BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gray BP, Brown KC. Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 2014;114:1020-81. [PMID: 24299061 DOI: 10.1021/cr400166n] [Cited by in Crossref: 143] [Cited by in F6Publishing: 126] [Article Influence: 15.9] [Reference Citation Analysis]
Number Citing Articles
1 Liu C, Zhao Z, Gao R, Zhang X, Sun Y, Wu J, Liu J, Chen C. Matrix Metalloproteinase-2-Responsive Surface-Changeable Liposomes Decorated by Multifunctional Peptides to Overcome the Drug Resistance of Triple-Negative Breast Cancer through Enhanced Targeting and Penetrability. ACS Biomater Sci Eng 2022;8:2979-94. [PMID: 35666956 DOI: 10.1021/acsbiomaterials.2c00295] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022;:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Reference Citation Analysis]
3 Ahmadi S, Sukprasert P, Vegesna R, Sinha S, Schischlik F, Artzi N, Khuller S, Schäffer AA, Ruppin E. The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective. Nat Commun 2022;13:1613. [PMID: 35338126 DOI: 10.1038/s41467-022-29154-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. Adv Sci (Weinh) 2022;9:e2103645. [PMID: 34914854 DOI: 10.1002/advs.202103645] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Liu Q, Lin J, Wen L, Wang S, Zhou P, Mei L, Shang S. Systematic Modeling, Prediction, and Comparison of Domain–Peptide Affinities: Does it Work Effectively With the Peptide QSAR Methodology? Front Genet 2022;12:800857. [DOI: 10.3389/fgene.2021.800857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
6 Guo Y, Hu Z, Wang Z. Recent Advances in the Application Peptide and Peptoid in Diagnosis Biomarkers of Alzheimer's Disease in Blood. Front Mol Neurosci 2021;14:778955. [PMID: 35002620 DOI: 10.3389/fnmol.2021.778955] [Reference Citation Analysis]
7 Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2022;54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zheng J, Zhao H, Ning G, Sun W, Wang L, Liang H, Xu H, He C, Zhao H, Li CP. A novel affinity peptide-antibody sandwich electrochemical biosensor for PSA based on the signal amplification of MnO2-functionalized covalent organic framework. Talanta 2021;233:122520. [PMID: 34215135 DOI: 10.1016/j.talanta.2021.122520] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Lu JY, Zhang FR, Zou WZ, Huang WT, Guo Z. Peptide-based system for sensing Pb2+ and molecular logic computing. Anal Biochem 2021;630:114333. [PMID: 34400145 DOI: 10.1016/j.ab.2021.114333] [Reference Citation Analysis]
10 Loftis AR, Zhang G, Backlund C, Quartararo AJ, Pishesha N, Hanna CC, Schissel CK, Garafola D, Loas A, Collier RJ, Ploegh H, Irvine DJ, Pentelute BL. An in vivo selection-derived d-peptide for engineering erythrocyte-binding antigens that promote immune tolerance. Proc Natl Acad Sci U S A 2021;118:e2101596118. [PMID: 34417313 DOI: 10.1073/pnas.2101596118] [Reference Citation Analysis]
11 Han TJ, Huan F, Liu M, Li MS, Yang Y, Chen GX, Lai D, Cao MJ, Liu GM. IgE epitope analysis of sarcoplasmic-calcium-binding protein, a heat-resistant allergen in Crassostrea angulata. Food Funct 2021. [PMID: 34338271 DOI: 10.1039/d1fo01058a] [Reference Citation Analysis]
12 Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhou J, Li Y, Huang W, Shi W, Qian H. Source and exploration of the peptides used to construct peptide-drug conjugates. Eur J Med Chem 2021;224:113712. [PMID: 34303870 DOI: 10.1016/j.ejmech.2021.113712] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Weber F, Casalini T, Valentino G, Brülisauer L, Andreas N, Koeberle A, Kamradt T, Contini A, Luciani P. Targeting transdifferentiated hepatic stellate cells and monitoring the hepatic fibrogenic process by means of IGF2R-specific peptides designed in silico. J Mater Chem B 2021;9:2092-106. [PMID: 33595041 DOI: 10.1039/d0tb02372h] [Reference Citation Analysis]
15 Tuang S, Dieppa-Matos D, Zhang C, Shugrue CR, Dai P, Loas A, Pentelute BL. A reactive peptide interface for site-selective cysteine bioconjugation. Chem Commun (Camb) 2021;57:3227-30. [PMID: 33645592 DOI: 10.1039/d1cc00095k] [Reference Citation Analysis]
