 DOI: 10.1371/journal.pcbi.1003007] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 4.6] [Reference Citation Analysis]
29 Wodtke R, Ruiz-Gómez G, Kuchar M, Pisabarro MT, Novotná P, Urbanová M, Steinbach J, Pietzsch J, Löser R. Cyclopeptides containing the DEKS motif as conformationally restricted collagen telopeptide analogues: synthesis and conformational analysis. Org Biomol Chem 2015;13:1878-96. [PMID: 25503999 DOI: 10.1039/c4ob02348j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
30 Malgieri G, Grasso G. The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coordination Chemistry Reviews 2014;260:139-55. [DOI: 10.1016/j.ccr.2013.10.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
31 Sørensen J, Palmer DS, Qvist KB, Schiøtt B. Initial Stage of Cheese Production: A Molecular Modeling Study of Bovine and Camel Chymosin Complexed with Peptides from the Chymosin-Sensitive Region of κ-Casein. J Agric Food Chem 2011;59:5636-47. [DOI: 10.1021/jf104898w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
32 Snyman C, Theron LW, Divol B. Understanding the regulation of extracellular protease gene expression in fungi: a key step towards their biotechnological applications. Appl Microbiol Biotechnol 2019;103:5517-32. [PMID: 31129742 DOI: 10.1007/s00253-019-09902-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
33 Zhang X, Bruning JB, George JH, Abell AD. A mechanistic study on the inhibition of α-chymotrypsin by a macrocyclic peptidomimetic aldehyde. Org Biomol Chem 2016;14:6970-8. [DOI: 10.1039/c6ob01159d] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
34 Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018;118:5581-97. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
35 Linser R, Salvi N, Briones R, Rovó P, de Groot BL, Wagner G. The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility. Proc Natl Acad Sci U S A 2015;112:12390-5. [PMID: 26392539 DOI: 10.1073/pnas.1513782112] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
36 Fuchs JE, von Grafenstein S, Huber RG, Kramer C, Liedl KR. Substrate-driven mapping of the degradome by comparison of sequence logos. PLoS Comput Biol 2013;9:e1003353. [PMID: 24244149 DOI: 10.1371/journal.pcbi.1003353] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
37 Milroy L, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014;114:4695-748. [DOI: 10.1021/cr400698c] [Cited by in Crossref: 306] [Cited by in F6Publishing: 268] [Article Influence: 38.3] [Reference Citation Analysis]
38 Peddie V, Abell AD. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2019;40:1-20. [DOI: 10.1016/j.jphotochemrev.2019.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
39 Oliveira-jr FOR, Alves CR, Silva FS, Côrtes LMC, Toma L, Bouças RI, Aguilar T, Nader HB, Pereira MCS. Trypanosoma cruzi heparin-binding proteins present a flagellar membrane localization and serine proteinase activity. Parasitology 2013;140:171-80. [DOI: 10.1017/s0031182012001448] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
40 Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014;53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Cited by in Crossref: 260] [Cited by in F6Publishing: 215] [Article Influence: 32.5] [Reference Citation Analysis]
41 Cebrián R, Maqueda M, Neira JL, Valdivia E, Martínez-Bueno M, Montalbán-López M. Insights into the functionality of the putative residues involved in enterocin AS-48 maturation. Appl Environ Microbiol 2010;76:7268-76. [PMID: 20833793 DOI: 10.1128/AEM.01154-10] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
42 Lohman RJ, Harrison RS, Ruiz-Gómez G, Hoang HN, Shepherd NE, Chow S, Hill TA, Madala PK, Fairlie DP. Helix-constrained nociceptin peptides are potent agonists and antagonists of ORL-1 and nociception. Vitam Horm 2015;97:1-55. [PMID: 25677767 DOI: 10.1016/bs.vh.2014.10.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
