BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lim E, Kim T, Paik S, Haam S, Huh Y, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2015;115:327-94. [DOI: 10.1021/cr300213b] [Cited by in Crossref: 756] [Cited by in F6Publishing: 667] [Article Influence: 94.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Wang Q, Ma T, Zhu D, Liu T, Lv F. Tumor targeted combination therapy mediated by functional macrophages under fluorescence imaging guidance. Journal of Controlled Release 2020;328:127-40. [DOI: 10.1016/j.jconrel.2020.08.052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
2 Saloň I, Hanuš J, Ulbrich P, Štěpánek F. Suspension stability and diffusion properties of yeast glucan microparticles. Food and Bioproducts Processing 2016;99:128-35. [DOI: 10.1016/j.fbp.2016.04.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
3 Giannini C, Holy V, De Caro L, Mino L, Lamberti C. Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy. Progress in Materials Science 2020;112:100667. [DOI: 10.1016/j.pmatsci.2020.100667] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
4 Pan H, Zhang C, Wang T, Chen J, Sun S. In Situ Fabrication of Intelligent Photothermal Indocyanine Green–Alginate Hydrogel for Localized Tumor Ablation. ACS Appl Mater Interfaces 2019;11:2782-9. [DOI: 10.1021/acsami.8b16517] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
5 Mukherjee A, Paul M, Mukherjee S. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers (Basel) 2019;11:E597. [PMID: 31035440 DOI: 10.3390/cancers11050597] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 13.3] [Reference Citation Analysis]
6 Miao Y, Zhang H, Pan Y, Ren J, Ye M, Xia F, Huang R, Lin Z, Jiang S, Zhang Y, Songyang Z, Zhang Y. Single-walled carbon nanotube: One specific inhibitor of cancer stem cells in osteosarcoma upon downregulation of the TGFβ1 signaling. Biomaterials 2017;149:29-40. [PMID: 28988062 DOI: 10.1016/j.biomaterials.2017.09.032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
7 Zhou D, Zeng L, Pan J, Li Q, Chen J. Autocatalytic DNA circuit for Hg2+ detection with high sensitivity and selectivity based on exonuclease III and G-quadruplex DNAzyme. Talanta 2020;207:120258. [PMID: 31594619 DOI: 10.1016/j.talanta.2019.120258] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
8 Sun X, Yan X, Jacobson O, Sun W, Wang Z, Tong X, Xia Y, Ling D, Chen X. Improved Tumor Uptake by Optimizing Liposome Based RES Blockade Strategy. Theranostics 2017;7:319-28. [PMID: 28042337 DOI: 10.7150/thno.18078] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 13.6] [Reference Citation Analysis]
9 Tang Y, Wu Z, Zhang C, Zhang X, Jiang J. Enzymatic activatable self-assembled peptide nanowire for targeted therapy and fluorescence imaging of tumors. Chem Commun 2016;52:3631-4. [DOI: 10.1039/c5cc10591a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
10 Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. Small 2019;16:1901943. [DOI: 10.1002/smll.201901943] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
11 Chen J, Li X, Zhao X, Wu Q, Zhu H, Mao Z, Gao C. Doxorubicin-conjugated pH-responsive gold nanorods for combined photothermal therapy and chemotherapy of cancer. Bioact Mater 2018;3:347-54. [PMID: 29992194 DOI: 10.1016/j.bioactmat.2018.05.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 8.5] [Reference Citation Analysis]
12 Pyne A, Nandi S, Ghosh M, Roy T, Dhara S, Sarkar N. Denaturant-Mediated Modulation of the Formation and Drug Encapsulation Responses of Gold Nanoparticles. Langmuir 2020;36:7634-47. [PMID: 32525679 DOI: 10.1021/acs.langmuir.0c01293] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019;14:2487-514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
14 Yuan Y, He Y, Bo R, Ma Z, Wang Z, Dong L, Lin TY, Xue X, Li Y. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 2018;10:21634-9. [PMID: 30457141 DOI: 10.1039/c8nr05141k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Yu G, Cen T, He Z, Wang S, Wang Z, Ying X, Li S, Jacobson O, Wang S, Wang L, Lin L, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin Nanocage‐Embedded Single‐Molecular Nanoparticles for Cancer Nanotheranostics. Angew Chem 2019;131:8891-5. [DOI: 10.1002/ange.201903277] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
16 Zhu S, Zhang J, Zhang L, Ma W, Man N, Liu Y, Zhou W, Lin J, Wei P, Jin P, Zhang Y, Hu Y, Gu E, Lu X, Yang Z, Liu X, Bai L, Wen L. Inhibition of Kupffer Cell Autophagy Abrogates Nanoparticle-Induced Liver Injury. Adv Healthcare Mater 2017;6:1601252. [DOI: 10.1002/adhm.201601252] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
17 Grishin DF. Organic and petrochemical syntheses as parts of the national technological initiative. Russ J Org Chem 2015;51:1514-5. [DOI: 10.1134/s1070428015100309] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
18 Green M, Chen X. Recent progress of nanomaterials for microwave absorption. Journal of Materiomics 2019;5:503-41. [DOI: 10.1016/j.jmat.2019.07.003] [Cited by in Crossref: 107] [Cited by in F6Publishing: 22] [Article Influence: 35.7] [Reference Citation Analysis]
19 Mandal RP, Mandal G, Sarkar S, Bhattacharyya A, De S. “Theranostic” role of bile salt-capped silver nanoparticles - gall stone/pigment stone disruption and anticancer activity. Journal of Photochemistry and Photobiology B: Biology 2017;175:269-81. [DOI: 10.1016/j.jphotobiol.2017.08.040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
20 Goda T, Hatano H, Yamamoto M, Miyahara Y, Morimoto N. Internalization Mechanisms of Pyridinium Sulfobetaine Polymers Evaluated by Induced Protic Perturbations on Cell Surfaces. Langmuir 2020;36:9977-84. [PMID: 32787130 DOI: 10.1021/acs.langmuir.0c01816] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Nosratabad NA, Jin Z, Du L, Thakur M, Mattoussi H. N-Heterocyclic Carbene-Stabilized Gold Nanoparticles: Mono- Versus Multidentate Ligands. Chem Mater 2021;33:921-33. [DOI: 10.1021/acs.chemmater.0c03918] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
22 Mondal S, Luis Montaño-priede J, Tu Nguyen V, Park S, Choi J, Hoang Minh Doan V, Mai Thien Vo T, Hung Vo T, Large N, Kim C, Oh J. Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic behavior for in-situ tumor imaging and photothermal therapy. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.02.006] [Reference Citation Analysis]
23 Maiti M, Kikuchi K, Athul KK, Kaur A, Bhuniya S. β-Galactosidase-activated theranostic for hepatic carcinoma therapy and imaging. Chem Commun (Camb) 2022. [PMID: 35543438 DOI: 10.1039/d2cc01825j] [Reference Citation Analysis]
24 Huang J, Wu F, Yu Y, Huang H, Zhang S, You J. Lipoic acid based core cross-linked micelles for multivalent platforms: design, synthesis and application in bio-imaging and drug delivery. Org Biomol Chem 2017;15:4798-802. [DOI: 10.1039/c7ob00927e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Fu Y, Fang C, Ren Z, Xu G, Li X, Han G. Constructing Implantable SrTiO 3 :Yb,Ho Nanofibers for NIR-Triggered and Optically Monitored Chemotherapy. Chem Eur J 2017;23:2423-31. [DOI: 10.1002/chem.201604956] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
26 Italiani P, Della Camera G, Boraschi D. Induction of Innate Immune Memory by Engineered Nanoparticles in Monocytes/Macrophages: From Hypothesis to Reality. Front Immunol 2020;11:566309. [PMID: 33123137 DOI: 10.3389/fimmu.2020.566309] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Geng S, Yang H, Ren X, Liu Y, He S, Zhou J, Su N, Li Y, Xu C, Zhang X, Cheng Z. Anisotropic Magnetite Nanorods for Enhanced Magnetic Hyperthermia. Chem Asian J 2016;11:2996-3000. [PMID: 27615802 DOI: 10.1002/asia.201601042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
28 Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021;329:624-44. [PMID: 33010333 DOI: 10.1016/j.jconrel.2020.09.055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
29 Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MMB, Farooq MA, Mavlyanova R, Raza F, Bavi R, Wang B. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm 2019;564:308-17. [PMID: 31015004 DOI: 10.1016/j.ijpharm.2019.04.055] [Cited by in Crossref: 78] [Cited by in F6Publishing: 46] [Article Influence: 26.0] [Reference Citation Analysis]
30 Lan M, Zhao S, Xie Y, Zhao J, Guo L, Niu G, Li Y, Sun H, Zhang H, Liu W, Zhang J, Wang P, Zhang W. Water-Soluble Polythiophene for Two-Photon Excitation Fluorescence Imaging and Photodynamic Therapy of Cancer. ACS Appl Mater Interfaces 2017;9:14590-5. [DOI: 10.1021/acsami.6b15537] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
31 Krasilnikova AA, Solovieva AO, Ivanov AA, Trifonova KE, Pozmogova TN, Tsygankova AR, Smolentsev AI, Kretov EI, Sergeevichev DS, Shestopalov MA, Mironov YV, Shestopalov AM, Poveshchenko AF, Shestopalova LV. Comprehensive study of hexarhenium cluster complex Na 4 [{Re 6 Te 8 }(CN) 6 ] – In terms of a new promising luminescent and X-ray contrast agent. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:755-63. [DOI: 10.1016/j.nano.2016.10.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 17] [Article Influence: 6.6] [Reference Citation Analysis]
32 Ding S, He L, Bian X, Tian G. Metal-organic frameworks-based nanozymes for combined cancer therapy. Nano Today 2020;35:100920. [DOI: 10.1016/j.nantod.2020.100920] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
33 Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, Pan Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10. [PMID: 28471067 DOI: 10.1002/wnan.1476] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 8.8] [Reference Citation Analysis]
34 Miao Z, Liu P, Wang Y, Li K, Huang D, Yang H, Zhao Q, Zha Z, Zhen L, Xu C. PEGylated Tantalum Nanoparticles: A Metallic Photoacoustic Contrast Agent for Multiwavelength Imaging of Tumors. Small 2019;15:1903596. [DOI: 10.1002/smll.201903596] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
35 Xu C, Gao F, Wu J, Niu S, Li F, Jin L, Shi Q, Du L. Biodegradable nanotheranostics with hyperthermia-induced bubble ability for ultrasound imaging-guided chemo-photothermal therapy. Int J Nanomedicine 2019;14:7141-53. [PMID: 31564870 DOI: 10.2147/IJN.S213518] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Barbalinardo M, Caicci F, Cavallini M, Gentili D. Protein Corona Mediated Uptake and Cytotoxicity of Silver Nanoparticles in Mouse Embryonic Fibroblast. Small 2018;14:e1801219. [PMID: 30058105 DOI: 10.1002/smll.201801219] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
37 Chakraborty D, Giri S, Natarajan L, Chandrasekaran N, Mukherjee A. Recent Advances in Understanding the Facets of Eco-corona on Engineered Nanomaterials. J Indian Inst Sci. [DOI: 10.1007/s41745-021-00266-w] [Reference Citation Analysis]
38 Li L, Zhou Y, Gao R, Liu X, Du H, Zhang J, Ai X, Zhang J, Fu L, Skibsted LH. Naturally occurring nanotube with surface modification as biocompatible, target-specific nanocarrier for cancer phototherapy. Biomaterials 2019;190-191:86-96. [DOI: 10.1016/j.biomaterials.2018.10.046] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 10.7] [Reference Citation Analysis]
39 Villa C, Campione M, Santiago‐gonzález B, Alessandrini F, Erratico S, Zucca I, Bruzzone MG, Forzenigo L, Malatesta P, Mauri M, Trombetta E, Brovelli S, Torrente Y, Meinardi F, Monguzzi A. Self‐Assembled pH‐Sensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer. Adv Funct Mater 2018;28:1707582. [DOI: 10.1002/adfm.201707582] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
40 Zhang Y, He Z, Li Y, Xia Q, Li Z, Hou X, Feng N. Tumor cell membrane-derived nano-Trojan horses encapsulating phototherapy and chemotherapy are accepted by homologous tumor cells. Mater Sci Eng C Mater Biol Appl 2021;120:111670. [PMID: 33545835 DOI: 10.1016/j.msec.2020.111670] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
41 Yang H, He Y, Wang Y, Yang R, Wang N, Zhang LM, Gao M, Jiang X. Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy. Int J Nanomedicine 2020;15:3023-38. [PMID: 32431499 DOI: 10.2147/IJN.S244541] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Lei Y, Tang J, Shi H, Ye X, He X, Xu F, Yan L, Qiao Z, Wang K. Nature-Inspired Smart DNA Nanodoctor for Activatable In Vivo Cancer Imaging and In Situ Drug Release Based on Recognition-Triggered Assembly of Split Aptamer. Anal Chem 2016;88:11699-706. [PMID: 27807977 DOI: 10.1021/acs.analchem.6b03283] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 6.3] [Reference Citation Analysis]
43 Jing L, Yang C, Zhang P, Zeng J, Li Z, Gao M. Nanoparticles weaponized with built‐in functions for imaging‐guided cancer therapy. View 2020;1. [DOI: 10.1002/viw2.19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
44 Yang M, Zhang N, Zhang T, Yin X, Shen J. Fabrication of doxorubicin-gated mesoporous polydopamine nanoplatforms for multimode imaging-guided synergistic chemophotothermal therapy of tumors. Drug Deliv 2020;27:367-77. [PMID: 32091284 DOI: 10.1080/10717544.2020.1730523] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
45 Li J, Ou H, Li J, Yang X, Ge C, Ding D, Gao X. Large π-extended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. Sci China Chem 2021;64:2180-92. [DOI: 10.1007/s11426-021-1090-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Bednarkiewicz A, Marciniak L, Carlos LD, Jaque D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020;12:14405-21. [PMID: 32633305 DOI: 10.1039/d0nr03568h] [Cited by in Crossref: 62] [Cited by in F6Publishing: 7] [Article Influence: 62.0] [Reference Citation Analysis]
47 Liu X, Wu M, Hu Q, Bai H, Zhang S, Shen Y, Tang G, Ping Y. Redox-Activated Light-Up Nanomicelle for Precise Imaging-Guided Cancer Therapy and Real-Time Pharmacokinetic Monitoring. ACS Nano 2016;10:11385-96. [PMID: 28024380 DOI: 10.1021/acsnano.6b06688] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
48 Yadav M, Niveria K, Sen T, Roy I, Verma AK. Targeting nonapoptotic pathways with functionalized nanoparticles for cancer therapy: current and future perspectives. Nanomedicine (Lond) 2021;16:1049-65. [PMID: 33970686 DOI: 10.2217/nnm-2020-0443] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Kasprzak A, Poplawska M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun (Camb) 2018;54:8547-62. [PMID: 29972382 DOI: 10.1039/c8cc04120b] [Cited by in Crossref: 31] [Cited by in F6Publishing: 5] [Article Influence: 7.8] [Reference Citation Analysis]
50 Pitto-barry A, Geraki K, Horbury MD, Stavros VG, Mosselmans JFW, Walton RI, Sadler PJ, Barry NPE. Controlled fabrication of osmium nanocrystals by electron, laser and microwave irradiation and characterisation by microfocus X-ray absorption spectroscopy. Chem Commun 2017;53:12898-901. [DOI: 10.1039/c7cc07133g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
51 Chai S, Guo Y, Zhang Z, Chai Z, Ma Y, Qi L. Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release. Nanotechnology 2017;28:145101. [DOI: 10.1088/1361-6528/aa5e74] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
52 Du F, Liu YG, Scott EA. Immunotheranostic Polymersomes Modularly Assembled from Tetrablock and Diblock Copolymers with Oxidation-Responsive Fluorescence. Cell Mol Bioeng 2017;10:357-70. [PMID: 28989540 DOI: 10.1007/s12195-017-0486-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
53 Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Progress in Polymer Science 2019;99:101164. [DOI: 10.1016/j.progpolymsci.2019.101164] [Cited by in Crossref: 72] [Cited by in F6Publishing: 34] [Article Influence: 24.0] [Reference Citation Analysis]