16 Lv M, Jan Cornel E, Fan Z, Du J. Advances and Perspectives of Peptide and Polypeptide‐Based Materials for Biomedical Imaging. Adv NanoBio Res 2021;1:2000109. [DOI: 10.1002/anbr.202000109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Arancillo M, Taechalertpaisarn J, Liang X, Burgess K. Piptides: New, Easily Accessible Chemotypes For Interactions With Biomolecules. Angew Chem Int Ed Engl 2021;60:6653-9. [PMID: 33319463 DOI: 10.1002/anie.202015203] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Urquiza M, Guevara V, Diaz-sana E, Mora F. The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer. COC 2020;24:2393-411. [DOI: 10.2174/1385272824999200528124936] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Chen Z, Zhang K, Fan J, Fan Y, Yang C, Tian W, Li Y, Li W, Zhang J, Wang H, Wang L. In situ construction of ligand nano-network to integrin αvβ3 for angiogenesis inhibition. Chinese Chemical Letters 2020;31:3107-12. [DOI: 10.1016/j.cclet.2020.04.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020;120:13434-60. [DOI: 10.1021/acs.chemrev.0c00690] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
21 Jin H, Gao X, Xiao L, He H, Cheng S, Zhang C, Hou Y, Song F, Su X, Gao Q, Lu Z, Yang R, Song X, Yang J, Duan W, Hou Y. Screening and identification of a specific peptide binding to breast cancer cells from a phage-displayed peptide library. Biotechnol Lett 2021;43:153-64. [PMID: 33145670 DOI: 10.1007/s10529-020-03044-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2021;1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020;160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
24 Dong J, Lee MA, Rajan AG, Rahaman I, Sun JH, Park M, Salem DP, Strano MS. A synthetic mimic of phosphodiesterase type 5 based on corona phase molecular recognition of single-walled carbon nanotubes. Proc Natl Acad Sci U S A 2020;117:26616-25. [PMID: 33055208 DOI: 10.1073/pnas.1920352117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chu JCH, Yang C, Fong WP, Wong CTT, Ng DKP. Facile one-pot synthesis of cyclic peptide-conjugated photosensitisers for targeted photodynamic therapy. Chem Commun (Camb) 2020;56:11941-4. [PMID: 32931540 DOI: 10.1039/d0cc05264g] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kim SH, Lee EH, Lee SC, Kim AR, Park HH, Son JW, Koh SH, Yoon MY. Development of peptide aptamers as alternatives for antibody in the detection of amyloid-beta 42 aggregates. Anal Biochem 2020;609:113921. [PMID: 32828793 DOI: 10.1016/j.ab.2020.113921] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Huang H, Liu Y, Ouyang X, Wang H, Zhang Y. Identification of a peptide targeting CD56. Immunobiology 2020;225:151982. [PMID: 32747027 DOI: 10.1016/j.imbio.2020.151982] [Reference Citation Analysis]
28 Hoermann B, Kokot T, Helm D, Heinzlmeir S, Chojnacki JE, Schubert T, Ludwig C, Berteotti A, Kurzawa N, Kuster B, Savitski MM, Köhn M. Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. Nat Commun 2020;11:3583. [PMID: 32681005 DOI: 10.1038/s41467-020-17334-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Takakusagi Y, Takakusagi K, Sakaguchi K, Sugawara F. Phage display technology for target determination of small-molecule therapeutics: an update. Expert Opinion on Drug Discovery 2020;15:1199-211. [DOI: 10.1080/17460441.2020.1790523] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Fan J, Fan Y, Wei Z, Li Y, Li X, Wang L, Wang H. Transformable peptide nanoparticles inhibit the migration of N-cadherin overexpressed cancer cells. Chinese Chemical Letters 2020;31:1787-91. [DOI: 10.1016/j.cclet.2020.03.065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
31 Kwak MH, Yi G, Yang SM, Choe Y, Choi S, Lee HS, Kim E, Lim YB, Na K, Choi MG, Koo H, Park JM. A Dodecapeptide Selected by Phage Display as a Potential Theranostic Probe for Colon Cancers. Transl Oncol 2020;13:100798. [PMID: 32454443 DOI: 10.1016/j.tranon.2020.100798] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Pomplun S, Shugrue CR, Schmitt AM, Schissel CK, Farquhar CE, Pentelute BL. Secondary Amino Alcohols: Traceless Cleavable Linkers for Use in Affinity Capture and Release. Angew Chem Int Ed Engl 2020;59:11566-72. [PMID: 32227406 DOI: 10.1002/anie.202003478] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Itoh H, Miura K, Kamiya K, Yamashita T, Inoue M. Solid‐Phase Total Synthesis of Yaku'amide B Enabled by Traceless Staudinger Ligation. Angew Chem 2020;132:4594-601. [DOI: 10.1002/ange.201916517] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
34 Ding Y, Vara Prasad CVNS, Wang B. Glycosylation on Unprotected or Partially Protected Acceptors: Glycosylation on Unprotected or Partially Protected Acceptors. Eur J Org Chem 2020;2020:1784-801. [DOI: 10.1002/ejoc.201901675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Itoh H, Miura K, Kamiya K, Yamashita T, Inoue M. Solid-Phase Total Synthesis of Yaku'amide B Enabled by Traceless Staudinger Ligation. Angew Chem Int Ed Engl 2020;59:4564-71. [PMID: 31943639 DOI: 10.1002/anie.201916517] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