43 Xu Q, Göhler AK, Kosfeld A, Carlton D, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Jahreis K, Wilson IA. The structure of Mlc titration factor A (MtfA/YeeI) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor. J Bacteriol 2012;194:2987-99. [PMID: 22467785 DOI: 10.1128/JB.00038-12] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
44 Swedberg JE, de Veer SJ, Sit KC, Reboul CF, Buckle AM, Harris JM. Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimising the internal hydrogen bond network. PLoS One 2011;6:e19302. [PMID: 21556330 DOI: 10.1371/journal.pone.0019302] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
45 Fuchs JE, Schilling O, Liedl KR. Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data. Curr Protein Pept Sci 2017;18:905-13. [PMID: 27455965 DOI: 10.2174/1389203717666160724211231] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
46 Mahmoud A, Kotb E, Alqosaibi AI, Al-Karmalawy AA, Al-Dhuayan IS, Alabkari H. In vitro and in silico characterization of alkaline serine protease from Bacillus subtilis D9 recovered from Saudi Arabia. Heliyon 2021;7:e08148. [PMID: 34703922 DOI: 10.1016/j.heliyon.2021.e08148] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Lulla A, Lulla V, Merits A. Macromolecular assembly-driven processing of the 2/3 cleavage site in the alphavirus replicase polyprotein. J Virol 2012;86:553-65. [PMID: 22031949 DOI: 10.1128/JVI.05195-11] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
48 Ibrahim-Ouali M, Romero E. Synthesis of various secosteroidal macrocycles by ring-closing metathesis. Steroids 2013;78:651-61. [PMID: 23583599 DOI: 10.1016/j.steroids.2013.03.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
49 Galasiti Kankanamalage AC, Weerawarna PM, Rathnayake AD, Kim Y, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Putative structural rearrangements associated with the interaction of macrocyclic inhibitors with norovirus 3CL protease. Proteins 2019;87:579-87. [PMID: 30883881 DOI: 10.1002/prot.25682] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
50 Singam ERA, Balamurugan K, Gopalakrishnan R, Subramanian SR, Subramanian V, Ramasami T. Molecular dynamic simulation studies on the effect of one residue chain staggering on the structure and stability of heterotrimeric collagen-like peptides with interruption. Biopolymers 2012;97:847-63. [DOI: 10.1002/bip.22085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
51 Nielsen DS, Hoang HN, Lohman RJ, Hill TA, Lucke AJ, Craik DJ, Edmonds DJ, Griffith DA, Rotter CJ, Ruggeri RB, Price DA, Liras S, Fairlie DP. Improving on nature: making a cyclic heptapeptide orally bioavailable. Angew Chem Int Ed Engl 2014;53:12059-63. [PMID: 25219505 DOI: 10.1002/anie.201405364] [Cited by in Crossref: 106] [Cited by in F6Publishing: 99] [Article Influence: 13.3] [Reference Citation Analysis]
52 Veer SJ, White AM, Craik DJ. Der Sonnenblumen‐Trypsin‐Inhibitor 1 (SFTI‐1) in der Chemie und Biologie. Angew Chem 2021;133:8128-51. [DOI: 10.1002/ange.202006919] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Liu T, Fu G, Luo X, Liu Y, Wang Y, Wang RE, Schultz PG, Wang F. Rational design of antibody protease inhibitors. J Am Chem Soc 2015;137:4042-5. [PMID: 25775396 DOI: 10.1021/ja5130786] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
54 Fieulaine S, Witte MD, Theile CS, Ayach M, Ploegh HL, Jupin I, Bressanelli S. Turnip yellow mosaic virus protease binds ubiquitin suboptimally to fine-tune its deubiquitinase activity. J Biol Chem 2020;295:13769-83. [PMID: 32732284 DOI: 10.1074/jbc.RA120.014628] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Franke B, Colgrave ML, Mylne JS, Rosengren KJ. Mature forms of the major seed storage albumins in sunflower: A mass spectrometric approach. Journal of Proteomics 2016;147:177-86. [DOI: 10.1016/j.jprot.2016.05.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