54 Ferreira TH, de Oliveira Freitas LB, Fernandes RS, dos Santos VM, Resende JM, Cardoso VN, de Barros ALB, de Sousa EMB. Boron nitride nanotube-CREKA peptide as an effective target system to metastatic breast cancer. J Pharm Investig 2020;50:469-80. [DOI: 10.1007/s40005-019-00467-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
55 Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. Angew Chem 2018;130:7930-4. [DOI: 10.1002/ange.201803321] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
56 Wen C, Xie H, Zhang Z, Wu L, Hu J, Tang M, Wu M, Pang D. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale 2016;8:12406-29. [DOI: 10.1039/c5nr08534a] [Cited by in Crossref: 67] [Cited by in F6Publishing: 11] [Article Influence: 11.2] [Reference Citation Analysis]
57 Jiménez J, Prieto-Montero R, Maroto BL, Moreno F, Ortiz MJ, Oliden-Sánchez A, López-Arbeloa I, Martínez-Martínez V, de la Moya S. Manipulating Charge-Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry 2020;26:601-5. [PMID: 31846138 DOI: 10.1002/chem.201904257] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
58 Chen X, Gao H, Deng Y, Jin Q, Ji J, Ding D. Supramolecular Aggregation-Induced Emission Nanodots with Programmed Tumor Microenvironment Responsiveness for Image-Guided Orthotopic Pancreatic Cancer Therapy. ACS Nano 2020;14:5121-34. [DOI: 10.1021/acsnano.0c02197] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 13.5] [Reference Citation Analysis]
59 Li D, Ma Y, Du J, Tao W, Du X, Yang X, Wang J. Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. Nano Lett 2017;17:2871-8. [DOI: 10.1021/acs.nanolett.6b05396] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 17.0] [Reference Citation Analysis]
60 Kim HJ, Kim B, Auh Y, Kim E. Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. Adv Mater 2021;:e2005940. [PMID: 34050686 DOI: 10.1002/adma.202005940] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Bosio GN, Mártire DO. Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis Photodyn Ther 2021;37:102683. [PMID: 34915184 DOI: 10.1016/j.pdpdt.2021.102683] [Reference Citation Analysis]
62 Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020;10:5435-88. [PMID: 32373222 DOI: 10.7150/thno.40068] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
63 Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020;167:121-34. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
64 Liebel M, Camargo FVA, Cerullo G, van Hulst NF. Ultrafast Transient Holographic Microscopy. Nano Lett 2021;21:1666-71. [PMID: 33539103 DOI: 10.1021/acs.nanolett.0c04416] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Ambardar S, Nguyen D, Binder G, Withers ZW, Voronine DV. Quantum Leap from Gold and Silver to Aluminum Nanoplasmonics for Enhanced Biomedical Applications. Applied Sciences 2020;10:4210. [DOI: 10.3390/app10124210] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
66 Fan W, Yung BC, Chen X. Stimuli‐Responsive NO Release for On‐Demand Gas‐Sensitized Synergistic Cancer Therapy. Angew Chem Int Ed 2018;57:8383-94. [DOI: 10.1002/anie.201800594] [Cited by in Crossref: 114] [Cited by in F6Publishing: 109] [Article Influence: 28.5] [Reference Citation Analysis]
67 Li K, Zang X, Cheng M, Chen X. Stimuli-responsive nanoparticles based on poly acrylic derivatives for tumor therapy. Int J Pharm 2021;601:120506. [PMID: 33798689 DOI: 10.1016/j.ijpharm.2021.120506] [Reference Citation Analysis]
68 Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 2020;10:6278-309. [PMID: 32483453 DOI: 10.7150/thno.42564] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 21.0] [Reference Citation Analysis]
69 Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J Porphyrins Phthalocyanines 2019;23:729-65. [DOI: 10.1142/s1088424619300118] [Cited by in Crossref: 17] [Article Influence: 5.7] [Reference Citation Analysis]
70 Shimoni O, Shi B, Adlard PA, Bush AI. Delivery of Fluorescent Nanoparticles to the Brain. J Mol Neurosci 2016;60:405-9. [DOI: 10.1007/s12031-016-0833-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
71 Zhao S, Niu G, Wu F, Yan L, Zhang H, Zhao J, Zeng L, Lan M. Lysosome-targetable polythiophene nanoparticles for two-photon excitation photodynamic therapy and deep tissue imaging. J Mater Chem B 2017;5:3651-7. [DOI: 10.1039/c7tb00371d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 1] [Article Influence: 5.6] [Reference Citation Analysis]
72 Cao J, Ge R, Zhang M, Xia J, Han S, Lu W, Liang Y, Zhang T, Sun Y. A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy. Nanoscale 2018;10:9021-37. [DOI: 10.1039/c7nr09552j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
73 Huang Y, Mao K, Zhang B, Zhao Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Materials Science and Engineering: C 2017;70:763-71. [DOI: 10.1016/j.msec.2016.09.052] [Cited by in Crossref: 104] [Cited by in F6Publishing: 74] [Article Influence: 20.8] [Reference Citation Analysis]
74 Ma Q, Su X. Advances in the application of QD-based intracellular sensing systems. Applied Spectroscopy Reviews 2015;51:162-81. [DOI: 10.1080/05704928.2015.1096276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
75 Li H, Li Y, Xiang J, Yang X, Li C, Liu C, Zhao Q, Zhou L, Gong P, Huang J. Intelligent Bimetallic Nanoagents as Reactive Oxygen Species Initiator System for Effective Combination Phototherapy. Front Bioeng Biotechnol 2020;8:423. [PMID: 32457891 DOI: 10.3389/fbioe.2020.00423] [Reference Citation Analysis]
76 Khang MK, Zhou J, Co CM, Li S, Tang L. A pretargeting nanoplatform for imaging and enhancing anti-inflammatory drug delivery. Bioact Mater 2020;5:1102-12. [PMID: 32695939 DOI: 10.1016/j.bioactmat.2020.06.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
77 Zhao DH, Yang XQ, Hou XL, Xuan Y, Song XL, Zhao YD, Chen W, Wang Q, Liu B. In situ aqueous synthesis of genetically engineered polypeptide-capped Ag2S quantum dots for second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. J Mater Chem B 2019;7:2484-92. [PMID: 32255125 DOI: 10.1039/c8tb03043j] [Cited by in Crossref: 12] [Article Influence: 4.0] [Reference Citation Analysis]
78 Lin Y, Yang Y, Yan J, Chen J, Cao J, Pu Y, Li L, He B. Redox/ATP switchable theranostic nanoparticles for real-time fluorescence monitoring of doxorubicin delivery. J Mater Chem B 2018;6:2089-103. [PMID: 32254432 DOI: 10.1039/c7tb03325g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
79 Caro C, Avasthi A, Paez-Muñoz JM, Pernia Leal M, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 2021;9:7984-95. [PMID: 34710207 DOI: 10.1039/d1bm01398j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han C, Mahapatra C, Kim H, Knowles JC. Sol–gel based materials for biomedical applications. Progress in Materials Science 2016;77:1-79. [DOI: 10.1016/j.pmatsci.2015.12.001] [Cited by in Crossref: 372] [Cited by in F6Publishing: 153] [Article Influence: 62.0] [Reference Citation Analysis]
81 An Y, Yu J, Han Y. Recent Advances in the Chemistry of N ‐Heterocyclic‐Carbene‐Functionalized Metal‐Nanoparticles and Their Applications. Chin J Chem 2018;37:76-87. [DOI: 10.1002/cjoc.201800450] [Cited by in Crossref: 24] [Article Influence: 6.0] [Reference Citation Analysis]
82 Tian J, Zhou J, Shen Z, Ding L, Yu JS, Ju H. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem Sci 2015;6:5969-77. [PMID: 28791094 DOI: 10.1039/c5sc01721a] [Cited by in Crossref: 130] [Cited by in F6Publishing: 27] [Article Influence: 18.6] [Reference Citation Analysis]
83 Debnath M, Sasmal S, Haldar D. Fabrication of egg shell-like nanovesicles from a thiocoumarin-based ε-amino ester: a potential carrier. J Mater Chem B 2017;5:5450-7. [DOI: 10.1039/c7tb00025a] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
84 Kim H, Kwak G, Kim K, Yoon HY, Kwon IC. Theranostic designs of biomaterials for precision medicine in cancer therapy. Biomaterials 2019;213:119207. [DOI: 10.1016/j.biomaterials.2019.05.018] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
85 Manivasagan P, Nguyen VT, Jun SW, Hoang G, Mondal S, Kim H, Doan VHM, Kim J, Kim C, Oh J. Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. Journal of Controlled Release 2019;311-312:26-42. [DOI: 10.1016/j.jconrel.2019.08.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
86 Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga‐Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. Small 2020;16:1903391. [DOI: 10.1002/smll.201903391] [Cited by in Crossref: 44] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
87 Lermontova SA, Grigor’ev IS, Peskova NN, Ladilina EY, Balalaeva IV, Klapshina LG, Boyarskii VP. New promising porphyrazine-based agents for optical theranostics of cancer. Russ J Gen Chem 2017;87:479-84. [DOI: 10.1134/s1070363217030173] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
88 Kim B, Kim J, Baik H, Lee K. Large-scale one pot synthesis of metal oxide nanoparticles by decomposition of metal carbonates or nitrates. CrystEngComm 2015;17:4977-81. [DOI: 10.1039/c5ce00941c] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
89 Ma XX, Xu JL, Jia YY, Zhang YX, Wang W, Li C, He W, Zhou SY, Zhang BL. Enhance transgene responses through improving cellular uptake and intracellular trafficking by bio-inspired non-viral vectors. J Nanobiotechnology 2020;18:26. [PMID: 32005170 DOI: 10.1186/s12951-020-0582-z] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Zhang S, Zhang S, Luo S, Wu D. Therapeutic agent-based infinite coordination polymer nanomedicines for tumor therapy. Coordination Chemistry Reviews 2021;445:214059. [DOI: 10.1016/j.ccr.2021.214059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Liu X, Wang C, Liu Z. Protein-Engineered Biomaterials for Cancer Theranostics. Adv Healthcare Mater 2018;7:1800913. [DOI: 10.1002/adhm.201800913] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
92 Chen S, Wang H, Hong Y, Tang BZ. Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater Horiz 2016;3:283-93. [DOI: 10.1039/c6mh00060f] [Cited by in Crossref: 138] [Cited by in F6Publishing: 2] [Article Influence: 23.0] [Reference Citation Analysis]
93 Zhou P, Zhao H, Wang Q, Zhou Z, Wang J, Deng G, Wang X, Liu Q, Yang H, Yang S. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe 3 O 4 Nanoparticles for Theranostics In Vivo. Adv Healthcare Mater 2018;7:1701201. [DOI: 10.1002/adhm.201701201] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 7.8] [Reference Citation Analysis]
94 Dastani N, Arab A, Raissi H. DFT computational study towards investigating Cladribine anticancer drug adsorption on the graphene and functionalized graphene. Struct Chem 2020;31:1691-705. [DOI: 10.1007/s11224-020-01526-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
95 Li X, Tang Y, Xu L, Kong X, Zhang L, Chang Y, Zhao H, Zhang H, Liu X. Dependence between cytotoxicity and dynamic subcellular localization of up-conversion nanoparticles with different surface charges. RSC Adv 2017;7:33502-9. [DOI: 10.1039/c7ra04487a] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
96 Guerrini L, Alvarez-Puebla RA. Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers (Basel) 2019;11:E748. [PMID: 31146464 DOI: 10.3390/cancers11060748] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
97 Zhang T, Wang L, Ma C, Wang W, Ding J, Liu S, Zhang X, Xie Z. BODIPY-containing nanoscale metal–organic frameworks as contrast agents for computed tomography. J Mater Chem B 2017;5:2330-6. [DOI: 10.1039/c7tb00392g] [Cited by in Crossref: 36] [Cited by in F6Publishing: 3] [Article Influence: 7.2] [Reference Citation Analysis]
98 Xiao YF, Xiang C, Li S, Mao C, Chen H, Chen JX, Tian S, Cui X, Wan Y, Huang Z, Li X, Zhang XH, Guo W, Lee CS. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation. Small 2020;16:e2002672. [PMID: 32697430 DOI: 10.1002/smll.202002672] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
99 Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. A Magnetofluorescent Carbon Dot Assembly as an Acidic H 2 O 2 ‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Adv Mater 2018;30:1706090. [DOI: 10.1002/adma.201706090] [Cited by in Crossref: 216] [Cited by in F6Publishing: 197] [Article Influence: 54.0] [Reference Citation Analysis]
100 Pan UN, Sanpui P, Paul A, Chattopadhyay A. Synergistic Anticancer Potential of Artemisinin When Loaded with 8-Hydroxyquinoline-Surface Complexed-Zinc Ferrite Magnetofluorescent Nanoparticles and Albumin Composite. ACS Appl Bio Mater 2018;1:1229-35. [DOI: 10.1021/acsabm.8b00358] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
101 Yu Q, Peng T, Zhang J, Liu X, Pan Y, Ge D, Zhao L, Rosei F, Zhang J. Cu2- x Sx Capped AuCu Nanostars for Efficient Plasmonic Photothermal Tumor Treatment in the Second Near-Infrared Window. Small 2021;:e2103174. [PMID: 34914183 DOI: 10.1002/smll.202103174] [Reference Citation Analysis]
102 Kefeni KK, Msagati TAM, Nkambule TT, Mamba BB. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater Sci Eng C Mater Biol Appl 2020;107:110314. [PMID: 31761184 DOI: 10.1016/j.msec.2019.110314] [Cited by in Crossref: 41] [Cited by in F6Publishing: 14] [Article Influence: 13.7] [Reference Citation Analysis]
103 Sun S, Chen J, Jiang K, Tang Z, Wang Y, Li Z, Liu C, Wu A, Lin H. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Appl Mater Interfaces 2019;11:5791-803. [PMID: 30648846 DOI: 10.1021/acsami.8b19042] [Cited by in Crossref: 73] [Cited by in F6Publishing: 49] [Article Influence: 24.3] [Reference Citation Analysis]
104 Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020;63:14119-50. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
105 Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe2O4) Nanocomposites. Chem Res Toxicol 2017;30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
106 Iatridi Z, Vamvakidis K, Tsougos I, Vassiou K, Dendrinou-samara C, Bokias G. Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications. ACS Appl Mater Interfaces 2016;8:35059-70. [DOI: 10.1021/acsami.6b13161] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
107 Marega R, Prasetyanto EA, Michiels C, De Cola L, Bonifazi D. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates. Small 2016;12:5431-41. [DOI: 10.1002/smll.201601447] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
108 Guo L, Ge J, Wang P. Polymer Dots as Effective Phototheranostic Agents. Photochem Photobiol 2018;94:916-34. [DOI: 10.1111/php.12956] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
109 Yang C, Zhang Y, Luo Y, Qiao B, Wang X, Zhang L, Chen Q, Cao Y, Wang Z, Ran H. Dual ultrasound-activatable nanodroplets for highly-penetrative and efficient ovarian cancer theranostics. J Mater Chem B 2020;8:380-90. [PMID: 31868193 DOI: 10.1039/c9tb02198a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
110 Long D, Mao J, Liu T, Fu C, Tan L, Ren X, Shi H, Su H, Ren J, Meng X. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy. Nanoscale 2016;8:11044-51. [DOI: 10.1039/c6nr01597b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
111 Wang W, Wang L, Li Z, Xie Z. BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy. Chem Commun 2016;52:5402-5. [DOI: 10.1039/c6cc01048b] [Cited by in Crossref: 117] [Cited by in F6Publishing: 12] [Article Influence: 19.5] [Reference Citation Analysis]
112 Fan Y, Zhang J, Shi M, Li D, Lu C, Cao X, Peng C, Mignani S, Majoral JP, Shi X. Poly(amidoamine) Dendrimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis. Nano Lett 2019;19:1216-26. [PMID: 30698017 DOI: 10.1021/acs.nanolett.8b04757] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 14.7] [Reference Citation Analysis]