36 Batalha IL, Lychko I, Branco RJF, Iranzo O, Roque ACA. β-Hairpins as peptidomimetics of human phosphoprotein-binding domains. Org Biomol Chem 2019;17:3996-4004. [PMID: 30945720 DOI: 10.1039/c9ob00564a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
37 Navaratna T, Atangcho L, Mahajan M, Subramanian V, Case M, Min A, Tresnak D, Thurber GM. Directed Evolution Using Stabilized Bacterial Peptide Display. J Am Chem Soc 2020;142:1882-94. [PMID: 31880439 DOI: 10.1021/jacs.9b10716] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
38 Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019;21:E215. [PMID: 31892275 DOI: 10.3390/ijms21010215] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
39 Marusina AI, Merleev AA, Luna JI, Olney L, Haigh NE, Yoon D, Guo C, Ovadia EM, Shimoda M, Luxardi G, Boddu S, Lal NN, Takada Y, Lam KS, Liu R, Isseroff RR, Le S, Nolta JA, Kloxin AM, Maverakis E. Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing. Stem Cells 2020;38:231-45. [PMID: 31648388 DOI: 10.1002/stem.3105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
40 Yan J, Yan S, Hou P, Lu W, Ma PX, He W, Lei B. A Hierarchical Peptide–Lanthanide Framework To Accurately Redress Intracellular Carcinogenic Protein–Protein Interaction. Nano Lett 2019;19:7918-26. [DOI: 10.1021/acs.nanolett.9b03028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
41 Liu C, Zhao Z, Gao H, Rostami I, You Q, Jia X, Wang C, Zhu L, Yang Y. Enhanced blood-brain-barrier penetrability and tumor-targeting efficiency by peptide-functionalized poly(amidoamine) dendrimer for the therapy of gliomas. Nanotheranostics 2019;3:311-30. [PMID: 31687320 DOI: 10.7150/ntno.38954] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
42 Maron E, Swisher JH, Haven JJ, Meyer TY, Junkers T, Börner HG. Von Peptiden lernen: eine Strategie für das Design funktionaler Präzisionspolymer‐Sequenzen. Angew Chem 2019;131:10858-63. [DOI: 10.1002/ange.201902217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Maron E, Swisher JH, Haven JJ, Meyer TY, Junkers T, Börner HG. Learning from Peptides to Access Functional Precision Polymer Sequences. Angew Chem Int Ed 2019;58:10747-51. [DOI: 10.1002/anie.201902217] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
44 Mahzoon S, Townsend JM, Lam TN, Sjoelund V, Detamore MS. Effects of a Bioactive SPPEPS Peptide on Chondrogenic Differentiation of Mesenchymal Stem Cells. Ann Biomed Eng 2019;47:2308-21. [PMID: 31218487 DOI: 10.1007/s10439-019-02306-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Sun T, Man Z, Peng C, Wang G, Sun S. A specific affinity cyclic peptide enhances the adhesion, expansion and proliferation of rat bone mesenchymal stem cells on β‑tricalcium phosphate scaffolds. Mol Med Rep 2019;20:1157-66. [PMID: 31173215 DOI: 10.3892/mmr.2019.10335] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
46 Mahzoon S, Detamore MS. Chondroinductive Peptides: Drawing Inspirations from Cell–Matrix Interactions. Tissue Engineering Part B: Reviews 2019;25:249-57. [DOI: 10.1089/ten.teb.2018.0003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
47 Bam R, Laffey M, Nottberg K, Lown PS, Hackel BJ, Wilson KE. Affibody-Indocyanine Green Based Contrast Agent for Photoacoustic and Fluorescence Molecular Imaging of B7-H3 Expression in Breast Cancer. Bioconjug Chem 2019;30:1677-89. [PMID: 31082216 DOI: 10.1021/acs.bioconjchem.9b00239] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
48 Shrestha KR, Yoo SY. Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells Int 2019;2019:4038560. [PMID: 31073312 DOI: 10.1155/2019/4038560] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
49 Yu L, Wang Q, Wong RC, Zhao S, Ng DK, Lo P. Synthesis and biological evaluation of phthalocyanine-peptide conjugate for EGFR-targeted photodynamic therapy and bioimaging. Dyes and Pigments 2019;163:197-203. [DOI: 10.1016/j.dyepig.2018.11.055] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
50 Ferreira D, Silva AP, Nobrega FL, Martins IM, Barbosa-Matos C, Granja S, Martins SF, Baltazar F, Rodrigues LR. Rational Identification of a Colorectal Cancer Targeting Peptide through Phage Display. Sci Rep 2019;9:3958. [PMID: 30850705 DOI: 10.1038/s41598-019-40562-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
51 Wu R, Min Q, Guo J, Zheng T, Jiang L, Zhu J. Sequential Delivery and Cascade Targeting of Peptide Therapeutics for Triplexed Synergistic Therapy with Real-Time Monitoring Shuttled by Magnetic Gold Nanostars. Anal Chem 2019;91:4608-17. [DOI: 10.1021/acs.analchem.8b05877] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