56 Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019;119:9861-914. [DOI: 10.1021/acs.chemrev.8b00807] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
57 Theron LW, Divol B. Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 2014;98:8853-68. [PMID: 25269600 DOI: 10.1007/s00253-014-6035-6] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 6.5] [Reference Citation Analysis]
58 Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Front Mol Neurosci 2020;13:65. [PMID: 32508589 DOI: 10.3389/fnmol.2020.00065] [Reference Citation Analysis]
59 Guevara T, Rodriguez-Banqueri A, Ksiazek M, Potempa J, Gomis-Rüth FX. Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases. IUCrJ 2020;7:18-29. [PMID: 31949901 DOI: 10.1107/S2052252519013848] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
60 Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J 2013;280:1579-603. [PMID: 23432912 DOI: 10.1111/febs.12199] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
61 Zhang X, Heng S, Abell AD. Photoregulation of α-Chymotrypsin Activity by Spiropyran-Based Inhibitors in Solution and Attached to an Optical Fiber. Chemistry 2015;21:10703-13. [PMID: 26100654 DOI: 10.1002/chem.201501488] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
62 Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013;81:136-47. [PMID: 23253135 DOI: 10.1111/cbdd.12055] [Cited by in Crossref: 1062] [Cited by in F6Publishing: 939] [Article Influence: 118.0] [Reference Citation Analysis]
63 Hardes K, Becker GL, Lu Y, Dahms SO, Köhler S, Beyer W, Sandvig K, Yamamoto H, Lindberg I, Walz L, von Messling V, Than ME, Garten W, Steinmetzer T. Novel Furin Inhibitors with Potent Anti-infectious Activity. ChemMedChem 2015;10:1218-31. [PMID: 25974265 DOI: 10.1002/cmdc.201500103] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 7.3] [Reference Citation Analysis]
64 Sørensen J, Palmer DS, Schiøtt B. Hot-spot mapping of the interactions between chymosin and bovine κ-casein. J Agric Food Chem 2013;61:7949-59. [PMID: 23834716 DOI: 10.1021/jf4021043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
65 Houštecká R, Hadzima M, Fanfrlík J, Brynda J, Pallová L, Hánová I, Mertlíková-Kaiserová H, Lepšík M, Horn M, Smrčina M, Majer P, Mareš M. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure-Activity Relationship and Binding Mode Analysis. J Med Chem 2020;63:1576-96. [PMID: 32003991 DOI: 10.1021/acs.jmedchem.9b01351] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
66 Clemente N, Abdine A, Ubarretxena-Belandia I, Wang C. Coupled Transmembrane Substrate Docking and Helical Unwinding in Intramembrane Proteolysis of Amyloid Precursor Protein. Sci Rep 2018;8:12411. [PMID: 30120254 DOI: 10.1038/s41598-018-30015-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
67 de Veer SJ, White AM, Craik DJ. Sunflower Trypsin Inhibitor-1 (SFTI-1): Sowing Seeds in the Fields of Chemistry and Biology. Angew Chem Int Ed Engl 2021;60:8050-71. [PMID: 32621554 DOI: 10.1002/anie.202006919] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
68 Kim Y, Galasiti Kankanamalage AC, Chang KO, Groutas WC. Recent Advances in the Discovery of Norovirus Therapeutics. J Med Chem 2015;58:9438-50. [PMID: 26258852 DOI: 10.1021/acs.jmedchem.5b00762] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
69 Rogers JM, Suga H. Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. Org Biomol Chem 2015;13:9353-63. [PMID: 26280393 DOI: 10.1039/c5ob01336d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 15] [Article Influence: 6.4] [Reference Citation Analysis]