113 Rubio-Camacho M, Alacid Y, Mallavia R, Martínez-Tomé MJ, Mateo CR. Polyfluorene-Based Multicolor Fluorescent Nanoparticles Activated by Temperature for Bioimaging and Drug Delivery. Nanomaterials (Basel) 2019;9:E1485. [PMID: 31635330 DOI: 10.3390/nano9101485] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
114 Chen F, Li Y, Lin X, Qiu H, Yin S. Polymeric Systems Containing Supramolecular Coordination Complexes for Drug Delivery. Polymers (Basel) 2021;13:370. [PMID: 33503965 DOI: 10.3390/polym13030370] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Wu J, Sha J, Zhang C, Liu W, Zheng X, Wang P. Recent advances in theranostic agents based on natural products for photodynamic and sonodynamic therapy. View 2020;1:20200090. [DOI: 10.1002/viw.20200090] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
116 Palomino-vizcaino G, Alvarez-salas LM. Therapeutic Oligonucleotides Against Cancer: Recent Approaches and New Perspectives. Nucleic Acid Nanotheranostics. Elsevier; 2019. pp. 1-26. [DOI: 10.1016/b978-0-12-814470-1.00001-0] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
117 Rapakousiou A, Belin C, Salmon L, Ruiz J, Astruc D. Click Co sandwich-terminated dendrimers as polyhydride reservoirs and micellar templates. Chem Commun (Camb) 2017;53:6267-70. [PMID: 28548161 DOI: 10.1039/c7cc03311g] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
118 Dwivedy AK, Upadhyay N, Asawa S, Kumar M, Prakash B, Dubey NK. Therapeutic Potential of Plant-Based Metal Nanoparticles. Nanomaterials in Plants, Algae and Microorganisms. Elsevier; 2019. pp. 169-96. [DOI: 10.1016/b978-0-12-811488-9.00009-3] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
119 Kong F, Liang Z, Luan D, Liu X, Xu K, Tang B. A Glutathione (GSH)-Responsive Near-Infrared (NIR) Theranostic Prodrug for Cancer Therapy and Imaging. Anal Chem 2016;88:6450-6. [DOI: 10.1021/acs.analchem.6b01135] [Cited by in Crossref: 111] [Cited by in F6Publishing: 100] [Article Influence: 18.5] [Reference Citation Analysis]
120 Terracciano M, Napolitano M, De Stefano L, De Luca AC, Rea I. Gold decorated porous biosilica nanodevices for advanced medicine. Nanotechnology 2018;29:235601. [DOI: 10.1088/1361-6528/aab7c4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
121 Kang B, Lim J, Son HY, Choi Y, Kang T, Jung J, Huh YM, Haam S, Lim EK. PEGylated Magnetic Nano-Assemblies as Contrast Agents for Effective T2-Weighted MR Imaging. Nanomaterials (Basel) 2019;9:E410. [PMID: 30862030 DOI: 10.3390/nano9030410] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
122 Kolokithas-Ntoukas A, Bakandritsos A, Belza J, Kesa P, Herynek V, Pankrac J, Angelopoulou A, Malina O, Avgoustakis K, Georgakilas V, Polakova K, Zboril R. Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and In Vivo Multimodal Imaging. ACS Appl Mater Interfaces 2021;13:29247-56. [PMID: 33942606 DOI: 10.1021/acsami.1c00908] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Feng C, Wang F, Dang Y, Xu Z, Yu H, Zhang W. A Self-Assembled Ratiometric Polymeric Nanoprobe for Highly Selective Fluorescence Detection of Hydrogen Peroxide. Langmuir 2017;33:3287-95. [DOI: 10.1021/acs.langmuir.7b00189] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
124 Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications. Nanotechnol Sci Appl 2020;13:47-59. [PMID: 32801669 DOI: 10.2147/NSA.S260374] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
125 Luby BM, Charron DM, MacLaughlin CM, Zheng G. Activatable fluorescence: From small molecule to nanoparticle. Adv Drug Deliv Rev 2017;113:97-121. [PMID: 27593264 DOI: 10.1016/j.addr.2016.08.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 8.3] [Reference Citation Analysis]
126 Wang Z, Zhen X, Upputuri PK, Jiang Y, Lau J, Pramanik M, Pu K, Xing B. Redox-Activatable and Acid-Enhanced Nanotheranostics for Second Near-Infrared Photoacoustic Tomography and Combined Photothermal Tumor Therapy. ACS Nano 2019;13:5816-25. [DOI: 10.1021/acsnano.9b01411] [Cited by in Crossref: 85] [Cited by in F6Publishing: 63] [Article Influence: 28.3] [Reference Citation Analysis]
127 Akakuru OU, Zhang Z, Iqbal MZ, Zhu C, Zhang Y, Wu A. Chemotherapeutic nanomaterials in tumor boundary delineation: Prospects for effective tumor treatment. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.016] [Reference Citation Analysis]
128 Vankayala R, Mac JT, Burns JM, Dunn E, Carroll S, Bahena EM, Patel DK, Griffey S, Anvari B. Biodistribution and toxicological evaluation of micron- and nano-sized erythrocyte-derived optical particles in healthy Swiss Webster mice. Biomater Sci 2019;7:2123-33. [PMID: 30869663 DOI: 10.1039/c8bm01448e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
129 Quiñones ED, Lu TY, Liu KT, Fan YJ, Chuang EY, Yu J. Glycol chitosan/iron oxide/polypyrrole nanoclusters for precise chemodynamic/photothermal synergistic therapy. Int J Biol Macromol 2022;203:268-79. [PMID: 35051505 DOI: 10.1016/j.ijbiomac.2022.01.085] [Reference Citation Analysis]
130 Liu H, Ikeda K, Nguyen MT, Sato S, Matsuda N, Tsukamoto H, Tokunaga T, Yonezawa T. Alginate-Stabilized Gold Nanoparticles Prepared Using the Microwave-Induced Plasma-in-Liquid Process with Long-Term Storage Stability for Potential Biomedical Applications. ACS Omega. [DOI: 10.1021/acsomega.1c06769] [Reference Citation Analysis]
131 Peng K, Liang B, Liu W, Mao Z. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coordination Chemistry Reviews 2021;449:214210. [DOI: 10.1016/j.ccr.2021.214210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
132 Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coordination Chemistry Reviews 2020;412:213258. [DOI: 10.1016/j.ccr.2020.213258] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
133 Meyer CE, Liu J, Craciun I, Wu D, Wang H, Xie M, Fussenegger M, Palivan CG. Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNA‐Zipped Polymersome Clusters for Advanced Nanotheranostic Platform. Small 2020;16:1906492. [DOI: 10.1002/smll.201906492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
134 Ding L, Lyu Z, Tintaru A, Laurini E, Marson D, Louis B, Bouhlel A, Balasse L, Fernandez S, Garrigue P, Mas E, Giorgio S, Pricl S, Guillet B, Peng L. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging. Chem Commun 2020;56:301-4. [DOI: 10.1039/c9cc07750b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
135 Han Y, Ouyang J, Li Y, Wang F, Jiang JH. Engineering H2O2 Self-Supplying Nanotheranostic Platform for Targeted and Imaging-Guided Chemodynamic Therapy. ACS Appl Mater Interfaces 2020;12:288-97. [PMID: 31834761 DOI: 10.1021/acsami.9b18676] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
136 Lin Q, Yang Y, Ma Y, Zhang R, Wang J, Chen X, Shao Z. Bandgap Engineered Polypyrrole-Polydopamine Hybrid with Intrinsic Raman and Photoacoustic Imaging Contrasts. Nano Lett 2018;18:7485-93. [PMID: 30444622 DOI: 10.1021/acs.nanolett.8b02901] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
137 Ahrberg CD, Wook Choi J, Geun Chung B. Automated droplet reactor for the synthesis of iron oxide/gold core-shell nanoparticles. Sci Rep 2020;10:1737. [PMID: 32015417 DOI: 10.1038/s41598-020-58580-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
138 Liu W, Deng T, Feng L, Xie A, Zhang J, Wang S, Liu X, Yang Y, Guo J. Designed synthesis and formation mechanism of CeO 2 hollow nanospheres and their facile functionalization with Au nanoparticles. CrystEngComm 2015;17:4850-8. [DOI: 10.1039/c5ce00569h] [Cited by in Crossref: 18] [Article Influence: 2.6] [Reference Citation Analysis]
139 Rašović I. Water-soluble fullerenes for medical applications. Materials Science and Technology 2016;33:777-94. [DOI: 10.1080/02670836.2016.1198114] [Cited by in Crossref: 63] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
140 Pillarisetti S, Maya S, Sathianarayanan S, Jayakumar R. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids and Surfaces B: Biointerfaces 2017;159:809-19. [DOI: 10.1016/j.colsurfb.2017.08.057] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
141 Hwang SG, Ha K, Guk K, Lee DK, Eom G, Song S, Kang T, Park H, Jung J, Lim EK. Rapid and simple detection of Tamiflu-resistant influenza virus: Development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci Rep 2018;8:12999. [PMID: 30158601 DOI: 10.1038/s41598-018-31311-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
142 Bai L, Yang X, An J, Zhang L, Zhao K, Qin M, Fang B, Li C, Xuan Y, Zhang X, Zhao Y, Ma Z. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy. Nanotechnology 2015;26:315701. [DOI: 10.1088/0957-4484/26/31/315701] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
143 Suseela YV, Satha P, Murugan NA, Govindaraju T. Recognition of G-quadruplex topology through hybrid binding with implications in cancer theranostics. Theranostics 2020;10:10394-414. [PMID: 32929356 DOI: 10.7150/thno.48675] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
144 Song Y, Sheng Z, Xu Y, Dong L, Xu W, Li F, Wang J, Wu Z, Yang Y, Su Y, Sun X, Ling D, Lu Y. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater Sci 2019;7:867-75. [PMID: 30648710 DOI: 10.1039/c8bm01530a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
145 Wang Y, Wang B, Zhang L, Huang J, Li P, Zhao Y, Zhou C, Liu M, Li W, He J. Mitochondria-targeted nanospheres with deep tumor penetration for photo/starvation therapy. J Mater Chem B 2020;8:7740-54. [DOI: 10.1039/d0tb00001a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
146 Li Y, Zhang X, Zhang Z, Wu H, Xu X, Gu Z. Tumor-adapting and tumor-remodeling AuNR@dendrimer-assembly nanohybrids overcome impermeable multidrug-resistant cancer. Mater Horiz 2018;5:1047-57. [DOI: 10.1039/c8mh00694f] [Cited by in Crossref: 20] [Article Influence: 5.0] [Reference Citation Analysis]
147 Zheng M, Ruan S, Liu S, Sun T, Qu D, Zhao H, Xie Z, Gao H, Jing X, Sun Z. Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano 2015;9:11455-61. [PMID: 26458137 DOI: 10.1021/acsnano.5b05575] [Cited by in Crossref: 290] [Cited by in F6Publishing: 237] [Article Influence: 41.4] [Reference Citation Analysis]
148 Huang W, Leng T, Gao M, Hu Q, Liu L, Dou H. Scalable dextran-polypyrrole nano-assemblies with photothermal/photoacoustic dual capabilities and enhanced biocompatibility. Carbohydr Polym 2020;241:116224. [PMID: 32507183 DOI: 10.1016/j.carbpol.2020.116224] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
149 Lebepe TC, Parani S, Oluwafemi OS. Graphene Oxide-Coated Gold Nanorods: Synthesis and Applications. Nanomaterials (Basel) 2020;10:E2149. [PMID: 33126610 DOI: 10.3390/nano10112149] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
150 Zhu W, Zhao L, Fan Y, Zhao J, Shi X, Shen M. 131 I-Labeled Multifunctional Polyphosphazene Nanospheres for SPECT Imaging-Guided Radiotherapy of Tumors. Adv Healthc Mater 2019;8:e1901299. [PMID: 31697048 DOI: 10.1002/adhm.201901299] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
151 Šuljagić M, Andjelković L, Iskrenović P, Nikolić AS, Milenković MR. Light-Transmitting Measurements through Starch-Coated Cobalt Ferrite Ferrofluids Exposed to an External Magnetic Field. Jetp Lett 2021;113:238-41. [DOI: 10.1134/s0021364021040056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 He Y, Tang Y, Zhang Y, Macfarlane L, Shang J, Shi H, Xie Q, Zhao H, Manners I, Guo J. Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews 2022;9:021301. [DOI: 10.1063/5.0083099] [Reference Citation Analysis]
153 Zhao H, Yang S, Ding N, Qin L, Qiu G, Chen J, Zhang W, Chen W, Hor TSA. A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences. Dalton Trans 2016;45:5092-100. [DOI: 10.1039/c5dt04410c] [Cited by in Crossref: 33] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
154 Pramanik A, Paikar A, Das T, Maji K, Haldar D. Self-assembled peptide microspheres for sustainable release of sulfamethoxazole. RSC Adv 2016;6:39172-9. [DOI: 10.1039/c6ra07095g] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
155 Nguyen DH, Lee JS, Choi JH, Park KM, Lee Y, Park KD. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery. Acta Biomaterialia 2016;35:109-17. [DOI: 10.1016/j.actbio.2016.02.020] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
156 Wang R, Hu Y, Zhao N, Xu F. Well-Defined Peapod-like Magnetic Nanoparticles and Their Controlled Modification for Effective Imaging Guided Gene Therapy. ACS Appl Mater Interfaces 2016;8:11298-308. [DOI: 10.1021/acsami.6b01697] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
157 Guo S, Liang T, Song Y, Cheng M, Hu X, Zhu J, Wang L. Supramolecular polymersomes constructed from water-soluble pillar[5]arene and cationic poly(glutamamide)s and their applications in targeted anticancer drug delivery. Polym Chem 2017;8:5718-25. [DOI: 10.1039/c7py01259d] [Cited by in Crossref: 26] [Article Influence: 5.2] [Reference Citation Analysis]
158 Zhou B, Pu Y, Lin H, Yue W, Yin H, Yin Y, Ren W, Zhao C, Chen Y, Xu H. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. J Mater Chem B 2020;8:5257-66. [DOI: 10.1039/d0tb00519c] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
159 Shunmugaperumal T, Thenrajan RS, Sharma R. Multifunctional nanosized emulsions for theragnosis of life threatening diseases. Nanostructures for Drug Delivery. Elsevier; 2017. pp. 579-617. [DOI: 10.1016/b978-0-323-46143-6.00019-1] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
160 Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. Curr Res Pharmacol Drug Discov 2021;2:100067. [PMID: 34909685 DOI: 10.1016/j.crphar.2021.100067] [Reference Citation Analysis]
161 Eom G, Kim H, Hwang A, Son H, Choi Y, Moon J, Kim D, Lee M, Lim E, Jeong J, Huh Y, Seo M, Kang T, Kim B. Nanogap-Rich Au Nanowire SERS Sensor for Ultrasensitive Telomerase Activity Detection: Application to Gastric and Breast Cancer Tissues Diagnosis. Adv Funct Mater 2017;27:1701832. [DOI: 10.1002/adfm.201701832] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 10.2] [Reference Citation Analysis]
162 Tian S, Liu G, Wang X, Zhang G, Hu J. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL) Micelles with Fluorescence and Magnetic Resonance (MR) Dual Imaging Modalities and Drug Delivery Performance. Polymers (Basel) 2016;8:E226. [PMID: 30979319 DOI: 10.3390/polym8060226] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
163 Wu H, Su W, Xu H, Zhang Y, Li Y, Li X, Fan L. Applications of carbon dots on tumour theranostics. View 2021;2:20200061. [DOI: 10.1002/viw.20200061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
164 Cheng P, Pu K. Activatable Phototheranostic Materials for Imaging-Guided Cancer Therapy. ACS Appl Mater Interfaces 2020;12:5286-99. [PMID: 31730329 DOI: 10.1021/acsami.9b15064] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
165 Ma Y, Jiang Y, Tan H, Zhang Y, Gu J. A Rapid and Efficient Route to Preparation of Isocyanate Microcapsules. Polymers (Basel) 2017;9:E274. [PMID: 30970952 DOI: 10.3390/polym9070274] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
166 Wang Y, Santos A, Evdokiou A, Losic D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J Mater Chem B 2015;3:7153-72. [DOI: 10.1039/c5tb00956a] [Cited by in Crossref: 71] [Cited by in F6Publishing: 7] [Article Influence: 10.1] [Reference Citation Analysis]
