BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek A, Lim RY, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014;114:6806-43. [PMID: 24702702 DOI: 10.1021/cr4007329] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Basavanhally T, Fonseca R, Uversky VN. Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Proteomics 2018;18:e1800307. [PMID: 30156382 DOI: 10.1002/pmic.201800307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Kuznetsova IM, Povarova OI, Uversky VN, Turoverov KK. Native globular actin has a thermodynamically unstable quasi-stationary structure with elements of intrinsic disorder. FEBS J 2016;283:438-45. [PMID: 26460158 DOI: 10.1111/febs.13548] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lyngdoh DL, Shukla H, Sonkar A, Anupam R, Tripathi T. Portrait of the Intrinsically Disordered Side of the HTLV-1 Proteome. ACS Omega 2019;4:10003-18. [PMID: 31460093 DOI: 10.1021/acsomega.9b01017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
4 Renault L. Intrinsic, Functional, and Structural Properties of β-Thymosins and β-Thymosin/WH2 Domains in the Regulation and Coordination of Actin Self-Assembly Dynamics and Cytoskeleton Remodeling. Vitam Horm 2016;102:25-54. [PMID: 27450729 DOI: 10.1016/bs.vh.2016.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
5 Wu Z, Hu G, Yang J, Peng Z, Uversky VN, Kurgan L. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Letters 2015;589:2561-9. [DOI: 10.1016/j.febslet.2015.08.014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
6 Williams NK, Dichtl B. Co-translational control of protein complex formation: a fundamental pathway of cellular organization? Biochem Soc Trans 2018;46:197-206. [PMID: 29432142 DOI: 10.1042/BST20170451] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
7 Meng F, Na I, Kurgan L, Uversky VN. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments. Int J Mol Sci 2015;17:E24. [PMID: 26712748 DOI: 10.3390/ijms17010024] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 9.6] [Reference Citation Analysis]
8 Sakiyama Y, Mazur A, Kapinos LE, Lim RY. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat Nanotechnol 2016;11:719-23. [PMID: 27136131 DOI: 10.1038/nnano.2016.62] [Cited by in Crossref: 84] [Cited by in F6Publishing: 80] [Article Influence: 14.0] [Reference Citation Analysis]
9 Pricer R, Gestwicki JE, Mapp AK. From Fuzzy to Function: The New Frontier of Protein-Protein Interactions. Acc Chem Res 2017;50:584-9. [PMID: 28945413 DOI: 10.1021/acs.accounts.6b00565] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 5.4] [Reference Citation Analysis]
10 Kumar A, Yu CWH, Rodríguez-Molina JB, Li XH, Freund SMV, Passmore LA. Dynamics in Fip1 regulate eukaryotic mRNA 3' end processing. Genes Dev 2021;35:1510-26. [PMID: 34593603 DOI: 10.1101/gad.348671.121] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cannon JF. Novel phosphorylation-dependent regulation in an unstructured protein. Proteins 2020;88:366-84. [PMID: 31512287 DOI: 10.1002/prot.25812] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
12 Das D, Arora L, Mukhopadhyay S. Fluorescence Depolarization Kinetics Captures Short-Range Backbone Dihedral Rotations and Long-Range Correlated Dynamics of an Intrinsically Disordered Protein. J Phys Chem B 2021;125:9708-18. [PMID: 34415768 DOI: 10.1021/acs.jpcb.1c04426] [Reference Citation Analysis]
13 Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. Journal of Biomolecular Structure and Dynamics 2021;39:3034-60. [DOI: 10.1080/07391102.2020.1756409] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
14 Ghadermarzi S, Li X, Li M, Kurgan L. Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins. Front Genet 2019;10:1075. [PMID: 31803227 DOI: 10.3389/fgene.2019.01075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
15 Sierecki E. The Mediator complex and the role of protein-protein interactions in the gene regulation machinery. Semin Cell Dev Biol 2020;99:20-30. [PMID: 30278226 DOI: 10.1016/j.semcdb.2018.08.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