70 Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, Kuhne K, Bergmann R, Haase-Kohn C, Urbanová M, Steinbach J, Pietzsch J. Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. Amino Acids 2019;51:219-44. [PMID: 30264172 DOI: 10.1007/s00726-018-2657-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
71 de Veer SJ, Wang CK, Harris JM, Craik DJ, Swedberg JE. Improving the Selectivity of Engineered Protease Inhibitors: Optimizing the P2 Prime Residue Using a Versatile Cyclic Peptide Library. J Med Chem 2015;58:8257-68. [PMID: 26393374 DOI: 10.1021/acs.jmedchem.5b01148] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
72 Pehere AD, Sumby CJ, Abell AD. New cylindrical peptide assemblies defined by extended parallel β-sheets. Org Biomol Chem 2013;11:425-9. [DOI: 10.1039/c2ob26637g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 2.6] [Reference Citation Analysis]
73 Osei-adjei G, Huang X, Zhang Y. The extracellular proteases produced by Vibrio parahaemolyticus. World J Microbiol Biotechnol 2018;34. [DOI: 10.1007/s11274-018-2453-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
74 Fluhrer R, Martin L, Klier B, Haug-Kröper M, Grammer G, Nuscher B, Haass C. The α-helical content of the transmembrane domain of the British dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b). J Biol Chem 2012;287:5156-63. [PMID: 22194595 DOI: 10.1074/jbc.M111.328104] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
75 Götz A, Mylonas N, Högel P, Silber M, Heinel H, Menig S, Vogel A, Feyrer H, Huster D, Luy B, Langosch D, Scharnagl C, Muhle-Goll C, Kamp F, Steiner H. Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage. Biophys J 2019;116:2103-20. [PMID: 31130234 DOI: 10.1016/j.bpj.2019.04.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
76 Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics: Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017;78:245-67. [DOI: 10.1002/ddr.21406] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
77 Schacherl M, Pichlo C, Neundorf I, Baumann U. Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile. Structure 2015;23:1632-42. [DOI: 10.1016/j.str.2015.06.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
78 Strisovsky K. Mechanism and Inhibition of Rhomboid Proteases. Methods Enzymol 2017;584:279-93. [PMID: 28065267 DOI: 10.1016/bs.mie.2016.10.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
79 Price DC, Fonseca DM. Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics. PeerJ 2015;3:e807. [PMID: 25755934 DOI: 10.7717/peerj.807] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
80 Cerdà-Costa N, Gomis-Rüth FX. Architecture and function of metallopeptidase catalytic domains. Protein Sci 2014;23:123-44. [PMID: 24596965 DOI: 10.1002/pro.2400] [Cited by in Crossref: 100] [Cited by in F6Publishing: 75] [Article Influence: 12.5] [Reference Citation Analysis]
81 Pehere AD, Abell AD. New β-strand templates constrained by Huisgen cycloaddition. Org Lett 2012;14:1330-3. [PMID: 22339212 DOI: 10.1021/ol3002199] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
82 Khan S, Nadir S, Wang X, Khan A, Xu J, Li M, Tao L, Khan S, Karunarathna SC. Using in silico techniques: Isolation and characterization of an insect cuticle-degrading-protease gene from Beauveria bassiana. Microb Pathog 2016;97:189-97. [PMID: 27287496 DOI: 10.1016/j.micpath.2016.05.024] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
83 Hu W, He G, Wang J, Hu Q. The Effects of Destruxin A on Relish and Rel Gene Regulation to the Suspected Immune-Related Genes of Silkworm. Molecules 2016;22:E41. [PMID: 28036076 DOI: 10.3390/molecules22010041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