52 Sioud M. Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019;61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
53 Ren L, Ma Z, Li Q, Zhao W, Wang Y, Wang H, Shen L, Zhang C, Fang X, Yu J. Identifying a Membrane-Type 2 Matrix Metalloproteinase-Targeting Peptide for Human Lung Cancer Detection and Targeting Chemotherapy with Functionalized Mesoporous Silica. ACS Appl Bio Mater 2019;2:397-405. [PMID: 35016363 DOI: 10.1021/acsabm.8b00633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
54 Tang YSC, Davis RA, Ganguly T, Sutcliffe JL. Identification, Characterization, and Optimization of Integrin αvβ₆-Targeting Peptides from a One-Bead One-Compound (OBOC) Library: Towards the Development of Positron Emission Tomography (PET) Imaging Agents. Molecules 2019;24:E309. [PMID: 30654483 DOI: 10.3390/molecules24020309] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
55 Xiao Q, Zhu W, Feng W, Lee SS, Leung AW, Shen J, Gao L, Xu C. A Review of Resveratrol as a Potent Chemoprotective and Synergistic Agent in Cancer Chemotherapy. Front Pharmacol 2018;9:1534. [PMID: 30687096 DOI: 10.3389/fphar.2018.01534] [Cited by in Crossref: 46] [Cited by in F6Publishing: 57] [Article Influence: 15.3] [Reference Citation Analysis]
56 Liu C, Gao H, Zhao Z, Rostami I, Wang C, Zhu L, Yang Y. Improved tumor targeting and penetration by a dual-functional poly(amidoamine) dendrimer for the therapy of triple-negative breast cancer. J Mater Chem B 2019;7:3724-36. [DOI: 10.1039/c9tb00433e] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
57 Kim MW, Kwon SH, Choi JH, Lee A. A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2018;19:E3859. [PMID: 30518027 DOI: 10.3390/ijms19123859] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
58 Li Z, Shao S, Ren X, Sun J, Guo Z, Wang S, Song MM, Chang CA, Xue M. Construction of a Sequenceable Protein Mimetic Peptide Library with a True 3D Diversifiable Chemical Space. J Am Chem Soc 2018;140:14552-6. [PMID: 30362722 DOI: 10.1021/jacs.8b08338] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
59 He B, Jiang L, Duan Y, Chai G, Fang Y, Kang J, Yu M, Li N, Tang Z, Yao P, Wu P, Derda R, Huang J. Biopanning data bank 2018: hugging next generation phage display. Database (Oxford) 2018;2018. [PMID: 29688378 DOI: 10.1093/database/bay032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
60 Zhang C, Wu W, Li R, Qiu W, Zhuang Z, Cheng S, Zhang X. Peptide‐Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Adv Funct Mater 2018;28:1804492. [DOI: 10.1002/adfm.201804492] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 15.5] [Reference Citation Analysis]
61 Rong L, Qin S, Zhang C, Cheng Y, Feng J, Wang S, Zhang X. Biomedical applications of functional peptides in nano-systems. Materials Today Chemistry 2018;9:91-102. [DOI: 10.1016/j.mtchem.2018.06.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
62 Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 2017;24:1898-908. [PMID: 29191048 DOI: 10.1080/10717544.2017.1410259] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
63 Aumiller WM, Uchida M, Douglas T. Protein cage assembly across multiple length scales. Chem Soc Rev 2018;47:3433-69. [PMID: 29497713 DOI: 10.1039/c7cs00818j] [Cited by in Crossref: 77] [Cited by in F6Publishing: 14] [Article Influence: 19.3] [Reference Citation Analysis]
64 Vorherr T. Peptide Therapeutics. Bioorg Med Chem 2018;26:2699. [PMID: 29778135 DOI: 10.1016/j.bmc.2018.05.007] [Reference Citation Analysis]
65 Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. Adv Mater 2018;30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Cited by in Crossref: 208] [Cited by in F6Publishing: 207] [Article Influence: 52.0] [Reference Citation Analysis]
66 Chung S, Chung WJ, Wang D, Lee SW, De Yoreo JJ. Growth of Au and ZnS nanostructures via engineered peptide and M13 bacteriophage templates. Soft Matter 2018;14:2996-3002. [PMID: 29637974 DOI: 10.1039/c8sm00090e] [Reference Citation Analysis]
67 Jee JE, Lim J, Ong YS, Oon J, Gao L, Choi HS, Lee SS. An efficient strategy to enhance binding affinity and specificity of a known isozyme inhibitor. Org Biomol Chem 2016;14:6833-9. [PMID: 27339902 DOI: 10.1039/c6ob01104g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
68 Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016;45:4074-126. [PMID: 27152673 DOI: 10.1039/c5cs00287g] [Cited by in Crossref: 214] [Cited by in F6Publishing: 78] [Article Influence: 53.5] [Reference Citation Analysis]