167 Almeida-marrero V, van de Winckel E, Anaya-plaza E, Torres T, de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem Soc Rev 2018;47:7369-400. [DOI: 10.1039/c7cs00554g] [Cited by in Crossref: 99] [Cited by in F6Publishing: 13] [Article Influence: 24.8] [Reference Citation Analysis]
168 Wu Q, Chen G, Gong K, Wang J, Ge X, Liu X, Guo S, Wang F. MnO2-Laden Black Phosphorus for MRI-Guided Synergistic PDT, PTT, and Chemotherapy. Matter 2019;1:496-512. [DOI: 10.1016/j.matt.2019.03.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 32] [Article Influence: 16.3] [Reference Citation Analysis]
169 Liu J, Zhang J, Huang F, Deng Y, Li B, Ouyang R, Miao Y, Sun Y, Li Y. X-ray and NIR light dual-triggered mesoporous upconversion nanophosphor/Bi heterojunction radiosensitizer for highly efficient tumor ablation. Acta Biomaterialia 2020;113:570-83. [DOI: 10.1016/j.actbio.2020.06.044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
170 Qin L, Lin L, Fang Z, Yang S, Qiu G, Chen J, Chen W. A water-stable metal–organic framework of a zwitterionic carboxylate with dysprosium: a sensing platform for Ebolavirus RNA sequences. Chem Commun 2016;52:132-5. [DOI: 10.1039/c5cc06697b] [Cited by in Crossref: 73] [Cited by in F6Publishing: 7] [Article Influence: 12.2] [Reference Citation Analysis]
171 Kumar R, Shin WS, Sunwoo K, Kim WY, Koo S, Bhuniya S, Kim JS. Small conjugate-based theranostic agents: an encouraging approach for cancer therapy. Chem Soc Rev 2015;44:6670-83. [DOI: 10.1039/c5cs00224a] [Cited by in Crossref: 222] [Cited by in F6Publishing: 51] [Article Influence: 31.7] [Reference Citation Analysis]
172 Yu Z, Wang M, Pan W, Wang H, Li N, Tang B. Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy. Chem Sci 2017;8:4896-903. [PMID: 28959413 DOI: 10.1039/c7sc00700k] [Cited by in Crossref: 61] [Cited by in F6Publishing: 10] [Article Influence: 12.2] [Reference Citation Analysis]
173 Abenojar EC, Wickramasinghe S, Bas-concepcion J, Samia ACS. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Progress in Natural Science: Materials International 2016;26:440-8. [DOI: 10.1016/j.pnsc.2016.09.004] [Cited by in Crossref: 167] [Cited by in F6Publishing: 65] [Article Influence: 27.8] [Reference Citation Analysis]
174 Bharathiraja S, Bui NQ, Manivasagan P, Moorthy MS, Mondal S, Seo H, Phuoc NT, Vy Phan TT, Kim H, Lee KD, Oh J. Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep 2018;8:500. [PMID: 29323212 DOI: 10.1038/s41598-017-18966-8] [Cited by in Crossref: 51] [Cited by in F6Publishing: 31] [Article Influence: 12.8] [Reference Citation Analysis]
175 Fu Y, Li X, Sun C, Ren Z, Weng W, Mao C, Han G. pH-Triggered SrTiO 3 :Er Nanofibers with Optically Monitored and Controlled Drug Delivery Functionality. ACS Appl Mater Interfaces 2015;7:25514-21. [DOI: 10.1021/acsami.5b08953] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
176 Sun X, Zhang G, Du R, Xu R, Zhu D, Qian J, Bai G, Yang C, Zhang Z, Zhang X, Zou D, Wu Z. A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy. Biomaterials 2019;194:151-60. [DOI: 10.1016/j.biomaterials.2018.12.004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
177 Wang Z, Zhang D, Hemu X, Hu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics 2021;11:5863-75. [PMID: 33897886 DOI: 10.7150/thno.53615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
178 Zhao G, Wu H, Feng R, Wang D, Xu P, Wang H, Guo Z, Chen Q. Bimetallic Zeolitic Imidazolate Framework as an Intrinsic Two-Photon Fluorescence and pH-Responsive MR Imaging Agent. ACS Omega 2018;3:9790-7. [PMID: 31459108 DOI: 10.1021/acsomega.8b00923] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
179 Salorinne K, Man RWY, Li C, Taki M, Nambo M, Crudden CM. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties. Angew Chem 2017;129:6294-8. [DOI: 10.1002/ange.201701605] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 6.2] [Reference Citation Analysis]
180 Bucatariu F, Ghiorghita C, Dragan ES. Cross-linked multilayer films deposited onto silica microparticles with tunable selectivity for anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;537:53-60. [DOI: 10.1016/j.colsurfa.2017.10.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
181 Sun H, Wang X, Zhai S. The Rational Design and Biological Mechanisms of Nanoradiosensitizers. Nanomaterials (Basel) 2020;10:E504. [PMID: 32168899 DOI: 10.3390/nano10030504] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
182 Zhang Z, Du Y, Liu T, Wong KH, Chen T. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater Sci 2019;7:5112-23. [PMID: 31573569 DOI: 10.1039/c9bm01104h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
183 Zhen X, Zhang J, Huang J, Xie C, Miao Q, Pu K. Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. Angew Chem Int Ed Engl 2018;57:7804-8. [PMID: 29665259 DOI: 10.1002/anie.201803321] [Cited by in Crossref: 181] [Cited by in F6Publishing: 170] [Article Influence: 45.3] [Reference Citation Analysis]
184 Jones S, Sinha SS, Pramanik A, Ray PC. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs. Nanoscale 2016;8:18301-8. [PMID: 27714099 DOI: 10.1039/c6nr05888d] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 7.3] [Reference Citation Analysis]
185 De Matteis V, Cascione M, Toma CC, Leporatti S. Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials (Basel) 2018;8:E319. [PMID: 29748469 DOI: 10.3390/nano8050319] [Cited by in Crossref: 94] [Cited by in F6Publishing: 60] [Article Influence: 23.5] [Reference Citation Analysis]
186 Porter MR, Walker JM, Zaleski JM. The Outliers: Metal-Mediated Radical Reagents for Biological Substrate Degradation. Acc Chem Res 2019;52:1957-67. [PMID: 31243967 DOI: 10.1021/acs.accounts.9b00185] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
187 Shahbazi R, Ozpolat B, Ulubayram K. Oligonucleotide-based theranostic nanoparticles in cancer therapy. Nanomedicine (Lond) 2016;11:1287-308. [PMID: 27102380 DOI: 10.2217/nnm-2016-0035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
188 Xu Z, Lei X, Tu Y, Tan Z, Song B, Fang H. Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide. Chem Eur J 2017;23:13100-4. [DOI: 10.1002/chem.201701733] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
189 Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 2017;46:7021-53. [PMID: 28980674 DOI: 10.1039/c6cs00898d] [Cited by in Crossref: 320] [Cited by in F6Publishing: 59] [Article Influence: 80.0] [Reference Citation Analysis]
190 Ren L, Ren S, Shu L, Wang Z, Shi K, Han W, Wang H. Nanodelivery of a self-assembling prodrug with exceptionally high drug loading potentiates chemotherapy efficacy. Int J Pharm 2021;605:120805. [PMID: 34144134 DOI: 10.1016/j.ijpharm.2021.120805] [Reference Citation Analysis]
191 Banerjee A, Blasiak B, Pasquier E, Tomanek B, Trudel S. Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T 2 contrast agents for high-field MRI. RSC Adv 2017;7:38125-34. [DOI: 10.1039/c7ra05495e] [Cited by in Crossref: 25] [Article Influence: 5.0] [Reference Citation Analysis]
192 Xiang H, Chen Y. Materdicine: Interdiscipline of materials and medicine. View 2020;1:20200016. [DOI: 10.1002/viw.20200016] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
193 Salorinne K, Man RWY, Li CH, Taki M, Nambo M, Crudden CM. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties. Angew Chem Int Ed Engl 2017;56:6198-202. [PMID: 28407403 DOI: 10.1002/anie.201701605] [Cited by in Crossref: 88] [Cited by in F6Publishing: 51] [Article Influence: 17.6] [Reference Citation Analysis]
194 Panday R, Poudel AJ, Li X, Adhikari M, Ullah MW, Yang G. Amphiphilic core-shell nanoparticles: Synthesis, biophysical properties, and applications. Colloids and Surfaces B: Biointerfaces 2018;172:68-81. [DOI: 10.1016/j.colsurfb.2018.08.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
195 Wang K, An L, Tian Q, Lin J, Yang S. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T1T2 contrast agent for magnetic resonance imaging. RSC Adv 2018;8:26764-70. [DOI: 10.1039/c8ra04530e] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
196 Noel A, Borguet YP, Wooley KL. Self-Reporting Degradable Fluorescent Grafted Copolymer Micelles Derived from Biorenewable Resources. ACS Macro Lett 2015;4:645-50. [PMID: 26120497 DOI: 10.1021/acsmacrolett.5b00227] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
197 Guo J, Rahme K, He Y, Li LL, Holmes JD, O'Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017;12:6131-52. [PMID: 28883725 DOI: 10.2147/IJN.S140772] [Cited by in Crossref: 115] [Cited by in F6Publishing: 38] [Article Influence: 23.0] [Reference Citation Analysis]
198 Duan S, Yang Y, Zhang C, Zhao N, Xu F. NIR-Responsive Polycationic Gatekeeper-Cloaked Hetero-Nanoparticles for Multimodal Imaging-Guided Triple-Combination Therapy of Cancer. Small 2017;13:1603133. [DOI: 10.1002/smll.201603133] [Cited by in Crossref: 72] [Cited by in F6Publishing: 66] [Article Influence: 12.0] [Reference Citation Analysis]
199 Feiz MS, Meshkini A. Targeted delivery of adenosine 5'-triphosphate using chitosan-coated mesoporous hydroxyapatite: A theranostic pH-sensitive nanoplatform with enhanced anti-cancer effect. Int J Biol Macromol 2019;129:1090-102. [PMID: 30170062 DOI: 10.1016/j.ijbiomac.2018.08.158] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
200 Cao S, Pei Z, Xu Y, Pei Y. Glyco-Nanovesicles with Activatable Near-Infrared Probes for Real-Time Monitoring of Drug Release and Targeted Delivery. Chem Mater 2016;28:4501-6. [DOI: 10.1021/acs.chemmater.6b01857] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
201 Zhou Z, Zheng Y, Zhang CC, Gao J, Tang Y, Wang Q. In vitro and in vivo studies of a chlorin-based carbon nanocarrier with photodynamic therapy features. Photochem Photobiol Sci 2018;17:1329-36. [PMID: 30112558 DOI: 10.1039/c8pp00287h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
202 Boucard J, Linot C, Blondy T, Nedellec S, Hulin P, Blanquart C, Lartigue L, Ishow E. Small Molecule-Based Fluorescent Organic Nanoassemblies with Strong Hydrogen Bonding Networks for Fine Tuning and Monitoring Drug Delivery in Cancer Cells. Small 2018;14:1802307. [DOI: 10.1002/smll.201802307] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
203 Shi L, Wu J, Qiao X, Ha Y, Li Y, Peng C, Wu R. In Situ Biomimetic Mineralization on ZIF-8 for Smart Drug Delivery. ACS Biomater Sci Eng 2020;6:4595-603. [PMID: 33455195 DOI: 10.1021/acsbiomaterials.0c00935] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
204 Hayward DW, Chiappisi L, Prévost S, Schweins R, Gradzielski M. A Small-Angle Neutron Scattering Environment for In-Situ Observation of Chemical Processes. Sci Rep 2018;8:7299. [PMID: 29740024 DOI: 10.1038/s41598-018-24718-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
205 González-Félix MA, Mejía-Manzano LA, González-Valdez J. Biological nanoparticles: Relevance as novel target drug delivery systems and leading chromatographic isolation approaches. Electrophoresis 2021. [PMID: 34791693 DOI: 10.1002/elps.202100124] [Reference Citation Analysis]
206 Beletskaya IP, Ananikov VP. The reasons organic chemistry is needed for in a well developed country. Russ J Org Chem 2015;51:145-7. [DOI: 10.1134/s1070428015020013] [Cited by in Crossref: 20] [Article Influence: 2.9] [Reference Citation Analysis]
207 Yang S, Yao D, Wang Y, Yang W, Zhang B, Wang D. Enzyme-triggered self-assembly of gold nanoparticles for enhanced retention effects and photothermal therapy of prostate cancer. Chem Commun 2018;54:9841-4. [DOI: 10.1039/c8cc05136d] [Cited by in Crossref: 27] [Cited by in F6Publishing: 5] [Article Influence: 6.8] [Reference Citation Analysis]
208 Samuel G, Nazim U, Sharma A, Manuel V, Elnaggar MG, Taye A, Nasr NEH, Hofni A, Abdel Hakiem AF. Selective targeting of the novel CK-10 nanoparticles to the MDA-MB-231 breast cancer cells. J Pharm Sci 2021:S0022-3549(21)00692-4. [PMID: 34929154 DOI: 10.1016/j.xphs.2021.12.014] [Reference Citation Analysis]
209 Liu Y, Xu C, Teng L, Liu H, Ren T, Xu S, Lou X, Guo H, Yuan L, Zhang X. pH stimulus-disaggregated BODIPY: an activated photodynamic/photothermal sensitizer applicable to tumor ablation. Chem Commun 2020;56:1956-9. [DOI: 10.1039/c9cc09790b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 8.5] [Reference Citation Analysis]
210 Feng B, Zhou F, Xu Z, Wang T, Wang D, Liu J, Fu Y, Yin Q, Zhang Z, Yu H, Li Y. Versatile Prodrug Nanoparticles for Acid-Triggered Precise Imaging and Organelle-Specific Combination Cancer Therapy. Adv Funct Mater 2016;26:7431-42. [DOI: 10.1002/adfm.201602963] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 8.3] [Reference Citation Analysis]
211 Hai X, Zhu X, Yu K, Yue S, Song W, Bi S. Dual-mode glucose nanosensor as an activatable theranostic platform for cancer cell recognition and cascades-enhanced synergetic therapy. Biosens Bioelectron 2021;192:113544. [PMID: 34385012 DOI: 10.1016/j.bios.2021.113544] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
212 Li K, Li JL, Zheng DW, Zeng X, Liu CJ, Zhang XZ. A modular theranostic platform for tumor therapy and its metabolic studies. J Mater Chem B 2019;7:2790-8. [PMID: 32255081 DOI: 10.1039/c9tb00231f] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
213 Lin LS, Yang X, Niu G, Song J, Yang HH, Chen X. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics. Nanoscale 2016;8:2116-22. [PMID: 26726809 DOI: 10.1039/c5nr07552a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
214 Fratto BE, Katz E. Controlled Logic Gates—Switch Gate and Fredkin Gate Based on Enzyme‐Biocatalyzed Reactions Realized in Flow Cells. ChemPhysChem 2016;17:1046-53. [DOI: 10.1002/cphc.201501095] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
215 Guo Z, Cui Z. Fluorescent nanotechnology for in vivo imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1705. [PMID: 33686803 DOI: 10.1002/wnan.1705] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
216 Sarsaiya S, Shi J, Chen J. Bioengineering tools for the production of pharmaceuticals: current perspective and future outlook. Bioengineered 2019;10:469-92. [PMID: 31656120 DOI: 10.1080/21655979.2019.1682108] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
217 Wu J, Yuan J, Ye B, Wu Y, Xu Z, Chen J, Chen J. Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy. Front Pharmacol 2018;9:663. [PMID: 30065648 DOI: 10.3389/fphar.2018.00663] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
218 Shi M, Wang Y, Zhao X, Zhang J, Hu H, Qiao M, Zhao X, Chen D. Stimuli-Responsive and Highly Penetrable Nanoparticles as a Multifunctional Nanoplatform for Boosting Nonsmall Cell Lung Cancer siRNA Therapy. ACS Biomater Sci Eng 2021;7:3141-55. [PMID: 34137580 DOI: 10.1021/acsbiomaterials.1c00582] [Reference Citation Analysis]
219 Xu CM, Tang M, Feng J, Xia HF, Wu LL, Pang DW, Chen G, Zhang ZL. A liquid biopsy-guided drug release system for cancer theranostics: integrating rapid circulating tumor cell detection and precision tumor therapy. Lab Chip 2020;20:1418-25. [PMID: 32195515 DOI: 10.1039/d0lc00149j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
220 Tu L, Fan Z, Zhu F, Zhang Q, Zeng S, Chen Z, Ren L, Hou Z, Ye S, Li Y. Self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics for magnetic resonance/photoacoustic/fluorescence imaging-guided synergistic photo-chemotherapy. J Mater Chem B 2020;8:5667-81. [PMID: 32500886 DOI: 10.1039/d0tb00850h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 8.0] [Reference Citation Analysis]