16 Stieg DC, Willis SD, Ganesan V, Ong KL, Scuorzo J, Song M, Grose J, Strich R, Cooper KF. A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 2018;29:363-75. [PMID: 29212878 DOI: 10.1091/mbc.E17-08-0493] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
17 Miraula M, Ciurli S, Zambelli B. Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease. J Biol Inorg Chem 2015;20:739-55. [PMID: 25846143 DOI: 10.1007/s00775-015-1261-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
18 Uversky VN. Paradoxes and wonders of intrinsic disorder: Stability of instability. Intrinsically Disord Proteins 2017;5:e1327757. [PMID: 30250771 DOI: 10.1080/21690707.2017.1327757] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
19 Kurgan L. Resources for computational prediction of intrinsic disorder in proteins. Methods 2022. [DOI: 10.1016/j.ymeth.2022.03.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 [DOI: 10.1101/2021.07.07.451483] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Hong S, Choi S, Kim R, Koh J. Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder. Mol Cells 2020;43:899-908. [PMID: 33243935 DOI: 10.14348/molcells.2020.0186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Uversky VN. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics 2020;19:60-8. [PMID: 29982297 DOI: 10.1093/bfgp/ely023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
23 Lim RY, Huang B, Kapinos LE. How to operate a nuclear pore complex by Kap-centric control. Nucleus 2015;6:366-72. [PMID: 26338152 DOI: 10.1080/19491034.2015.1090061] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
24 Yan J, Dunker AK, Uversky VN, Kurgan L. Molecular recognition features (MoRFs) in three domains of life. Mol BioSyst 2016;12:697-710. [DOI: 10.1039/c5mb00640f] [Cited by in Crossref: 78] [Cited by in F6Publishing: 38] [Article Influence: 13.0] [Reference Citation Analysis]
25 El Hadidy N, Uversky VN. Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. Int J Mol Sci 2019;20:E5260. [PMID: 31652801 DOI: 10.3390/ijms20215260] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wu Z, Hu G, Wang K, Kurgan L. Exploratory Analysis of Quality Assessment of Putative Intrinsic Disorder in Proteins. In: Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM, editors. Artificial Intelligence and Soft Computing. Cham: Springer International Publishing; 2017. pp. 722-32. [DOI: 10.1007/978-3-319-59063-9_65] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
27 Vassall K, Bamm V, Harauz G. MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochemical Journal 2015;472:17-32. [DOI: 10.1042/bj20150710] [Cited by in Crossref: 47] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
28 Zhao B, Kurgan L. Deep Learning in Prediction of Intrinsic Disorder in Proteins. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Katuwawala A, Peng Z, Yang J, Kurgan L. Computational Prediction of MoRFs, Short Disorder-to-order Transitioning Protein Binding Regions. Comput Struct Biotechnol J 2019;17:454-62. [PMID: 31007871 DOI: 10.1016/j.csbj.2019.03.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
30 Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022. [PMID: 35179885 DOI: 10.1021/acs.chemrev.1c00774] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015;1:33-51. [PMID: 29124132 DOI: 10.1016/j.bbrep.2015.03.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
32 Kardos J, Héja L. How membrane proteins work giving autonomous traverse pathways? Struct Chem 2015;26:1405-10. [DOI: 10.1007/s11224-015-0601-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
33 Schuler B, Borgia A, Borgia MB, Heidarsson PO, Holmstrom ED, Nettels D, Sottini A. Binding without folding - the biomolecular function of disordered polyelectrolyte complexes. Curr Opin Struct Biol 2020;60:66-76. [PMID: 31874413 DOI: 10.1016/j.sbi.2019.12.006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 7.3] [Reference Citation Analysis]
34 Uversky VN. Intrinsically Disordered Proteins. In: Renaud J, editor. Structural Biology in Drug Discovery. Wiley; 2020. pp. 587-612. [DOI: 10.1002/9781118681121.ch25] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
35 Na I, Kong MJ, Straight S, Pinto JR, Uversky VN. Troponins, intrinsic disorder, and cardiomyopathy. Biol Chem 2016;397:731-51. [PMID: 27074551 DOI: 10.1515/hsz-2015-0303] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