69 Hosseinzadeh P, Bhardwaj G, Mulligan VK, Shortridge MD, Craven TW, Pardo-Avila F, Rettie SA, Kim DE, Silva DA, Ibrahim YM, Webb IK, Cort JR, Adkins JN, Varani G, Baker D. Comprehensive computational design of ordered peptide macrocycles. Science 2017;358:1461-6. [PMID: 29242347 DOI: 10.1126/science.aap7577] [Cited by in Crossref: 86] [Cited by in F6Publishing: 92] [Article Influence: 21.5] [Reference Citation Analysis]
70 Cioloboc D, Kennedy C, Boice EN, Clark ER, Kurtz DM. Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron within Cancer Cells. Biomacromolecules 2018;19:178-87. [DOI: 10.1021/acs.biomac.7b01433] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
71 Jiang B, Yang J, Rahoui N, Taloub N, Huang YD. Functional polymer materials affecting cell attachment. Adv Colloid Interface Sci 2017;250:185-94. [PMID: 28950985 DOI: 10.1016/j.cis.2017.09.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
72 Stead SO, McInnes SJP, Kireta S, Rose PD, Jesudason S, Rojas-Canales D, Warther D, Cunin F, Durand JO, Drogemuller CJ, Carroll RP, Coates PT, Voelcker NH. Manipulating human dendritic cell phenotype and function with targeted porous silicon nanoparticles. Biomaterials 2018;155:92-102. [PMID: 29175084 DOI: 10.1016/j.biomaterials.2017.11.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
73 Guo D, Xu S, Wang N, Jiang H, Huang Y, Jin X, Xue B, Zhang C, Zhu X. Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy. Biomaterials 2017;144:188-98. [DOI: 10.1016/j.biomaterials.2017.08.032] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 8.0] [Reference Citation Analysis]
74 Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem Int Ed 2017;56:14888-92. [DOI: 10.1002/anie.201708327] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
75 Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem 2017;129:15084-8. [DOI: 10.1002/ange.201708327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
76 Hou L, Zhu D, Liang Y, Tian X, Li L, Wang P, Zhu L, Weng X, Wang Y, Li Y, Wu T, Wang J, Meng X. Identification of a specific peptide binding to colon cancer cells from a phage-displayed peptide library. Br J Cancer 2018;118:79-87. [PMID: 29065111 DOI: 10.1038/bjc.2017.366] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
77 Yu Y, Huang Y, Jin Y, Zhao R. Dual-targeting peptide probe for sequence- and structure-sensitive sensing of serum albumin. Biosensors and Bioelectronics 2017;94:657-62. [DOI: 10.1016/j.bios.2017.03.067] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
78 Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces 2017;158:507-17. [PMID: 28738290 DOI: 10.1016/j.colsurfb.2017.07.012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
79 Zade HM, Keshavarz R, Shekarabi HSZ, Bakhshinejad B. Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids 2017;49:1293-308. [DOI: 10.1007/s00726-017-2452-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
80 Raghuwanshi Y, Etayash H, Soudy R, Paiva I, Lavasanifar A, Kaur K. Proteolytically Stable Cyclic Decapeptide for Breast Cancer Cell Targeting. J Med Chem 2017;60:4893-903. [PMID: 28520410 DOI: 10.1021/acs.jmedchem.7b00163] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
81 Shukla SP, Manarang JC, Udugamasooriya DG. A unique mid-sequence linker used to multimerize the lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1. Eur J Med Chem 2017;137:1-10. [PMID: 28551176 DOI: 10.1016/j.ejmech.2017.05.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
82 Liu R, Li X, Lam KS. Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 2017;38:117-26. [PMID: 28494316 DOI: 10.1016/j.cbpa.2017.03.017] [Cited by in Crossref: 112] [Cited by in F6Publishing: 83] [Article Influence: 22.4] [Reference Citation Analysis]
83 Lee S, Kim M, Yoo K, Ha N, Moon J, Lee S, Yoon M. Sensitive fluorescent imaging of Salmonella enteritidis and Salmonella typhimurium using a polyvalent directed peptide polymer. Microchim Acta 2017;184:2611-20. [DOI: 10.1007/s00604-017-2240-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
84 Soudy R, Etayash H, Bahadorani K, Lavasanifar A, Kaur K. Breast Cancer Targeting Peptide Binds Keratin 1: A New Molecular Marker for Targeted Drug Delivery to Breast Cancer. Mol Pharm 2017;14:593-604. [PMID: 28157321 DOI: 10.1021/acs.molpharmaceut.6b00652] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
85 Salum ML, Giudicessi SL, Schmidt De León T, Camperi SA, Erra-balsells R. Application of Z-sinapinic matrix in peptide MALDI-MS analysis: Z-Sinapinic for short peptide MALDI-MS. J Mass Spectrom 2017;52:182-6. [DOI: 10.1002/jms.3908] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
86 Nishihara T, Kitada H, Fujiwara D, Fujii I. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage. Biopolymers 2016;106:415-21. [PMID: 26917088 DOI: 10.1002/bip.22826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