221 Joris F, Valdepérez D, Pelaz B, Wang T, Doak SH, Manshian BB, Soenen SJ, Parak WJ, De Smedt SC, Raemdonck K. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomaterialia 2017;55:204-13. [DOI: 10.1016/j.actbio.2017.03.053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
222 Miller MK, Swierczynski MJ, Ding Y, Ball ZT. Boronic Acid Pairs for Sequential Bioconjugation. Org Lett 2021;23:5334-8. [PMID: 34212723 DOI: 10.1021/acs.orglett.1c01624] [Reference Citation Analysis]
223 Dong C, Liu Z, Zhang L, Guo W, Li X, Liu J, Wang H, Chang J. pHe-Induced Charge-Reversible NIR Fluorescence Nanoprobe for Tumor-Specific Imaging. ACS Appl Mater Interfaces 2015;7:7566-75. [DOI: 10.1021/am509011y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
224 Zhao Z, Xu K, Fu C, Liu H, Lei M, Bao J, Fu A, Yu Y, Zhang W. Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials 2019;219:119379. [PMID: 31376746 DOI: 10.1016/j.biomaterials.2019.119379] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
225 Mapanao AK, Voliani V. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today 2020;19:100552. [DOI: 10.1016/j.apmt.2019.100552] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
226 Zhang L, Wang S, Zhou Y, Wang C, Zhang X, Deng H. Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angew Chem 2019;131:14351-6. [DOI: 10.1002/ange.201909020] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
227 Gautam M, Poudel K, Yong CS, Kim JO. Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment. Int J Pharm 2018;549:31-49. [PMID: 30053487 DOI: 10.1016/j.ijpharm.2018.07.055] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 9.8] [Reference Citation Analysis]
228 Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021;:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Reference Citation Analysis]
229 Huang J, Guo M, Ke H, Zong C, Ren B, Liu G, Shen H, Ma Y, Wang X, Zhang H, Deng Z, Chen H, Zhang Z. Rational Design and Synthesis of γFe2 O3 @Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics. Adv Mater 2015;27:5049-56. [PMID: 26198387 DOI: 10.1002/adma.201501942] [Cited by in Crossref: 104] [Cited by in F6Publishing: 98] [Article Influence: 14.9] [Reference Citation Analysis]
230 England CG, Hernandez R, Eddine SB, Cai W. Molecular Imaging of Pancreatic Cancer with Antibodies. Mol Pharm 2016;13:8-24. [PMID: 26620581 DOI: 10.1021/acs.molpharmaceut.5b00626] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 6.9] [Reference Citation Analysis]
231 Su J, Zhang J, Tian X, Zhao M, Song T, Yu J, Cui Y, Qian G, Zhong H, Luo L, Zhang Y, Wang C, Li S, Yang J, Zhou H, Wu J, Tian Y. A series of multifunctional coordination polymers based on terpyridine and zinc halide: second-harmonic generation and two-photon absorption properties and intracellular imaging. J Mater Chem B 2017;5:5458-63. [PMID: 32264085 DOI: 10.1039/c6tb03321k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 3.2] [Reference Citation Analysis]
232 Li Y, Yang T, Yu Y, Shi N, Yang L, Glass Z, Bolinger J, Finkel IJ, Li W, Xu Q. Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins. Biomaterials 2018;178:652-62. [DOI: 10.1016/j.biomaterials.2018.03.011] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
233 Sene S, Marcos-almaraz MT, Menguy N, Scola J, Volatron J, Rouland R, Grenèche J, Miraux S, Menet C, Guillou N, Gazeau F, Serre C, Horcajada P, Steunou N. Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy. Chem 2017;3:303-22. [DOI: 10.1016/j.chempr.2017.06.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
234 Liu J, Zheng T, Tian Y. Functionalized h‐BN Nanosheets as a Theranostic Platform for SERS Real‐Time Monitoring of MicroRNA and Photodynamic Therapy. Angew Chem Int Ed 2019;58:7757-61. [DOI: 10.1002/anie.201902776] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 8.3] [Reference Citation Analysis]
235 Han Y, Lei S, Lu J, He Y, Chen Z, Ren L, Zhou X. Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Materials Science and Engineering: C 2016;64:199-207. [DOI: 10.1016/j.msec.2016.03.090] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
236 Mahboobeh Kian, Elham Tazikeh-lemeski. Adsorption Behavior of Aromasin onto C20 and C24 Nano-Cages: Density Functional Theory Study. Russ J Inorg Chem 2020;65:1848-53. [DOI: 10.1134/s0036023620120074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
237 Deshpande N, Ramesh A, Nandi D, Nguyen A, Brouillard A, Kulkarni A. Supramolecular Polysaccharide Nanotheranostics that Inhibit Cancer Cells Growth and Monitor Targeted Therapy Response. Nanotheranostics 2020;4:156-72. [PMID: 32483521 DOI: 10.7150/ntno.44703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
238 Yadav P, Chaturvedi S, Biswas SK, Srivastava R, Kailasam K, Mishra AK, Shanavas A. Biodegradable Protein-Stabilized Inorganic Nanoassemblies for Photothermal Radiotherapy of Hepatoma Cells. ACS Omega. [DOI: 10.1021/acsomega.1c07324] [Reference Citation Analysis]
239 Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019;10:1264. [PMID: 31708785 DOI: 10.3389/fphar.2019.01264] [Cited by in Crossref: 52] [Cited by in F6Publishing: 29] [Article Influence: 17.3] [Reference Citation Analysis]
240 Jabeen S, Qureshi R, Munazir M, Maqsood M, Munir M, Shah SSH, Rahim BZ. Application of green synthesized silver nanoparticles in cancer treatment—a critical review. Mater Res Express 2021;8:092001. [DOI: 10.1088/2053-1591/ac1de3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
241 An F, Yang Z, Zheng M, Mei T, Deng G, Guo P, Li Y, Sheng R. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J Nanobiotechnology 2020;18:49. [PMID: 32183838 DOI: 10.1186/s12951-020-00603-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
242 Xiao Z, Peng C, Jiang X, Peng Y, Huang X, Guan G, Zhang W, Liu X, Qin Z, Hu J. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy. Nanoscale 2016;8:12917-28. [DOI: 10.1039/c6nr03336a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
243 Wang D, Liu B, Quan Z, Li C, Hou Z, Xing B, Lin J. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. J Mater Chem B 2017;5:2209-30. [DOI: 10.1039/c6tb03117j] [Cited by in Crossref: 60] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
244 Lan M, Guo L, Zhao S, Zhang Z, Jia Q, Yan L, Xia J, Zhang H, Wang P, Zhang W. Carbon Dots as Multifunctional Phototheranostic Agents for Photoacoustic/Fluorescence Imaging and Photothermal/Photodynamic Synergistic Cancer Therapy. Adv Therap 2018;1:1800077. [DOI: 10.1002/adtp.201800077] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
245 Golovin Y, Golovin D, Klyachko N, Majouga A, Kabanov A. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-3754-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
246 Kaur J, Gill GS, Jeet K. Applications of Carbon Nanotubes in Drug Delivery. Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier; 2019. pp. 113-35. [DOI: 10.1016/b978-0-12-814031-4.00005-2] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
247 Shen Y, Shuhendler AJ, Ye D, Xu J, Chen H. Two-photon excitation nanoparticles for photodynamic therapy. Chem Soc Rev 2016;45:6725-41. [DOI: 10.1039/c6cs00442c] [Cited by in Crossref: 292] [Cited by in F6Publishing: 52] [Article Influence: 48.7] [Reference Citation Analysis]
248 Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. Nanoscale 2021;13:11712-33. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Reference Citation Analysis]
249 Ahrberg CD, Choi JW, Chung BG. Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles. Beilstein J Nanotechnol 2018;9:2413-20. [PMID: 30254836 DOI: 10.3762/bjnano.9.226] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
250 Wang M, Ruan L, Zheng T, Wang D, Zhou M, Lu H, Gao J, Chen J, Hu Y. A surface convertible nanoplatform with enhanced mitochondrial targeting for tumor photothermal therapy. Colloids Surf B Biointerfaces 2020;189:110854. [PMID: 32086023 DOI: 10.1016/j.colsurfb.2020.110854] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
251 Si Y, Xu L, Deng T, Zheng J, Li J. Catalytic Hairpin Self-Assembly-Based SERS Sensor Array for the Simultaneous Measurement of Multiple Cancer-Associated miRNAs. ACS Sens 2020;5:4009-16. [PMID: 33284591 DOI: 10.1021/acssensors.0c01876] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
252 Miao Z, Hu D, Gao D, Fan L, Ma Y, Ma T, Liu X, Zheng H, Zha Z, Sheng Z, Xu C. Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics. Science Bulletin 2021;66:147-57. [DOI: 10.1016/j.scib.2020.09.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
253 Du Y, Chen Z, Lee JY, Lin P, Xia F, Guan Y, Li F, Ling D. Designed fabrication of mesoporous silica-templated self-assembled theranostic nanomedicines. Sci China Chem 2021;64:204-17. [DOI: 10.1007/s11426-020-9869-4] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
254 Yamada A, Abe M, Nishimura Y, Ishizaka S, Namba M, Nakashima T, Shimoji K, Hattori N. Photochemical generation of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical from caged nitroxides by near-infrared two-photon irradiation and its cytocidal effect on lung cancer cells. Beilstein J Org Chem 2019;15:863-73. [PMID: 31019579 DOI: 10.3762/bjoc.15.84] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
255 Ju Y, Kelly HG, Dagley LF, Reynaldi A, Schlub TE, Spall SK, Bell CA, Cui J, Mitchell AJ, Lin Z, Wheatley AK, Thurecht KJ, Davenport MP, Webb AI, Caruso F, Kent SJ. Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. ACS Nano 2020;14:15723-37. [PMID: 33112593 DOI: 10.1021/acsnano.0c06679] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
256 Higashino T, Nakatsuji H, Fukuda R, Okamoto H, Imai H, Matsuda T, Tochio H, Shirakawa M, Tkachenko NV, Hashida M, Murakami T, Imahori H. Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and 19 F Magnetic Resonance Imaging. ChemBioChem 2017;18:951-9. [DOI: 10.1002/cbic.201700071] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
257 Zhao R, Zheng G, Fan L, Shen Z, Jiang K, Guo Y, Shao JW. Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy. Acta Biomater 2018;70:197-210. [PMID: 29408311 DOI: 10.1016/j.actbio.2018.01.028] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
258 Wang W, Tang Q, Yu T, Li X, Gao Y, Li J, Liu Y, Rong L, Wang Z, Sun H, Zhang H, Yang B. Surfactant-Free Preparation of Au@Resveratrol Hollow Nanoparticles with Photothermal Performance and Antioxidant Activity. ACS Appl Mater Interfaces 2017;9:3376-87. [PMID: 28098974 DOI: 10.1021/acsami.6b13911] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
259 Peng S, Bie B, Sun Y, Liu M, Cong H, Zhou W, Xia Y, Tang H, Deng H, Zhou X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 2018;9:1293. [PMID: 29615605 DOI: 10.1038/s41467-018-03650-w] [Cited by in Crossref: 96] [Cited by in F6Publishing: 75] [Article Influence: 24.0] [Reference Citation Analysis]
260 Li J, Wang W, Zhang X, Yao H, Wei Z, Li X, Mu X, Jiang J, Zhang H. Seedless preparation of Au nanorods by hydroquinone assistant and red blood cell membrane camouflage. RSC Adv 2018;8:21316-25. [DOI: 10.1039/c8ra03795g] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
261 Liu Y, Liu X, Xiao Y, Chen F, Xiao F. A multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided chemo/photodynamic synergetic therapy. RSC Adv 2017;7:31133-41. [DOI: 10.1039/c7ra04549b] [Cited by in Crossref: 21] [Article Influence: 4.2] [Reference Citation Analysis]
262 Shen H, Tian G, Xu Z, Wang L, Wu Q, Zhang Y, Teo BK, Zheng N. N-heterocyclic carbene coordinated metal nanoparticles and nanoclusters. Coordination Chemistry Reviews 2022;458:214425. [DOI: 10.1016/j.ccr.2022.214425] [Reference Citation Analysis]
263 Su Z, Xu Y, Wang Y, Shi W, Han S, Shuai X. A pH and reduction dual-sensitive polymeric nanomicelle for tumor microenvironment triggered cellular uptake and controlled intracellular drug release. Biomater Sci 2019;7:3821-31. [PMID: 31268075 DOI: 10.1039/c9bm00825j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 6.5] [Reference Citation Analysis]
264 Li Y, Zhao X, Yin H, Chen G, Yang S, Dong Y. A drug-loaded nanoscale metal–organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chem Commun 2016;52:14113-6. [DOI: 10.1039/c6cc07321b] [Cited by in Crossref: 36] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
265 Kasprzak A, Bystrzejewski M, Poplawska M. Sulfonated carbon-encapsulated iron nanoparticles as an efficient magnetic nanocatalyst for highly selective synthesis of benzimidazoles. Dalton Trans 2018;47:6314-22. [DOI: 10.1039/c8dt00677f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
266 Lei Y, Qiao Z, Tang J, He X, Shi H, Ye X, Yan L, He D, Wang K. DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics 2018;8:4062-71. [PMID: 30128036 DOI: 10.7150/thno.24683] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
267 Park J, Porter MD, Granger MC. Silica encapsulation of ferrimagnetic zinc ferrite nanocubes enabled by layer-by-layer polyelectrolyte deposition. Langmuir 2015;31:3537-45. [PMID: 25756216 DOI: 10.1021/acs.langmuir.5b00268] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
268 Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021;50:3355-423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
269 Ahn J, Lee B, Choi Y, Jin H, Lim NY, Park J, Kim JH, Bae J, Jung JH. Non-peptidic guanidinium-functionalized silica nanoparticles as selective mitochondria-targeting drug nanocarriers. J Mater Chem B 2018;6:5698-707. [PMID: 32254976 DOI: 10.1039/c8tb01358f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
270 Song C, Meng X, Liu Y, Shen A, Shao C, Wang K, Cheng H, Fang X, Wang P, Bu W. Susceptibility-weighted imaging for metabolic pathway mapping of low-dosage nanoparticles in organisms. Biomaterials 2020;230:119631. [DOI: 10.1016/j.biomaterials.2019.119631] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
271 Wang T, Vineberg JG, Honda T, Ojima I. Design and synthesis of tumor-targeting theranostic drug conjugates for SPECT and PET imaging studies. Bioorganic Chemistry 2018;76:458-67. [DOI: 10.1016/j.bioorg.2017.12.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
272 Glaria A, Soulé S, Hallali N, Ojo W, Mirjolet M, Fuks G, Cornejo A, Allouche J, Dupin JC, Martinez H, Carrey J, Chaudret B, Delpech F, Lachaize S, Nayral C. Silica coated iron nanoparticles: synthesis, interface control, magnetic and hyperthermia properties. RSC Adv 2018;8:32146-56. [DOI: 10.1039/c8ra06075d] [Cited by in Crossref: 20] [Article Influence: 5.0] [Reference Citation Analysis]
273 Son SU, Seo SB, Jang S, Choi J, Lim J, Lee DK, Kim H, Seo S, Kang T, Jung J, Lim E. Naked-eye detection of pandemic influenza a (pH1N1) virus by polydiacetylene (PDA)-based paper sensor as a point-of-care diagnostic platform. Sensors and Actuators B: Chemical 2019;291:257-65. [DOI: 10.1016/j.snb.2019.04.081] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 8.7] [Reference Citation Analysis]
274 Teixeira PR, Santos MSC, Silva ALG, Báo SN, Azevedo RB, Sales MJA, Paterno LG. Photochemically-assisted synthesis of non-toxic and biocompatible gold nanoparticles. Colloids Surf B Biointerfaces 2016;148:317-23. [PMID: 27619184 DOI: 10.1016/j.colsurfb.2016.09.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
275 Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, Nadagouda MN, Aminabhavi TM. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017;532:249-68. [PMID: 28882486 DOI: 10.1016/j.ijpharm.2017.09.005] [Cited by in Crossref: 97] [Cited by in F6Publishing: 78] [Article Influence: 19.4] [Reference Citation Analysis]