84 Díaz-Eufracio BI, Palomino-Hernández O, Houghten RA, Medina-Franco JL. Exploring the chemical space of peptides for drug discovery: a focus on linear and cyclic penta-peptides. Mol Divers 2018;22:259-67. [PMID: 29446006 DOI: 10.1007/s11030-018-9812-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
85 Han B, Yang Y, Chen J, He X, Lv N, Yan R. PRSS23 knockdown inhibits gastric tumorigenesis through EIF2 signaling. Pharmacol Res 2019;142:50-7. [PMID: 30769097 DOI: 10.1016/j.phrs.2019.02.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
86 Pehere AD, Nguyen S, Garlick SK, Wilson DW, Hudson I, Sykes MJ, Morton JD, Abell AD. Tripeptide analogues of MG132 as protease inhibitors. Bioorg Med Chem 2019;27:436-41. [PMID: 30581047 DOI: 10.1016/j.bmc.2018.12.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
87 Dianati V, Shamloo A, Kwiatkowska A, Desjardins R, Soldera A, Day R, Dory YL. Rational Design of a Highly Potent and Selective Peptide Inhibitor of PACE4 by Salt Bridge Interaction with D160 at Position P3. ChemMedChem 2017;12:1169-72. [PMID: 28722823 DOI: 10.1002/cmdc.201700300] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
88 Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem 2014;126:13234-57. [DOI: 10.1002/ange.201401058] [Cited by in Crossref: 66] [Cited by in F6Publishing: 48] [Article Influence: 8.3] [Reference Citation Analysis]
89 Wang Y, Zhang F, Diao H, Wu R. Covalent Inhibition Mechanism of Antidiabetic Drugs—Vildagliptin vs Saxagliptin. ACS Catal 2019;9:2292-302. [DOI: 10.1021/acscatal.8b05051] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
90 Marsault E, Peterson ML. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J Med Chem 2011;54:1961-2004. [DOI: 10.1021/jm1012374] [Cited by in Crossref: 522] [Cited by in F6Publishing: 439] [Article Influence: 47.5] [Reference Citation Analysis]
91 Bogdanović X, Palm GJ, Schwenteit J, Singh RK, Gudmundsdóttir BK, Hinrichs W. Structural evidence of intramolecular propeptide inhibition of the aspzincin metalloendopeptidase AsaP1. FEBS Lett 2016;590:3280-94. [DOI: 10.1002/1873-3468.12356] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
92 Leenheer D, Ten Dijke P, Hipolito CJ. A current perspective on applications of macrocyclic-peptide-based high-affinity ligands. Biopolymers 2016;106:889-900. [PMID: 27352774 DOI: 10.1002/bip.22900] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
93 Kamenik AS, Kraml J, Hofer F, Waibl F, Quoika PK, Kahler U, Schauperl M, Liedl KR. Macrocycle Cell Permeability Measured by Solvation Free Energies in Polar and Apolar Environments. J Chem Inf Model 2020;60:3508-17. [PMID: 32551643 DOI: 10.1021/acs.jcim.0c00280] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
94 Sardar D, Hao Y, Lin Z, Morita M, Nair SK, Schmidt EW. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products. J Am Chem Soc 2017;139:2884-7. [PMID: 28195477 DOI: 10.1021/jacs.6b12872] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
95 Schauperl M, Fuchs JE, Waldner BJ, Huber RG, Kramer C, Liedl KR. Characterizing Protease Specificity: How Many Substrates Do We Need? PLoS One 2015;10:e0142658. [PMID: 26559682 DOI: 10.1371/journal.pone.0142658] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
96 Che Y. Design of Cyclic Peptides as Protein Recognition Motifs. Methods Mol Biol 2019;2001:97-106. [PMID: 31134569 DOI: 10.1007/978-1-4939-9504-2_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
97 Brown MC, Abdine A, Chavez J, Schaffner A, Torres-Arancivia C, Lada B, JiJi RD, Osman R, Cooley JW, Ubarretxena-Belandia I. Unwinding of the Substrate Transmembrane Helix in Intramembrane Proteolysis. Biophys J 2018;114:1579-89. [PMID: 29642028 DOI: 10.1016/j.bpj.2018.01.043] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