87 Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev 2017;110-111:38-51. [PMID: 27327937 DOI: 10.1016/j.addr.2016.06.007] [Cited by in Crossref: 126] [Cited by in F6Publishing: 115] [Article Influence: 25.2] [Reference Citation Analysis]
88 Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017;110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Cited by in Crossref: 95] [Cited by in F6Publishing: 82] [Article Influence: 19.0] [Reference Citation Analysis]
89 Sunderland KS, Yang M, Mao C. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angew Chem Int Ed Engl 2017;56:1964-92. [PMID: 27491926 DOI: 10.1002/anie.201606181] [Cited by in Crossref: 81] [Cited by in F6Publishing: 96] [Article Influence: 16.2] [Reference Citation Analysis]
90 Hernandez-Garcia A, Estrich NA, Werten MW, Van Der Maarel JR, LaBean TH, de Wolf FA, Cohen Stuart MA, de Vries R. Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS Nano 2017;11:144-52. [PMID: 27936577 DOI: 10.1021/acsnano.6b05938] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
91 Sunderland KS, Yang M, Mao C. Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika für eine Präzisionsmedizin. Angew Chem 2017;129:1992-2022. [DOI: 10.1002/ange.201606181] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
92 Wang H, Qin Z, Liu Y, Li X, Liu J, Liu Y, Huang D, Di D. Design and preparation of porous polymer particles with polydopamine coating and selective enrichment for biomolecules. RSC Adv 2017;7:45311-9. [DOI: 10.1039/c7ra08175h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
93 He J, Gui S, Huang Y, Hu F, Jin Y, Yu Y, Zhang G, Zhang D, Zhao R. Rapid, sensitive, and in-solution screening of peptide probes for targeted imaging of live cancer cells based on peptide recognition-induced emission. Chem Commun 2017;53:11091-4. [DOI: 10.1039/c7cc06485c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
94 Martins IM, Reis RL, Azevedo HS. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine. ACS Chem Biol 2016;11:2962-80. [PMID: 27661443 DOI: 10.1021/acschembio.5b00717] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
95 Hu LY, Kelly KA, Sutcliffe JL. High-Throughput Approaches to the Development of Molecular Imaging Agents. Mol Imaging Biol 2017;19:163-82. [DOI: 10.1007/s11307-016-1016-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
96 Luzar J, Štrukelj B, Lunder M. Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy. Allergy 2016;71:1526-32. [PMID: 27341497 DOI: 10.1111/all.12965] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
97 Shafiq M, Kim SH. Covalent immobilization of MSC-affinity peptide on poly(L-lactide-co-ε-caprolactone) copolymer to enhance stem cell adhesion and retention for tissue engineering applications. Macromol Res 2016;24:986-94. [DOI: 10.1007/s13233-016-4138-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
98 Pugliese R, Gelain F. Peptidic Biomaterials: From Self-Assembling to Regenerative Medicine. Trends Biotechnol 2017;35:145-58. [PMID: 27717599 DOI: 10.1016/j.tibtech.2016.09.004] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 12.7] [Reference Citation Analysis]
99 Huang Y, Jin Y, Zhao R. Rational design and functional evolution of targeted peptides for bioanalytical applications. Sci China Chem 2016;59:1250-7. [DOI: 10.1007/s11426-016-0186-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
100 Silva VL, Ferreira D, Nobrega FL, Martins IM, Kluskens LD, Rodrigues LR. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer. PLoS One 2016;11:e0161290. [PMID: 27548261 DOI: 10.1371/journal.pone.0161290] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
101 Petrenko VA, Gillespie JW. Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'. Expert Opin Drug Deliv 2017;14:373-84. [PMID: 27466706 DOI: 10.1080/17425247.2016.1218463] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
102 Riedl SJ, Pasquale EB. Targeting the Eph System with Peptides and Peptide Conjugates. Curr Drug Targets 2015;16:1031-47. [PMID: 26212263 DOI: 10.2174/1389450116666150727115934] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
103 Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. Adv Mater 2016;28:5485-508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
104 Qiao S, Wang Y, Lin Y, An H, Ma Y, Li L, Wang L, Wang H. Thermo-Controlled in Situ Phase Transition of Polymer–Peptides on Cell Surfaces for High-Performance Proliferative Inhibition. ACS Appl Mater Interfaces 2016;8:17016-22. [DOI: 10.1021/acsami.6b04580] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