276 Miller KK, Alper HS. Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019;103:9251-62. [DOI: 10.1007/s00253-019-10200-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
277 Monteiro JHSK. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020;25:E2089. [PMID: 32365719 DOI: 10.3390/molecules25092089] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
278 Vlasova KY, Vishwasrao H, Abakumov MA, Golovin DY, Gribanovsky SL, Zhigachev AO, Poloznikov AА, Majouga AG, Golovin YI, Sokolsky-Papkov M, Klyachko NL, Kabanov AV. Enzyme Release from Polyion Complex by Extremely Low Frequency Magnetic Field. Sci Rep 2020;10:4745. [PMID: 32179787 DOI: 10.1038/s41598-020-61364-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
279 Kundu S, Ghosh M, Sarkar N. State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir 2021;37:9281-301. [PMID: 34297580 DOI: 10.1021/acs.langmuir.1c00732] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
280 Katz E, Pingarrón JM, Mailloux S, Guz N, Gamella M, Melman G, Melman A. Substance Release Triggered by Biomolecular Signals in Bioelectronic Systems. J Phys Chem Lett 2015;6:1340-7. [DOI: 10.1021/acs.jpclett.5b00118] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 7.9] [Reference Citation Analysis]
281 Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co‐Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem 2021;133:1881-8. [DOI: 10.1002/ange.202011174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
282 Wang F, Gao J, Xiao J, Du J. Dually Gated Polymersomes for Gene Delivery. Nano Lett 2018;18:5562-8. [PMID: 30052457 DOI: 10.1021/acs.nanolett.8b01985] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 9.8] [Reference Citation Analysis]
283 Guan M, Ge J, Wu J, Zhang G, Chen D, Zhang W, Zhang Y, Zou T, Zhen M, Wang C, Chu T, Hao X, Shu C. Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 2016;103:75-85. [PMID: 27376559 DOI: 10.1016/j.biomaterials.2016.06.023] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 7.3] [Reference Citation Analysis]
284 Wang D, Liu B, Ma Y, Wu C, Mou Q, Deng H, Wang R, Yan D, Zhang C, Zhu X. A Molecular Recognition Approach To Synthesize Nucleoside Analogue Based Multifunctional Nanoparticles for Targeted Cancer Therapy. J Am Chem Soc 2017;139:14021-4. [PMID: 28945366 DOI: 10.1021/jacs.7b08303] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 9.6] [Reference Citation Analysis]
285 Zhang L, Yi H, Song J, Huang J, Yang K, Tan B, Wang D, Yang N, Wang Z, Li X. Mitochondria-Targeted and Ultrasound-Activated Nanodroplets for Enhanced Deep-Penetration Sonodynamic Cancer Therapy. ACS Appl Mater Interfaces 2019;11:9355-66. [DOI: 10.1021/acsami.8b21968] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 21.7] [Reference Citation Analysis]
286 Luchini A, Heenan RK, Paduano L, Vitiello G. Functionalized SPIONs: the surfactant nature modulates the self-assembly and cluster formation. Phys Chem Chem Phys 2016;18:18441-9. [PMID: 27338137 DOI: 10.1039/c6cp01694d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
287 Duan S, Li J, Zhao N, Xu F. Multifunctional hybrids with versatile types of nanoparticles via self-assembly for complementary tumor therapy. Nanoscale 2018;10:7649-57. [DOI: 10.1039/c8nr00767e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
288 Charmsaz S, Prencipe M, Kiely M, Pidgeon GP, Collins DM. Innovative Technologies Changing Cancer Treatment. Cancers (Basel) 2018;10:E208. [PMID: 29921753 DOI: 10.3390/cancers10060208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
289 Wang W, Ding X, Xu Q, Wang J, Wang L, Lou X. Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein. Colloids and Surfaces B: Biointerfaces 2016;148:541-8. [DOI: 10.1016/j.colsurfb.2016.09.021] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 6.7] [Reference Citation Analysis]
290 Li H, Sanchez-Vazquez B, Trindade RP, Zou Q, Mai Y, Dou L, Zhu LM, Williams GR. Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids Surf B Biointerfaces 2019;183:110411. [PMID: 31421404 DOI: 10.1016/j.colsurfb.2019.110411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
291 Yazdanparast MS, Jeffries WR, Gray ER, McLaurin EJ. Mn2+-ZnSe/ZnS@SiO₂ Nanoparticles for Turn-on Luminescence Thiol Detection. J Funct Biomater 2017;8:E36. [PMID: 28832505 DOI: 10.3390/jfb8030036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
292 Zheng D, Zhang K, Chen B, Zhao N, Xu FJ. Flexible Photothermal Assemblies with Tunable Gold Patterns for Improved Imaging-Guided Synergistic Therapy. Small 2020;16:e2002790. [PMID: 32696542 DOI: 10.1002/smll.202002790] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
293 Hans EADR, Regulacio MD. Dual Plasmonic Au-Cu2-x S Nanocomposites: Design Strategies and Photothermal Properties. Chemistry 2021;27:11030-40. [PMID: 34015149 DOI: 10.1002/chem.202101392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
294 Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir 2018;34:12428-35. [DOI: 10.1021/acs.langmuir.8b02901] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
295 Li Y, Zheng Y, Lai X, Chu Y, Chen Y. Biocompatible surface modification of nano-scale zeolitic imidazolate frameworks for enhanced drug delivery. RSC Adv 2018;8:23623-8. [DOI: 10.1039/c8ra03616k] [Cited by in Crossref: 19] [Article Influence: 4.8] [Reference Citation Analysis]
296 Zhang Y, Yu Y, Gao J. Supramolecular Nanomedicines of In-Situ Self-Assembling Peptides. Front Chem 2022;10:815551. [DOI: 10.3389/fchem.2022.815551] [Reference Citation Analysis]
297 Li Y, Li Y, Zhang X, Xu X, Zhang Z, Hu C, He Y, Gu Z. Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging. Theranostics 2016;6:1293-305. [PMID: 27375780 DOI: 10.7150/thno.15081] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 7.5] [Reference Citation Analysis]
298 Zhang P, An K, Duan X, Xu H, Li F, Xu F. Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discovery Today 2018;23:900-11. [DOI: 10.1016/j.drudis.2018.01.042] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 15.3] [Reference Citation Analysis]
299 Thomas E, Menon JU, Owen J, Skaripa-Koukelli I, Wallington S, Gray M, Mannaris C, Kersemans V, Allen D, Kinchesh P, Smart S, Carlisle R, Vallis KA. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 2019;9:5595-609. [PMID: 31534505 DOI: 10.7150/thno.34669] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
300 Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P. Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranostics in Living Mice. Adv Mater 2015;27:4169-77. [DOI: 10.1002/adma.201500323] [Cited by in Crossref: 526] [Cited by in F6Publishing: 455] [Article Influence: 75.1] [Reference Citation Analysis]
301 Dou Y, Li X, Yang W, Guo Y, Wu M, Liu Y, Li X, Zhang X, Chang J. PB@Au Core-Satellite Multifunctional Nanotheranostics for Magnetic Resonance and Computed Tomography Imaging in Vivo and Synergetic Photothermal and Radiosensitive Therapy. ACS Appl Mater Interfaces 2017;9:1263-72. [PMID: 28029033 DOI: 10.1021/acsami.6b13493] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 8.8] [Reference Citation Analysis]
302 Zou Y, Ito S, Yoshino F, Suzuki Y, Zhao L, Komatsu N. Polyglycerol Grafting Shields Nanoparticles from Protein Corona Formation to Avoid Macrophage Uptake. ACS Nano 2020;14:7216-26. [PMID: 32379425 DOI: 10.1021/acsnano.0c02289] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
303 Matczuk M, Aleksenko SS, Matysik FM, Jarosz M, Timerbaev AR. Comparison of detection techniques for capillary electrophoresis analysis of gold nanoparticles. Electrophoresis 2015;36:1158-63. [PMID: 25781270 DOI: 10.1002/elps.201400597] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
304 Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016;91:90-127. [DOI: 10.1016/j.biomaterials.2016.03.019] [Cited by in Crossref: 178] [Cited by in F6Publishing: 136] [Article Influence: 29.7] [Reference Citation Analysis]
305 Wang W, Hao C, Sun M, Xu L, Xu C, Kuang H. Spiky Fe 3 O 4 @Au Supraparticles for Multimodal In Vivo Imaging. Adv Funct Mater 2018;28:1800310. [DOI: 10.1002/adfm.201800310] [Cited by in Crossref: 36] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
306 Shi H, Gao T, Shi L, Chen T, Xiang Y, Li Y, Li G. Molecular imaging of telomerase and the enzyme activity-triggered drug release by using a conformation-switchable nanoprobe in cancerous cells. Sci Rep 2018;8:16341. [PMID: 30397241 DOI: 10.1038/s41598-018-34670-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
307 Zhang D, Zheng Y, Zhang H, Yang G, Tan C, He L, Ji L, Mao Z. Folate receptor-targeted theranostic IrS x nanoparticles for multimodal imaging-guided combined chemo-photothermal therapy. Nanoscale 2018;10:22252-62. [DOI: 10.1039/c8nr08095j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
308 Shen X, Liu X, Li T, Chen Y, Chen Y, Wang P, Zheng L, Yang H, Wu C, Deng S, Liu Y. Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Front Chem 2021;9:746646. [PMID: 34869202 DOI: 10.3389/fchem.2021.746646] [Reference Citation Analysis]
309 Quan X, Zhao D, Li L, Zhou J. Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study. Langmuir 2017;33:14480-9. [DOI: 10.1021/acs.langmuir.7b03544] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
310 Andreiuk B, Reisch A, Lindecker M, Follain G, Peyriéras N, Goetz JG, Klymchenko AS. Fluorescent Polymer Nanoparticles for Cell Barcoding In Vitro and In Vivo. Small 2017;13:1701582. [DOI: 10.1002/smll.201701582] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
311 Guan G, Wang X, Li B, Zhang W, Cui Z, Lu X, Zou R, Hu J. “Transformed” Fe 3 S 4 tetragonal nanosheets: a high-efficiency and body-clearable agent for magnetic resonance imaging guided photothermal and chemodynamic synergistic therapy. Nanoscale 2018;10:17902-11. [DOI: 10.1039/c8nr06507a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 6] [Article Influence: 10.5] [Reference Citation Analysis]
312 Hu Y, Zhou Y, Zhao N, Liu F, Xu FJ. Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe3 O4 Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy. Small 2016;12:2459-68. [PMID: 26996155 DOI: 10.1002/smll.201600271] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 6.3] [Reference Citation Analysis]
313 Fazal S, Paul-prasanth B, Nair SV, Menon D. Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia. ACS Appl Mater Interfaces 2017;9:28260-72. [DOI: 10.1021/acsami.7b08939] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
314 Vankayala R, Hwang KC. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Adv Mater 2018;30:e1706320. [PMID: 29577458 DOI: 10.1002/adma.201706320] [Cited by in Crossref: 230] [Cited by in F6Publishing: 197] [Article Influence: 57.5] [Reference Citation Analysis]
315 Zhou S, Zhang S, Shen H, Chen W, Xu H, Chen X, Sun D, Zhong S, Zhao J, Tang J. Curcumin inhibits cancer progression through regulating expression of microRNAs. Tumour Biol 2017;39:101042831769168. [DOI: 10.1177/1010428317691680] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
316 Mansur AAP, Mansur HS, Carvalho SM, Caires AJ. One-Pot Aqueous Synthesis of Fluorescent Ag-In-Zn-S Quantum Dot/Polymer Bioconjugates for Multiplex Optical Bioimaging of Glioblastoma Cells. Contrast Media Mol Imaging 2017;2017:3896107. [PMID: 29259535 DOI: 10.1155/2017/3896107] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
317 Zhang JQ, Zhou W, Zhu SS, Lin J, Wei PF, Li FF, Jin PP, Yao H, Zhang YJ, Hu Y, Liu YM, Chen M, Li ZQ, Liu XS, Bai L, Wen LP. Persistency of Enlarged Autolysosomes Underscores Nanoparticle-Induced Autophagy in Hepatocytes. Small 2017;13. [PMID: 27925395 DOI: 10.1002/smll.201602876] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
318 Dong L, Wang C, Zhen W, Jia X, An S, Xu Z, Zhang W, Jiang X. Biodegradable iron-coordinated hollow polydopamine nanospheres for dihydroartemisinin delivery and selectively enhanced therapy in tumor cells. J Mater Chem B 2019;7:6172-80. [PMID: 31559402 DOI: 10.1039/c9tb01397k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
319 Edwards W, Kay ER. Manipulating the Monolayer: Responsive and Reversible Control of Colloidal Inorganic Nanoparticle Properties. ChemNanoMat 2016;2:87-98. [DOI: 10.1002/cnma.201500146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
320 Hu Q, Chen Q, Gu Z. Advances in transformable drug delivery systems. Biomaterials 2018;178:546-58. [DOI: 10.1016/j.biomaterials.2018.03.056] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 10.3] [Reference Citation Analysis]
321 Dai Y, Guo J, Wang T, Ju Y, Mitchell AJ, Bonnard T, Cui J, Richardson JJ, Hagemeyer CE, Alt K, Caruso F. Self‐Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy. Adv Healthcare Mater 2017;6:1700467. [DOI: 10.1002/adhm.201700467] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 9.6] [Reference Citation Analysis]
322 Younis MR, He G, Gurram B, Lin J, Huang P. Inorganic cancer phototheranostics in second biowindow. APL Materials 2021;9:070901. [DOI: 10.1063/5.0048915] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
323 Mcdonagh BH, Singh G, Hak S, Bandyopadhyay S, Augestad IL, Peddis D, Sandvig I, Sandvig A, Glomm WR. L -DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. Small 2016;12:301-6. [DOI: 10.1002/smll.201502545] [Cited by in Crossref: 61] [Cited by in F6Publishing: 48] [Article Influence: 8.7] [Reference Citation Analysis]
324 Guan M, Li J, Jia Q, Ge J, Chen D, Zhou Y, Wang P, Zou T, Zhen M, Wang C, Shu C. A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium Metallofullerene Nanocrystals. Adv Healthcare Mater 2016;5:2283-94. [DOI: 10.1002/adhm.201600402] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
325 Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019;7:320. [PMID: 31803728 DOI: 10.3389/fbioe.2019.00320] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
326 Peng S, Sun Y, Luo Y, Ma S, Sun W, Tang G, Li S, Zhang N, Ren J, Xiao Y, Liu X, Zhang J, Gong Y, Xie C. MFP-FePt-GO Nanocomposites Promote Radiosensitivity of Non-Small Cell Lung Cancer Via Activating Mitochondrial-Mediated Apoptosis and Impairing DNA Damage Repair. Int J Biol Sci 2020;16:2145-58. [PMID: 32549761 DOI: 10.7150/ijbs.46194] [Reference Citation Analysis]
327 Peng H, Tang S, Tian Y, Zheng R, Zhou L, Yang W. Highly Ligand-Directed and Size-Dependent Photothermal Properties of Magnetite Particles. Part Part Syst Charact 2016;33:332-40. [DOI: 10.1002/ppsc.201600071] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
328 Nandwana V, Ryoo S, Zheng T, You MM, Dravid VP. Magnetic Nanostructure-Coated Thermoresponsive Hydrogel Nanoconstruct As a Smart Multimodal Theranostic Platform. ACS Biomater Sci Eng 2019;5:3049-59. [DOI: 10.1021/acsbiomaterials.9b00361] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
329 Das RK, Pramanik A, Majhi M, Mohapatra S. Magnetic Mesoporous Silica Gated with Doped Carbon Dot for Site-Specific Drug Delivery, Fluorescence, and MR Imaging. Langmuir 2018;34:5253-62. [DOI: 10.1021/acs.langmuir.7b04268] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
330 Mebrouk K, Ciancone M, Vives T, Cammas-marion S, Benvegnu T, Le goff-gaillard C, Arlot-bonnemains Y, Fourmigué M, Camerel F. Fine and Clean Photothermally Controlled NIR Drug Delivery from Biocompatible Nickel-bis(dithiolene)-Containing Liposomes. ChemMedChem 2017;12:1753-8. [DOI: 10.1002/cmdc.201700344] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