36 Zhang J, Ghadermarzi S, Kurgan L. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins. Bioinformatics 2020;36:4729-38. [PMID: 32860044 DOI: 10.1093/bioinformatics/btaa573] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Gitlin L, Hagai T, LaBarbera A, Solovey M, Andino R. Rapid evolution of virus sequences in intrinsically disordered protein regions. PLoS Pathog 2014;10:e1004529. [PMID: 25502394 DOI: 10.1371/journal.ppat.1004529] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
38 Maheshwari S, Brylinski M. Predicting protein interface residues using easily accessible on-line resources. Brief Bioinform 2015;16:1025-34. [PMID: 25797794 DOI: 10.1093/bib/bbv009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 4.4] [Reference Citation Analysis]
39 Singh A, Kumar A, Yadav R, Uversky VN, Giri R. Deciphering the dark proteome of Chikungunya virus. Sci Rep 2018;8:5822. [PMID: 29643398 DOI: 10.1038/s41598-018-23969-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
40 Peng Z, Kurgan L. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Res 2015;43:e121. [PMID: 26109352 DOI: 10.1093/nar/gkv585] [Cited by in Crossref: 83] [Cited by in F6Publishing: 74] [Article Influence: 11.9] [Reference Citation Analysis]
41 Le Bailly BA, Clayden J. Dynamic foldamer chemistry. Chem Commun (Camb) 2016;52:4852-63. [PMID: 26955864 DOI: 10.1039/c6cc00788k] [Cited by in Crossref: 97] [Cited by in F6Publishing: 13] [Article Influence: 16.2] [Reference Citation Analysis]
42 Cassidy L, Prasse D, Linke D, Schmitz RA, Tholey A. Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei. J Proteome Res 2016;15:3773-83. [DOI: 10.1021/acs.jproteome.6b00569] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
43 Long S, Tian P. Nonlinear backbone torsional pair correlations in proteins. Sci Rep 2016;6:34481. [PMID: 27708342 DOI: 10.1038/srep34481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
44 Baraldi E, Coller E, Zoli L, Cestaro A, Tosatto SCE, Zambelli B. Unfoldome variation upon plant-pathogen interactions: strawberry infection by Colletotrichum acutatum. Plant Mol Biol 2015;89:49-65. [DOI: 10.1007/s11103-015-0353-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
45 Chand GB, Kumar S, Azad GK. Molecular assessment of proteins encoded by the mitochondrial genome of Clarias batrachus and Clarias gariepinus. Biochem Biophys Rep 2021;26:100985. [PMID: 33855227 DOI: 10.1016/j.bbrep.2021.100985] [Reference Citation Analysis]
46 Albareda M, Pacios LF, Palacios JM. Computational analyses, molecular dynamics, and mutagenesis studies of unprocessed form of [NiFe] hydrogenase reveal the role of disorder for efficient enzyme maturation. Biochim Biophys Acta Bioenerg 2019;1860:325-40. [PMID: 30703364 DOI: 10.1016/j.bbabio.2019.01.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
47 Bhattacharya S, Xu L, Thompson D. Revisiting the earliest signatures of amyloidogenesis: Roadmaps emerging from computational modeling and experiment. WIREs Comput Mol Sci 2018;8. [DOI: 10.1002/wcms.1359] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
48 Katuwawala A, Zhao B, Kurgan L. DisoLipPred: Accurate prediction of disordered lipid binding residues in protein sequences with deep recurrent networks and transfer learning. Bioinformatics 2021:btab640. [PMID: 34487138 DOI: 10.1093/bioinformatics/btab640] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Krishnamurthy S, Sardis MF, Eleftheriadis N, Chatzi KE, Smit JH, Karathanou K, Gouridis G, Portaliou AG, Bondar AN, Karamanou S, Economou A. Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism. Cell Rep 2022;38:110346. [PMID: 35139375 DOI: 10.1016/j.celrep.2022.110346] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Suss O, Reichmann D. Protein plasticity underlines activation and function of ATP-independent chaperones. Front Mol Biosci 2015;2:43. [PMID: 26284255 DOI: 10.3389/fmolb.2015.00043] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
51 Singh A, Kumar A, Uversky V, Giri R. Understanding the interactability of chikungunya virus proteins via molecular recognition feature analysis. RSC Adv 2018;8:27293-303. [DOI: 10.1039/c8ra04760j] [Cited by in Crossref: 17] [Article Influence: 4.3] [Reference Citation Analysis]