105 Cao B, Yang M, Mao C. Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine. Acc Chem Res 2016;49:1111-20. [PMID: 27153341 DOI: 10.1021/acs.accounts.5b00557] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 10.7] [Reference Citation Analysis]
106 Wu CY, Wang DH, Wang X, Dixon SM, Meng L, Ahadi S, Enter DH, Chen CY, Kato J, Leon LJ, Ramirez LM, Maeda Y, Reis CF, Ribeiro B, Weems B, Kung HJ, Lam KS. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening. ACS Comb Sci 2016;18:320-9. [PMID: 27053324 DOI: 10.1021/acscombsci.5b00194] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
107 Li H, Huang Y, Yu Y, Wang Y, Li G. Recognition-induced covalent capturing and labeling as a general strategy for protein detection. Biosensors and Bioelectronics 2016;80:560-5. [DOI: 10.1016/j.bios.2016.02.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
108 Gilad Y, Firer M, Gellerman G. Recent Innovations in Peptide Based Targeted Drug Delivery to Cancer Cells. Biomedicines 2016;4:E11. [PMID: 28536378 DOI: 10.3390/biomedicines4020011] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 8.2] [Reference Citation Analysis]
109 Peck EM, Battles PM, Rice DR, Roland FM, Norquest KA, Smith BD. Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging. Bioconjug Chem 2016;27:1400-10. [PMID: 27088305 DOI: 10.1021/acs.bioconjchem.6b00173] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
110 Tan Y, Tian T, Liu W, Zhu Z, J Yang C. Advance in phage display technology for bioanalysis. Biotechnol J 2016;11:732-45. [PMID: 27061133 DOI: 10.1002/biot.201500458] [Cited by in Crossref: 36] [Cited by in F6Publishing: 44] [Article Influence: 6.0] [Reference Citation Analysis]
111 Lin E, Sikand A, Wickware J, Hao Y, Derda R. Peptide microarray patterning for controlling and monitoring cell growth. Acta Biomater 2016;34:53-9. [PMID: 26805426 DOI: 10.1016/j.actbio.2016.01.028] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
112 Merrill JR, Krajewski K, Yuan H, Frank JE, Lalush DS, Patterson C, Veleva AN. Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography imaging of tumor vasculature. Biomaterials 2016;84:241-9. [DOI: 10.1016/j.biomaterials.2016.01.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
113 Kurabi A, Pak KK, Bernhardt M, Baird A, Ryan AF. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear. Sci Rep 2016;6:22663. [PMID: 26946957 DOI: 10.1038/srep22663] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
114 Wang Q, Ma X, Jia J, Fei H. A peptide-lipid nanoparticle assembly platform with integrated functions for targeted cell delivery. J Mater Chem B 2016;4:1535-43. [PMID: 32263120 DOI: 10.1039/c5tb02783g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
115 Maaty WS, Weis DD. Label-Free, In-Solution Screening of Peptide Libraries for Binding to Protein Targets Using Hydrogen Exchange Mass Spectrometry. J Am Chem Soc 2016;138:1335-43. [PMID: 26741284 DOI: 10.1021/jacs.5b11742] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
116 Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016;23:8. [PMID: 26786672 DOI: 10.1186/s12929-016-0223-x] [Cited by in Crossref: 139] [Cited by in F6Publishing: 146] [Article Influence: 23.2] [Reference Citation Analysis]
117 ElSawy KM, Lane DP, Verma CS, Caves LS. Recognition Dynamics of p53 and MDM2: Implications for Peptide Design. J Phys Chem B 2016;120:320-8. [PMID: 26701330 DOI: 10.1021/acs.jpcb.5b11162] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
118 Li Y, Li W, He K, Li P, Huang Y, Nie Z, Yao S. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly. Nanoscale 2016;8:8591-9. [DOI: 10.1039/c6nr01072e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
119 Rosaleny LE, Gaita-ariño A. Theoretical evaluation of lanthanide binding tags as biomolecular handles for the organization of single ion magnets and spin qubits. Inorg Chem Front 2016;3:61-6. [DOI: 10.1039/c5qi00127g] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
120 Wang ZA, Ding XZ, Tian C, Zheng J. Protein/peptide secondary structural mimics: design, characterization, and modulation of protein–protein interactions. RSC Adv 2016;6:61599-609. [DOI: 10.1039/c6ra13976k] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
121 Baggiani C, Giovannoli C, Anfossi L. Man-Made Synthetic Receptors for Capture and Analysis of Ochratoxin A. Toxins (Basel) 2015;7:4083-98. [PMID: 26473924 DOI: 10.3390/toxins7104083] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
122 Mochizuki Y, Suzuki T, Fujimoto K, Nemoto N. A versatile puromycin-linker using cnvK for high-throughput in vitro selection by cDNA display. Journal of Biotechnology 2015;212:174-80. [DOI: 10.1016/j.jbiotec.2015.08.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