331 Rafique R, Kailasa SK, Park TJ. Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. TrAC Trends in Analytical Chemistry 2019;120:115646. [DOI: 10.1016/j.trac.2019.115646] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 7.3] [Reference Citation Analysis]
332 Hamon C, Henriksen-lacey M, La Porta A, Rosique M, Langer J, Scarabelli L, Montes ABS, González-rubio G, de Pancorbo MM, Liz-marzán LM, Basabe-desmonts L. Tunable Nanoparticle and Cell Assembly Using Combined Self-Powered Microfluidics and Microcontact Printing. Adv Funct Mater 2016;26:8053-61. [DOI: 10.1002/adfm.201602225] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
333 Xing P, Zhao Y. Supramolecular Vesicles for Stimulus-Responsive Drug Delivery. Small Methods 2018;2:1700364. [DOI: 10.1002/smtd.201700364] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
334 Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghosh NN, Bhattacharjee CR. Alga‐mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Appl Organometal Chem 2020;34. [DOI: 10.1002/aoc.5597] [Cited by in Crossref: 19] [Article Influence: 9.5] [Reference Citation Analysis]
335 Andersen VL, Vinther M, Kumar R, Ries A, Wengel J, Nielsen JS, Kjems J. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics 2019;9:2662-77. [PMID: 31131060 DOI: 10.7150/thno.32060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
336 Li S, Sun Z, Meng X, Deng G, Zhang J, Zhou K, Li W, Zhou L, Gong P, Cai L. Targeted Methotrexate Prodrug Conjugated With Heptamethine Cyanine Dye Improving Chemotherapy and Monitoring Itself Activating by Dual-Modal Imaging. Front Mater 2018;5:35. [DOI: 10.3389/fmats.2018.00035] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
337 Shu T, Shen Q, Su L, Zhang X, Serpe MJ. In Situ Synthesis of CuS Nanoparticle-Doped Poly( N -isopropylacrylamide)-Based Microgels for Near-Infrared Triggered Photothermal Therapy. ACS Appl Nano Mater 2018;1:1776-83. [DOI: 10.1021/acsanm.8b00216] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
338 Kumar D, Sakhare N, Das S, Kale P, Mathur A, Mirapurkar S, Muralidharan S, Chaudhari P, Mohanty B, Ballal A, Patro P. Development of technetium-99m labeled ultrafine gold nanobioconjugates for targeted imaging of folate receptor positive cancers. Nucl Med Biol 2021;93:1-10. [PMID: 33212346 DOI: 10.1016/j.nucmedbio.2020.11.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
339 Guldris N, Gallo J, García-Hevia L, Rivas J, Bañobre-López M, Salonen LM. Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release. Chemistry 2018;24:8624-31. [PMID: 29645299 DOI: 10.1002/chem.201800389] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
340 Jia D, Ma X, Lu Y, Li X, Hou S, Gao Y, Xue P, Kang Y, Xu Z. ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chinese Chemical Letters 2021;32:162-7. [DOI: 10.1016/j.cclet.2020.11.052] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 27.0] [Reference Citation Analysis]
341 Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu F. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2019;119:1666-762. [DOI: 10.1021/acs.chemrev.8b00401] [Cited by in Crossref: 147] [Cited by in F6Publishing: 105] [Article Influence: 36.8] [Reference Citation Analysis]
342 Kawasaki R, Kondo K, Miura R, Yamana K, Isozaki H, Shimada R, Kawamura S, Hirano H, Nishimura T, Tarutani N, Katagiri K, Stubelius A, Sawada S, Sasaki Y, Akiyoshi K, Ikeda A. Theranostic Agent Combining Fullerene Nanocrystals and Gold Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. IJMS 2022;23:4686. [DOI: 10.3390/ijms23094686] [Reference Citation Analysis]
343 Qu Y, Chu B, Wei X, Lei M, Hu D, Zha R, Zhong L, Wang M, Wang F, Qian Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019;296:93-106. [PMID: 30664976 DOI: 10.1016/j.jconrel.2019.01.016] [Cited by in Crossref: 64] [Cited by in F6Publishing: 48] [Article Influence: 21.3] [Reference Citation Analysis]
344 Costa LSD, Khan LU, Franqui LS, Delite FS, Muraca D, Martinez DST, Knobel M. Hybrid magneto-luminescent iron oxide nanocubes functionalized with europium complexes: synthesis, hemolytic properties and protein corona formation. J Mater Chem B 2021;9:428-39. [PMID: 33367419 DOI: 10.1039/d0tb02454f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
345 Kim YT, Kim KH, Kang ES, Jo G, Ahn SY, Park SH, Kim SI, Mun S, Baek K, Kim B, Lee K, Yun WS, Kim YH. Synergistic Effect of Detection and Separation for Pathogen Using Magnetic Clusters. Bioconjug Chem 2016;27:59-65. [PMID: 26710682 DOI: 10.1021/acs.bioconjchem.5b00681] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
346 He H, Yang Q, Li H, Meng S, Xu Z, Chen X, Sun Z, Jiang B, Li C. Hollow mesoporous MnO2-carbon nanodot-based nanoplatform for GSH depletion enhanced chemodynamic therapy, chemotherapy, and normal/cancer cell differentiation. Mikrochim Acta 2021;188:141. [PMID: 33774694 DOI: 10.1007/s00604-021-04801-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
347 Geng S, Fu Q, Zhao H, Peng X, Zhang C, Zhao Y, Wan J, Yang X. Temperature-sensitive poly(phenyleneethynylene) nanomedicines for intracellular tracking via fluorescence resonance energy transfer. Polym Chem 2018;9:1045-51. [DOI: 10.1039/c7py02081c] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
348 Zhu X, Xiong H, Zhou Q, Zhao Z, Zhang Y, Li Y, Wang S, Shi S. A pH-Activatable MnCO3 Nanoparticle for Improved Magnetic Resonance Imaging of Tumor Malignancy and Metastasis. ACS Appl Mater Interfaces 2021;13:18462-71. [PMID: 33871955 DOI: 10.1021/acsami.0c22624] [Reference Citation Analysis]
349 Rong L, Lei Q, Zhang X. Recent advances on peptide‐based theranostic nanomaterials. View 2020;1:20200050. [DOI: 10.1002/viw.20200050] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
350 Tang M, Gandhi NS, Burrage K, Gu Y. Interaction of gold nanosurfaces/nanoparticles with collagen-like peptides. Phys Chem Chem Phys 2019;21:3701-11. [PMID: 30361726 DOI: 10.1039/c8cp05191g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
351 Xia B, Wang B, Shi J, Zhang Y, Zhang Q, Chen Z, Li J. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer. Acta Biomaterialia 2017;51:197-208. [DOI: 10.1016/j.actbio.2017.01.015] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 11.6] [Reference Citation Analysis]
352 Guo M, Sun Y, Zhang X. Enhanced Radiation Therapy of Gold Nanoparticles in Liver Cancer. Applied Sciences 2017;7:232. [DOI: 10.3390/app7030232] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
353 Yao X, Mu J, Zeng L, Lin J, Nie Z, Jiang X, Huang P. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horiz 2019;6:846-70. [DOI: 10.1039/c9mh00166b] [Cited by in Crossref: 34] [Article Influence: 11.3] [Reference Citation Analysis]
354 Li Y, Xu N, Zhou J, Zhu W, Li L, Dong M, Yu H, Wang L, Liu W, Xie Z. Facile synthesis of a metal–organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomater Sci 2018;6:2918-24. [DOI: 10.1039/c8bm00830b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 4.8] [Reference Citation Analysis]
355 Marino A, Camponovo A, Degl'Innocenti A, Bartolucci M, Tapeinos C, Martinelli C, De Pasquale D, Santoro F, Mollo V, Arai S, Suzuki M, Harada Y, Petretto A, Ciofani G. Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale 2019;11:21227-48. [PMID: 31663592 DOI: 10.1039/c9nr07976a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 8.3] [Reference Citation Analysis]
356 Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. Mater Horiz 2020;7:1474-94. [PMID: 33777400 DOI: 10.1039/d0mh00012d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
357 Yue L, Dai Z, Chen X, Liu C, Hu Z, Song B, Zheng X. Development of a novel FePt-based multifunctional ferroptosis agent for high-efficiency anticancer therapy. Nanoscale 2018;10:17858-64. [DOI: 10.1039/c8nr05150j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 5.8] [Reference Citation Analysis]
358 Yu Z, Ge Y, Sun Q, Pan W, Wan X, Li N, Tang B. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite. Chem Sci 2018;9:3563-9. [PMID: 29780488 DOI: 10.1039/c8sc00098k] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 9.8] [Reference Citation Analysis]
359 Marangoni VS, Neumann O, Henderson L, Kaffes CC, Zhang H, Zhang R, Bishnoi S, Ayala-Orozco C, Zucolotto V, Bankson JA, Nordlander P, Halas NJ. Enhancing T1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proc Natl Acad Sci U S A 2017;114:6960-5. [PMID: 28630340 DOI: 10.1073/pnas.1701944114] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 11.2] [Reference Citation Analysis]
360 Meng X, Yang Y, Zhou L, Zhang L, Lv Y, Li S, Wu Y, Zheng M, Li W, Gao G, Deng G, Jiang T, Ni D, Gong P, Cai L. Dual-Responsive Molecular Probe for Tumor Targeted Imaging and Photodynamic Therapy. Theranostics 2017;7:1781-94. [PMID: 28638467 DOI: 10.7150/thno.18437] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
361 Cabrera-García A, Vidal-Moya A, Bernabeu Á, Pacheco-Torres J, Checa-Chavarria E, Fernández E, Botella P. Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging. Nanomaterials (Basel) 2016;6:E109. [PMID: 28335240 DOI: 10.3390/nano6060109] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
362 Wang Z, Wang Y, Jia X, Han Q, Qian Y, Li Q, Xiang J, Wang Q, Hu Z, Wang W. MMP-2-Controlled Transforming Micelles for Heterogeneic Targeting and Programmable Cancer Therapy. Theranostics 2019;9:1728-40. [PMID: 31037134 DOI: 10.7150/thno.30915] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
363 Jiang D, Zhao H, Yang Y, Zhu Y, Chen X, Sun J, Yu K, Fan H, Zhang X. Investigation of luminescent mechanism: N-rich carbon dots as luminescence centers in fluorescent hydroxyapatite prepared using a typical hydrothermal process. J Mater Chem B 2017;5:3749-57. [DOI: 10.1039/c6tb03184f] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
364 Jia Q, Ge J, Liu W, Liu S, Niu G, Guo L, Zhang H, Wang P. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale 2016;8:13067-77. [DOI: 10.1039/c6nr03459d] [Cited by in Crossref: 83] [Cited by in F6Publishing: 17] [Article Influence: 13.8] [Reference Citation Analysis]
365 Dos Santos JS, Ramos LC, Ferreira LP, Campo VL, de Rezende LCD, da Silva Emery F, Santana da Silva R. Cytotoxicity, cellular uptake, and subcellular localization of a nitrogen oxide and aminopropyl-β-lactose derivative ruthenium complex used as nitric oxide delivery agent. Nitric Oxide 2019;86:38-47. [PMID: 30790696 DOI: 10.1016/j.niox.2019.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
366 Indoria S, Singh V, Hsieh MF. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int J Pharm 2020;582:119314. [PMID: 32283197 DOI: 10.1016/j.ijpharm.2020.119314] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
367 Martínez-Carmona M, Colilla M, Vallet-Regí M. Smart Mesoporous Nanomaterials for Antitumor Therapy. Nanomaterials (Basel) 2015;5:1906-37. [PMID: 28347103 DOI: 10.3390/nano5041906] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 8.0] [Reference Citation Analysis]
368 Thakur MS, Nayal OS, Bhatt V, Sharma S, Kumar N. Rapid and Efficient Cascade Synthesis of 2-Amino-4(3 H )-quinazolinones over an In Situ-Generated Heterogeneous CuCO 3 -K 2 CO 3 Nanocomposite. Asian J Org Chem 2016;5:750-4. [DOI: 10.1002/ajoc.201600113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
369 Legat J, Matczuk M, Timerbaev AR, Jarosz M. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol. Anal Bioanal Chem 2018;410:1151-6. [PMID: 29143214 DOI: 10.1007/s00216-017-0749-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
370 Du W, Liu T, Xue F, Chen Y, Chen Q, Luo Y, Cai X, Ma M, Chen H. Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chemical Engineering Journal 2020;379:122251. [DOI: 10.1016/j.cej.2019.122251] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
371 Guo W, Wang Z, Wang X, Wu Y. General Design Concept for Single-Atom Catalysts toward Heterogeneous Catalysis. Adv Mater 2021;33:e2004287. [PMID: 34235782 DOI: 10.1002/adma.202004287] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
372 Xu X, Bayazitoglu Y, Meade A Jr. Evaluation of theranostic perspective of gold-silica nanoshell for cancer nano-medicine: a numerical parametric study. Lasers Med Sci 2019;34:377-88. [PMID: 30215184 DOI: 10.1007/s10103-018-2608-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
373 Della Ventura B, Gelzo M, Battista E, Alabastri A, Schirato A, Castaldo G, Corso G, Gentile F, Velotta R. Biosensor for Point-of-Care Analysis of Immunoglobulins in Urine by Metal Enhanced Fluorescence from Gold Nanoparticles. ACS Appl Mater Interfaces 2019;11:3753-62. [DOI: 10.1021/acsami.8b20501] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
374 Zhou S, Yang C, Guo L, Wang Y, Zhang G, Feng L. Water-soluble conjugated polymer with near-infrared absorption for synergistic tumor therapy using photothermal and photodynamic activity. Chem Commun 2019;55:8615-8. [DOI: 10.1039/c9cc03744f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 5.7] [Reference Citation Analysis]
375 Zhang Y, Zhang Y, Sheng X, Wang J, Liu Y. Enzyme-responsive fluorescent camptothecin prodrug/polysaccharide supramolecular assembly for targeted cellular imaging and in situ controlled drug release. Chem Commun 2020;56:1042-5. [DOI: 10.1039/c9cc08491f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
376 Tong L, Lu E, Pichaandi J, Cao P, Nitz M, Winnik MA. Quantification of Surface Ligands on NaYF 4 Nanoparticles by Three Independent Analytical Techniques. Chem Mater 2015;27:4899-910. [DOI: 10.1021/acs.chemmater.5b02190] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
377 Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. CTMC 2019;19:74-97. [DOI: 10.2174/1568026619666190125144621] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
378 Charron DM, Zheng G. Nanomedicine development guided by FRET imaging. Nano Today 2018;18:124-36. [DOI: 10.1016/j.nantod.2017.12.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
379 Winckel E, Mascaraque M, Zamarrón A, Juarranz de la Fuente Á, Torres T, Escosura A. Dual Role of Subphthalocyanine Dyes for Optical Imaging and Therapy of Cancer. Adv Funct Mater 2017;28:1705938. [DOI: 10.1002/adfm.201705938] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
380 Shen Y, Sun Y, Yan R, Chen E, Wang H, Ye D, Xu J, Chen H. Rational engineering of semiconductor QDs enabling remarkable 1 O 2 production for tumor-targeted photodynamic therapy. Biomaterials 2017;148:31-40. [DOI: 10.1016/j.biomaterials.2017.09.026] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
381 Shi D, Pu S, Yin H, Song Y, Liu H, Yu X, Zhao Y, Ye C, Liu S, Wang X, Huang J, Zhang Y, Xie J. Fluorescent Realgar Nanoclusters for Nuclear Targeting-Triggered Tumor Theranostics. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c00577] [Reference Citation Analysis]
382 Narouz MR, Li C, Nazemi A, Crudden CM. Amphiphilic N-Heterocyclic Carbene-Stabilized Gold Nanoparticles and Their Self-Assembly in Polar Solvents. Langmuir 2017;33:14211-9. [DOI: 10.1021/acs.langmuir.7b02248] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
383 Sanginario A, Miccoli B, Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors (Basel) 2017;7:E9. [PMID: 28212271 DOI: 10.3390/bios7010009] [Cited by in Crossref: 58] [Cited by in F6Publishing: 35] [Article Influence: 11.6] [Reference Citation Analysis]
384 Liu J, Zheng T, Tian Y. Functionalized h‐BN Nanosheets as a Theranostic Platform for SERS Real‐Time Monitoring of MicroRNA and Photodynamic Therapy. Angew Chem 2019;131:7839-43. [DOI: 10.1002/ange.201902776] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