52 Peng Z, Wang C, Uversky VN, Kurgan L. Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind. Methods Mol Biol 2017;1484:187-203. [PMID: 27787828 DOI: 10.1007/978-1-4939-6406-2_14] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
53 Srivastava A, Ahmad S, Gromiha MM. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins. Int J Mol Sci 2018;19:E1595. [PMID: 29843482 DOI: 10.3390/ijms19061595] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
54 Gavrilov Y, Hagai T, Levy Y. Nonspecific yet decisive: Ubiquitination can affect the native-state dynamics of the modified protein. Protein Sci 2015;24:1580-92. [PMID: 25970168 DOI: 10.1002/pro.2688] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
55 Takahashi K, Matouschek A, Inobe T. Regulation of Proteasomal Degradation by Modulating Proteasomal Initiation Regions. ACS Chem Biol 2015;10:2537-43. [PMID: 26278914 DOI: 10.1021/acschembio.5b00554] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
56 Meng F, Murray GF, Kurgan L, Donahue HJ. Functional and structural characterization of osteocytic MLO-Y4 cell proteins encoded by genes differentially expressed in response to mechanical signals in vitro. Sci Rep 2018;8:6716. [PMID: 29712973 DOI: 10.1038/s41598-018-25113-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
57 Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017;13:2115-62. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
58 Cho B, Choi J, Kim R, Yun JN, Choi Y, Lee HH, Koh J. Thermodynamic Models for Assembly of Intrinsically Disordered Protein Hubs with Multiple Interaction Partners. J Am Chem Soc 2021;143:12509-23. [PMID: 34362249 DOI: 10.1021/jacs.1c00811] [Reference Citation Analysis]
59 Thangaraju K, Király R, Mótyán JA, Ambrus VA, Fuxreiter M, Fésüs L. Computational analyses of the effect of novel amino acid clusters of human transglutaminase 2 on its structure and function. Amino Acids 2017;49:605-14. [DOI: 10.1007/s00726-016-2330-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
60 Mínguez-Toral M, Cuevas-Zuviría B, Garrido-Arandia M, Pacios LF. A computational structural study on the DNA-protecting role of the tardigrade-unique Dsup protein. Sci Rep 2020;10:13424. [PMID: 32770133 DOI: 10.1038/s41598-020-70431-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
61 Migliaccio AR, Uversky VN. Dissecting physical structure of calreticulin, an intrinsically disordered Ca2+-buffering chaperone from endoplasmic reticulum. J Biomol Struct Dyn 2018;36:1617-36. [PMID: 28504081 DOI: 10.1080/07391102.2017.1330224] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
62 Garcia-Pino A, De Gieter S, Talavera A, De Greve H, Efremov RG, Loris R. An intrinsically disordered entropic switch determines allostery in Phd-Doc regulation. Nat Chem Biol 2016;12:490-6. [PMID: 27159580 DOI: 10.1038/nchembio.2078] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
63 Meng F, Kurgan L. High‐throughput prediction of disordered moonlighting regions in protein sequences. Proteins 2018;86:1097-110. [DOI: 10.1002/prot.25590] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
64 Wu Z, Hu G, Oldfield CJ, Kurgan L. Prediction of Intrinsic Disorder with Quality Assessment Using QUARTER. Methods Mol Biol 2020;2165:83-101. [PMID: 32621220 DOI: 10.1007/978-1-0716-0708-4_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Bhardwaj R, Thakur JK, Kumar S. MedProDB: A database of Mediator proteins. Comput Struct Biotechnol J 2021;19:4165-76. [PMID: 34527190 DOI: 10.1016/j.csbj.2021.07.031] [Reference Citation Analysis]
66 D'Urzo A, Santambrogio C, Grandori R, Ciurli S, Zambelli B. The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase. J Biol Inorg Chem 2014;19:1341-54. [PMID: 25200810 DOI: 10.1007/s00775-014-1191-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
67 Zhao B, Xue B. Decision-Tree Based Meta-Strategy Improved Accuracy of Disorder Prediction and Identified Novel Disordered Residues Inside Binding Motifs. Int J Mol Sci 2018;19:E3052. [PMID: 30301243 DOI: 10.3390/ijms19103052] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