123 Leung NY, Wai CY, Ho MH, Liu R, Lam KS, Wang JJ, Shu SA, Chu KH, Leung PS. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cell Mol Immunol 2017;14:308-18. [PMID: 26364917 DOI: 10.1038/cmi.2015.83] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
124 Peng Q, Zhu J, Yu Y, Hoffman L, Yang X. Hyperbranched lysine−arginine copolymer for gene delivery. Journal of Biomaterials Science, Polymer Edition 2015;26:1163-77. [DOI: 10.1080/09205063.2015.1080482] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
125 Wu C, Kuo Y, Hong R, Wu H. α-Enolase–binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer. Sci Transl Med 2015;7:290ra91-290ra91. [DOI: 10.1126/scitranslmed.aaa9391] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
126 Field LD, Delehanty JB, Chen Y, Medintz IL. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis? Acc Chem Res 2015;48:1380-90. [PMID: 25853734 DOI: 10.1021/ar500449v] [Cited by in Crossref: 102] [Cited by in F6Publishing: 97] [Article Influence: 14.6] [Reference Citation Analysis]
127 Taki M, Kuroiwa H. Unexpectedly fast transfer of positron-emittable artificial substrate into N-terminus of peptide/protein mediated by wild-type L/F-tRNA-protein transferase. Amino Acids 2015;47:1279-82. [PMID: 25929586 DOI: 10.1007/s00726-015-1989-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
128 Warren G, Makarov E, Lu Y, Senanayake T, Rivera K, Gorantla S, Poluektova LY, Vinogradov SV. Amphiphilic cationic nanogels as brain-targeted carriers for activated nucleoside reverse transcriptase inhibitors. J Neuroimmune Pharmacol 2015;10:88-101. [PMID: 25559020 DOI: 10.1007/s11481-014-9576-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
129 Oltra E. Relevance of splicing on tumor-released exosome landscape: implications in cancer therapeutics. Front Endocrinol (Lausanne) 2014;5:194. [PMID: 25429285 DOI: 10.3389/fendo.2014.00194] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
130 Wang F, Liu P, Sun L, Li C, Petrenko VA, Liu A. Bio-mimetic nanostructure self-assembled from Au@Ag heterogeneous nanorods and phage fusion proteins for targeted tumor optical detection and photothermal therapy. Sci Rep 2014;4:6808. [PMID: 25348392 DOI: 10.1038/srep06808] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 5.8] [Reference Citation Analysis]
131 Cerk IK, Salzburger B, Boeszoermenyi A, Heier C, Pillip C, Romauch M, Schweiger M, Cornaciu I, Lass A, Zimmermann R, Zechner R, Oberer M. A peptide derived from G0/G1 switch gene 2 acts as noncompetitive inhibitor of adipose triglyceride lipase. J Biol Chem 2014;289:32559-70. [PMID: 25258314 DOI: 10.1074/jbc.M114.602599] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
132 Gao H, Liu J, Song N. [Application of target peptide in siRNA delivery 
for the research of lung cancer therapy]. Zhongguo Fei Ai Za Zhi 2014;17:674-8. [PMID: 25248709 DOI: 10.3779/j.issn.1009-3419.2014.09.06] [Reference Citation Analysis]
133 Umlauf BJ, Mercedes JS, Chung CY, Brown KC. Identification of a novel lysosomal trafficking peptide using phage display biopanning coupled with endocytic selection pressure. Bioconjug Chem 2014;25:1829-37. [PMID: 25188559 DOI: 10.1021/bc500326x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
134 Hwang I. Virus outbreaks in chemical and biological sensors. Sensors (Basel) 2014;14:13592-612. [PMID: 25068866 DOI: 10.3390/s140813592] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
135 Bakhshinejad B, Karimi M, Sadeghizadeh M. Bacteriophages and medical oncology: targeted gene therapy of cancer. Med Oncol 2014;31. [DOI: 10.1007/s12032-014-0110-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
136 Bedi D, Gillespie JW, Petrenko VA. Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines. Protein Eng Des Sel 2014;27:235-43. [PMID: 24899628 DOI: 10.1093/protein/gzu020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
137 McGuire MJ, Gray BP, Li S, Cupka D, Byers LA, Wu L, Rezaie S, Liu YH, Pattisapu N, Issac J, Oyama T, Diao L, Heymach JV, Xie XJ, Minna JD, Brown KC. Identification and characterization of a suite of tumor targeting peptides for non-small cell lung cancer. Sci Rep 2014;4:4480. [PMID: 24670678 DOI: 10.1038/srep04480] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
138 Wang W, Wei Z, Wang Z, Ma H, Bu X, Hu Z. A continuous flow microfluidic-MS system for efficient OBOC screening. RSC Adv 2014;4:61767-70. [DOI: 10.1039/c4ra12911c] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]