98 Mizuno A, Matsui K, Shuto S. From Peptides to Peptidomimetics: A Strategy Based on the Structural Features of Cyclopropane. Chemistry 2017;23:14394-409. [PMID: 28632330 DOI: 10.1002/chem.201702119] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
99 Thu NTA, Khue NTM, Huy ND, Tien NQD, Loc NH. Characterizations and Fibrinolytic Activity of Serine Protease from Bacillus subtilis C10. Curr Pharm Biotechnol 2020;21:110-6. [PMID: 31577203 DOI: 10.2174/1389201020666191002145415] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
100 Liang H, Mao Y, Sun Y, Gao H. Transcriptional regulator ArcA mediates expression of oligopeptide transport systems both directly and indirectly in Shewanella oneidensis. Sci Rep 2019;9:13839. [PMID: 31554843 DOI: 10.1038/s41598-019-50201-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Baxter D, Perry SR, Hill TA, Kok WM, Zaccai NR, Brady RL, Fairlie DP, Mason JM. Downsizing Proto-oncogene cFos to Short Helix-Constrained Peptides That Bind Jun. ACS Chem Biol 2017;12:2051-61. [PMID: 28636317 DOI: 10.1021/acschembio.7b00303] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
102 Chang KO, Kim Y, Lovell S, Rathnayake AD, Groutas WC. Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors. Viruses 2019;11:E197. [PMID: 30823509 DOI: 10.3390/v11020197] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
103 Cooley JW, Abdine A, Brown M, Chavez J, Lada B, JiJi RD, Ubarretxena-Belandia I. A New Method to Determine the Transmembrane Conformation of Substrates in Intramembrane Proteolysis by Deep-UV Resonance Raman Spectroscopy. Methods Enzymol 2017;584:207-28. [PMID: 28065264 DOI: 10.1016/bs.mie.2016.10.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
104 White CJ, Yudin AK. A versatile scaffold for site-specific modification of cyclic tetrapeptides. Org Lett 2012;14:2898-901. [PMID: 22612626 DOI: 10.1021/ol301178r] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
105 Pehere AD, Pietsch M, Gütschow M, Neilsen PM, Pedersen DS, Nguyen S, Zvarec O, Sykes MJ, Callen DF, Abell AD. Synthesis and extended activity of triazole-containing macrocyclic protease inhibitors. Chemistry 2013;19:7975-81. [PMID: 23606616 DOI: 10.1002/chem.201204260] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
106 Yeo DJ, Warriner SL, Wilson AJ. Monosubstituted alkenyl amino acids for peptide "stapling". Chem Commun (Camb) 2013;49:9131-3. [PMID: 24005767 DOI: 10.1039/c3cc45231j] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
107 Fejfarová K, Kádek A, Mrázek H, Hausner J, Tretyachenko V, Koval' T, Man P, Hašek J, Dohnálek J. Crystallization of nepenthesin I using a low-pH crystallization screen. Acta Crystallogr F Struct Biol Commun 2016;72:24-8. [PMID: 26750480 DOI: 10.1107/S2053230X15022323] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
108 Damalanka VC, Kim Y, Alliston KR, Weerawarna PM, Galasiti Kankanamalage AC, Lushington GH, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Oxadiazole-Based Cell Permeable Macrocyclic Transition State Inhibitors of Norovirus 3CL Protease. J Med Chem 2016;59:1899-913. [PMID: 26823007 DOI: 10.1021/acs.jmedchem.5b01464] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
109 Kamenik AS, Hofer F, Handle PH, Liedl KR. Dynamics Rationalize Proteolytic Susceptibility of the Major Birch Pollen Allergen Bet v 1. Front Mol Biosci 2020;7:18. [PMID: 32154264 DOI: 10.3389/fmolb.2020.00018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
110 Gomis-Rüth FX, Botelho TO, Bode W. A standard orientation for metallopeptidases. Biochim Biophys Acta 2012;1824:157-63. [PMID: 21558023 DOI: 10.1016/j.bbapap.2011.04.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 4.6] [Reference Citation Analysis]