68 Katuwawala A, Ghadermarzi S, Kurgan L. Computational prediction of functions of intrinsically disordered regions. Prog Mol Biol Transl Sci 2019;166:341-69. [PMID: 31521235 DOI: 10.1016/bs.pmbts.2019.04.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
69 Yan J, Cheng J, Kurgan L, Uversky VN. Structural and functional analysis of "non-smelly" proteins. Cell Mol Life Sci 2020;77:2423-40. [PMID: 31486849 DOI: 10.1007/s00018-019-03292-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Uversky VN. Protein intrinsic disorder and structure-function continuum. Dancing protein clouds: Intrinsically disordered proteins in health and disease, Part A. Elsevier; 2019. pp. 1-17. [DOI: 10.1016/bs.pmbts.2019.05.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
71 Darling AL, Uversky VN. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017;22:E2027. [PMID: 29186753 DOI: 10.3390/molecules22122027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
72 Willis SD, Stieg DC, Ong KL, Shah R, Strich AK, Grose JH, Cooper KF. Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress. Microb Cell 2018;5:357-70. [PMID: 30175106 DOI: 10.15698/mic2018.08.641] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
73 Smeller L. Folding superfunnel to describe cooperative folding of interacting proteins: Folding Superfunnel for Interacting Proteins. Proteins 2016;84:1009-16. [DOI: 10.1002/prot.25051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
74 Katuwawala A, Oldfield CJ, Kurgan L. Accuracy of protein-level disorder predictions. Briefings in Bioinformatics 2020;21:1509-22. [DOI: 10.1093/bib/bbz100] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
75 Zhao B, Katuwawala A, Uversky VN, Kurgan L. IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell. Cell Mol Life Sci 2021;78:2371-85. [PMID: 32997198 DOI: 10.1007/s00018-020-03654-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
76 Hu G, Katuwawala A, Wang K, Wu Z, Ghadermarzi S, Gao J, Kurgan L. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat Commun 2021;12:4438. [PMID: 34290238 DOI: 10.1038/s41467-021-24773-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
77 Sharma NR, Gadhave K, Kumar P, Saif M, Khan MM, Sarkar DP, Uversky VN, Giri R. Analysis of the dark proteome of Chandipura virus reveals maximum propensity for intrinsic disorder in phosphoprotein. Sci Rep 2021;11:13253. [PMID: 34168211 DOI: 10.1038/s41598-021-92581-6] [Reference Citation Analysis]
78 Katuwawala A, Kurgan L. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins. Biomolecules 2020;10:E1636. [PMID: 33291838 DOI: 10.3390/biom10121636] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Oldfield CJ, Fan X, Wang C, Dunker AK, Kurgan L. Computational Prediction of Intrinsic Disorder in Protein Sequences with the disCoP Meta-predictor. Methods Mol Biol 2020;2141:21-35. [PMID: 32696351 DOI: 10.1007/978-1-0716-0524-0_2] [Reference Citation Analysis]
80 Popelka H, Uversky VN. Theater in the Self-Cleaning Cell: Intrinsically Disordered Proteins or Protein Regions Acting with Membranes in Autophagy. Membranes 2022;12:457. [DOI: 10.3390/membranes12050457] [Reference Citation Analysis]
81 Oldfield CJ, Peng Z, Kurgan L. Disordered RNA-Binding Region Prediction with DisoRDPbind. Methods Mol Biol 2020;2106:225-39. [PMID: 31889261 DOI: 10.1007/978-1-0716-0231-7_14] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
82 Meng F, Uversky V, Kurgan L. Computational Prediction of Intrinsic Disorder in Proteins. Current Protocols in Protein Science 2017;88. [DOI: 10.1002/cpps.28] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 6.2] [Reference Citation Analysis]
83 Uversky VN. The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 2015;589:2498-506. [PMID: 26073257 DOI: 10.1016/j.febslet.2015.06.004] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 11.9] [Reference Citation Analysis]
84 Hu G, Wu Z, Oldfield CJ, Wang C, Kurgan L. Quality assessment for the putative intrinsic disorder in proteins. Bioinformatics 2019;35:1692-700. [PMID: 30329008 DOI: 10.1093/bioinformatics/bty881] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]