385 Chatterjee B, Ghoshal A, Chattopadhyay A, Ghosh SS. dGTP-Templated Luminescent Gold Nanocluster-Based Composite Nanoparticles for Cancer Theranostics. ACS Biomater Sci Eng 2018;4:1005-12. [DOI: 10.1021/acsbiomaterials.7b00980] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
386 Wang H, Zhao W, Zhou L, Wang J, Liu L, Wang S, Wang Y. Soft Particles of Gemini Surfactant/Conjugated Polymer for Enhanced Anticancer Activity of Chemotherapeutics. ACS Appl Mater Interfaces 2018;10:37-41. [PMID: 29260846 DOI: 10.1021/acsami.7b16396] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
387 Su H, Cui Y, Wang F, Zhang W, Zhang C, Wang R, Cui H. Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomater Sci 2021;9:463-70. [DOI: 10.1039/d0bm00827c] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
388 Ren C, Gao Y, Guan Y, Wang Z, Yang L, Gao J, Fan H, Liu J. Carrier-Free Supramolecular Hydrogel Composed of Dual Drugs for Conquering Drug Resistance. ACS Appl Mater Interfaces 2019;11:33706-15. [PMID: 31466443 DOI: 10.1021/acsami.9b12530] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
389 Amirav L, Berlin S, Olszakier S, Pahari SK, Kahn I. Multi-Modal Nano Particle Labeling of Neurons. Front Neurosci 2019;13:12. [PMID: 30778281 DOI: 10.3389/fnins.2019.00012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
390 Xing R, Liu Y, Zou Q, Yan X. Self-assembled injectable biomolecular hydrogels towards phototherapy. Nanoscale 2019;11:22182-95. [DOI: 10.1039/c9nr06266a] [Cited by in Crossref: 17] [Article Influence: 5.7] [Reference Citation Analysis]
391 Tang L, Sun X, Liu N, Zhou Z, Yu F, Zhang X, Sun X, Chen X. Radiolabeled Angiogenesis-Targeting Croconaine Nanoparticles for Trimodality Imaging Guided Photothermal Therapy of Glioma. ACS Appl Nano Mater 2018;1:1741-9. [PMID: 30506043 DOI: 10.1021/acsanm.8b00195] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
392 Peng S, Wang Q, Xiao X, Wang R, Lin J, Zhou Q, Wu L. Redox‐responsive polyethyleneimine‐coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polym Int 2019;69:206-14. [DOI: 10.1002/pi.5943] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
393 Jeong C, Uthaman S, Bagheri B, Kim J, Pillarisetti S, Park IK, Kim YC. Self-assembled heptamethine cyanine dye dimer as a novel theranostic drug delivery carrier for effective image-guided chemo-photothermal cancer therapy. J Control Release 2021;329:50-62. [PMID: 33259849 DOI: 10.1016/j.jconrel.2020.11.046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
394 O'Brien PJ, Elahipanah S, Rogozhnikov D, Yousaf MN. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering. ACS Cent Sci 2017;3:489-500. [PMID: 28573212 DOI: 10.1021/acscentsci.7b00132] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
395 Yu M, Ma J, Wang J, Cai W, Zhang Z, Huang B, Sun M, Cheng Q, Zhang Z, Pang D, Tian Z. Ag 2 Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging. ACS Appl Nano Mater 2020;3:6071-7. [DOI: 10.1021/acsanm.0c01274] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
396 Wu J, Niu S, Bremner DH, Nie W, Fu Z, Li D, Zhu LM. A Tumor Microenvironment-Responsive Biodegradable Mesoporous Nanosystem for Anti-Inflammation and Cancer Theranostics. Adv Healthc Mater 2020;9:e1901307. [PMID: 31814332 DOI: 10.1002/adhm.201901307] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
397 Joris F, Valdepérez D, Pelaz B, Soenen SJ, Manshian BB, Parak WJ, De Smedt SC, Raemdonck K. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J Nanobiotechnology 2016;14:69. [PMID: 27613519 DOI: 10.1186/s12951-016-0220-y] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
398 Thapa RK, Byeon JH, Ku SK, Yong CS, Kim JO. Easy on-demand self-assembly of lateral nanodimensional hybrid graphene oxide flakes for near-infrared-induced chemothermal therapy. NPG Asia Mater 2017;9:e416-e416. [DOI: 10.1038/am.2017.141] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
399 Ma H, Xu Z, Fang H, Lei X. Unexpected sequence adsorption features of polynucleotide ssDNA on graphene oxide. Phys Chem Chem Phys 2020;22:11740-6. [PMID: 32409813 DOI: 10.1039/d0cp01066a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
400 Tang H, Yang ST, Ke DM, Yang YF, Liu JH, Chen X, Wang H, Liu Y. Biological behaviors and chemical fates of Ag2Se quantum dots in vivo: the effect of surface chemistry. Toxicol Res (Camb) 2017;6:693-704. [PMID: 30090536 DOI: 10.1039/c7tx00137a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
401 Yang B, Chen Y, Shi J. Nanocatalytic Medicine. Adv Mater 2019;31:1901778. [DOI: 10.1002/adma.201901778] [Cited by in Crossref: 136] [Cited by in F6Publishing: 126] [Article Influence: 45.3] [Reference Citation Analysis]
402 Du X, Kleitz F, Li X, Huang H, Zhang X, Qiao S. Disulfide‐Bridged Organosilica Frameworks: Designed, Synthesis, Redox‐Triggered Biodegradation, and Nanobiomedical Applications. Adv Funct Mater 2018;28:1707325. [DOI: 10.1002/adfm.201707325] [Cited by in Crossref: 91] [Cited by in F6Publishing: 48] [Article Influence: 22.8] [Reference Citation Analysis]
403 Jeong Y, Jin S, Palanikumar L, Choi H, Shin E, Go EM, Keum C, Bang S, Kim D, Lee S, Kim M, Kim H, Lee KH, Jana B, Park MH, Kwak SK, Kim C, Ryu JH. Stimuli-Responsive Adaptive Nanotoxin to Directly Penetrate the Cellular Membrane by Molecular Folding and Unfolding. J Am Chem Soc 2022. [PMID: 35235326 DOI: 10.1021/jacs.2c00084] [Reference Citation Analysis]
404 Luo K, Zhao J, Jia C, Chen Y, Zhang Z, Zhang J, Huang M, Wang S. Integration of Fe3O4 with Bi2S3 for Multi-Modality Tumor Theranostics. ACS Appl Mater Interfaces 2020;12:22650-60. [PMID: 32330380 DOI: 10.1021/acsami.0c05088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
405 Lee YW, Luther DC, Kretzmann JA, Burden A, Jeon T, Zhai S, Rotello VM. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics 2019;9:3280-92. [PMID: 31244954 DOI: 10.7150/thno.34412] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 12.3] [Reference Citation Analysis]
406 Xie J, Wang C, Zhao F, Gu Z, Zhao Y. Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Adv Healthcare Mater 2018;7:1800421. [DOI: 10.1002/adhm.201800421] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
407 Li H, Yue L, Li L, Liu G, Zhang J, Luo X, Wu F. Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids Surf B Biointerfaces 2021;205:111841. [PMID: 33992824 DOI: 10.1016/j.colsurfb.2021.111841] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
408 Li J, Wang S, Shi X, Shen M. Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interface Sci 2017;249:374-85. [PMID: 28335985 DOI: 10.1016/j.cis.2017.02.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
409 Xu N, Han J, Zhu Z, Song B, Lu X, Cai Y. Directional supracolloidal self-assembly via dynamic covalent bonds and metal coordination. Soft Matter 2015;11:5546-53. [DOI: 10.1039/c5sm00546a] [Cited by in Crossref: 9] [Article Influence: 1.3] [Reference Citation Analysis]
410 Qian Y, Wang W, Wang Z, Jia X, Han Q, Rostami I, Wang Y, Hu Z. pH-Triggered Peptide Self-Assembly for Targeting Imaging and Therapy toward Angiogenesis with Enhanced Signals. ACS Appl Mater Interfaces 2018;10:7871-81. [DOI: 10.1021/acsami.8b00583] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
411 Vamvakidis K, Maniotis N, Dendrinou-Samara C. Magneto-fluorescent nanocomposites: experimental and theoretical linkage for the optimization of magnetic hyperthermia. Nanoscale 2021;13:6426-38. [PMID: 33885523 DOI: 10.1039/d1nr00121c] [Reference Citation Analysis]
412 Yu S, Liu J, Yin Y, Shen M. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects. Journal of Environmental Sciences 2018;63:198-217. [DOI: 10.1016/j.jes.2017.06.021] [Cited by in Crossref: 68] [Cited by in F6Publishing: 46] [Article Influence: 17.0] [Reference Citation Analysis]
413 Fan K, Yan X. Bioengineered Ferritin Nanoprobes for Cancer Theranostics. Handbook of Nanomaterials for Cancer Theranostics. Elsevier; 2018. pp. 143-75. [DOI: 10.1016/b978-0-12-813339-2.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
414 Wang Z, Tang X, Wang X, Yang D, Yang C, Lou Y, Chen J, He N. Near-infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated CuS nanoparticles and their application as a therapeutic nanoplatform. Chem Commun 2016;52:12210-3. [DOI: 10.1039/c6cc06616j] [Cited by in Crossref: 52] [Cited by in F6Publishing: 8] [Article Influence: 8.7] [Reference Citation Analysis]
415 Ding Q, Zhan Q, Zhou X, Zhang T, Xing D. Theranostic Upconversion Nanobeacons for Tumor mRNA Ratiometric Fluorescence Detection and Imaging-Monitored Drug Delivery. Small 2016;12:5944-53. [DOI: 10.1002/smll.201601724] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]
416 Zhang NN, Yu RS, Xu M, Cheng XY, Chen CM, Xu XL, Lu CY, Lu KJ, Chen MJ, Zhu ML, Weng QY, Hui JG, Zhang Q, Du YZ, Ji JS. Visual targeted therapy of hepatic cancer using homing peptide modified calcium phosphate nanoparticles loading doxorubicin guided by T1 weighted MRI. Nanomedicine 2018;14:2167-78. [PMID: 30017962 DOI: 10.1016/j.nano.2018.06.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
417 Zhang Y, Yan P, Wan Q, Wu K, Yang N. Morphology-dependent electrochemistry of FeOOH nanostructures. Electrochemistry Communications 2016;68:10-4. [DOI: 10.1016/j.elecom.2016.04.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
418 Wang X, Su Q, Zhang Z, Yang J, Zhang Y, Zhang M. Biotinylated platinum(ii) metallacage towards targeted cancer theranostics. Chem Commun (Camb) 2020;56:8460-3. [PMID: 32583830 DOI: 10.1039/d0cc03824e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
419 Rodriguez Burbano DC, Naccache R, Capobianco JA. Near-IR Triggered Photon Upconversion. Elsevier; 2015. pp. 273-347. [DOI: 10.1016/b978-0-444-63481-8.00273-6] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
420 Sun R, Yin L, Zhang S, He L, Cheng X, Wang A, Xia H, Shi H. Simple Light-Triggered Fluorescent Labeling of Silica Nanoparticles for Cellular Imaging Applications. Chem Eur J 2017;23:13893-6. [DOI: 10.1002/chem.201703653] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
421 Lan M, Zhao S, Zhang Z, Yan L, Guo L, Niu G, Zhang J, Zhao J, Zhang H, Wang P, Zhu G, Lee C, Zhang W. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res 2017;10:3113-23. [DOI: 10.1007/s12274-017-1528-0] [Cited by in Crossref: 130] [Cited by in F6Publishing: 87] [Article Influence: 26.0] [Reference Citation Analysis]
422 Webster TJ, Lee S, An SS. Today's diverse nano-theranostic applications and tomorrow's promises. Int J Nanomedicine 2015;10:1-2. [PMID: 26425090 DOI: 10.2147/IJN.S93426] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
423 Sanchez-vazquez B, Amaral AJR, Yu D, Pasparakis G, Williams GR. Electrosprayed Janus Particles for Combined Photo-Chemotherapy. AAPS PharmSciTech 2017;18:1460-8. [DOI: 10.1208/s12249-016-0638-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
424 Ma M, Yan F, Yao M, Wei Z, Zhou D, Yao H, Zheng H, Chen H, Shi J. Template-Free Synthesis of Hollow/Porous Organosilica-Fe3O4 Hybrid Nanocapsules toward Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Therapy. ACS Appl Mater Interfaces 2016;8:29986-96. [PMID: 27774787 DOI: 10.1021/acsami.6b10370] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
425 Chen X, Yan Y, Müllner M, Ping Y, Cui J, Kempe K, Cortez-Jugo C, Caruso F. Shape-Dependent Activation of Cytokine Secretion by Polymer Capsules in Human Monocyte-Derived Macrophages. Biomacromolecules 2016;17:1205-12. [PMID: 26919729 DOI: 10.1021/acs.biomac.6b00027] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
426 Li Y, Liu X, Xu X, Xin H, Zhang Y, Li B. Red‐Blood‐Cell Waveguide as a Living Biosensor and Micromotor. Adv Funct Mater 2019;29:1905568. [DOI: 10.1002/adfm.201905568] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 7.7] [Reference Citation Analysis]
427 Faghfoori MH, Nosrati H, Rezaeejam H, Charmi J, Kaboli S, Johari B, Danafar H. Anticancer effect of X-Ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int J Pharm 2020;582:119320. [PMID: 32278720 DOI: 10.1016/j.ijpharm.2020.119320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
428 Li X, Wang X, Zhao C, Shao L, Lu J, Tong Y, Chen L, Cui X, Sun H, Liu J, Li M, Deng X, Wu Y. From one to all: self-assembled theranostic nanoparticles for tumor-targeted imaging and programmed photoactive therapy. J Nanobiotechnology 2019;17:23. [PMID: 30711005 DOI: 10.1186/s12951-019-0450-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
429 Bucatariu F, Ghiorghita C, Cocarta A, Dragan ES. Cross-linked multilayer-dye films deposited onto silica surfaces with high affinity for pepsin. Applied Surface Science 2016;390:320-7. [DOI: 10.1016/j.apsusc.2016.08.057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
430 Kim CW, Toita R, Kang JH, Mori T, Kishimura A, Katayama Y. Protein Kinase C α-Responsive Gene Carrier for Cancer-Specific Transgene Expression and Cancer Therapy. ACS Biomater Sci Eng 2021;7:2530-7. [PMID: 33890761 DOI: 10.1021/acsbiomaterials.1c00213] [Reference Citation Analysis]
431 Zhang Z, Wang Y, Rizk MM, Liang R, Wells CJ, Gurnani P, Zhou F, Davies G, Williams GR. Thermo-responsive nano-in-micro particles for MRI-guided chemotherapy. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112716] [Reference Citation Analysis]
432 Potara M, Bawaskar M, Simon T, Gaikwad S, Licarete E, Ingle A, Banciu M, Vulpoi A, Astilean S, Rai M. Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Colloids and Surfaces B: Biointerfaces 2015;133:296-303. [DOI: 10.1016/j.colsurfb.2015.06.024] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 5.1] [Reference Citation Analysis]
433 Jin H, Feura ES, Schoenfisch MH. Theranostic Activity of Nitric Oxide-Releasing Carbon Quantum Dots. Bioconjug Chem 2021;32:367-75. [PMID: 33449618 DOI: 10.1021/acs.bioconjchem.1c00002] [Reference Citation Analysis]
434 Guo T, Lin Y, Li Z, Chen S, Huang G, Lin H, Wang J, Liu G, Yang HH. Gadolinium oxysulfide-coated gold nanorods with improved stability and dual-modal magnetic resonance/photoacoustic imaging contrast enhancement for cancer theranostics. Nanoscale 2017;9:56-61. [PMID: 27906396 DOI: 10.1039/c6nr08281e] [Cited by in Crossref: 36] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
435 Li N, Duan S, Wang Y, Zhang L, Chen Y, Zhang J, Liu R, Li Y, Liu L, Ren S, Zhang Y, Guo Y, Ji Z, Zhang L. Preparation and evaluation of ultrasound-mediated dual-targeted theragnostic systems utilising phase-changeable polymeric nanodroplets on the integrin αν β3 overexpressed breast cancer. Clin Transl Med 2021;11:e607. [PMID: 34709751 DOI: 10.1002/ctm2.607] [Reference Citation Analysis]
436 Li Y, Bolinger J, Yu Y, Glass Z, Shi N, Yang L, Wang M, Xu Q. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater Sci 2019;7:596-606. [DOI: 10.1039/c8bm00637g] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
437 Wang X, Peng H, Yang W, Ren Z, Liu Y. Mitochondria-targeted theranostic nanoparticles for optical sensing of oxygen, photodynamic cancer therapy, and assessment of therapeutic efficacy. Microchim Acta 2016;183:2723-31. [DOI: 10.1007/s00604-016-1917-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
438 Wang J, Huang J, Zhou W, Zhao J, Peng Q, Zhang L, Wang Z, Li P, Li R. Hypoxia modulation by dual-drug nanoparticles for enhanced synergistic sonodynamic and starvation therapy. J Nanobiotechnology 2021;19:87. [PMID: 33771168 DOI: 10.1186/s12951-021-00837-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
439 Deng Y, Li E, Cheng X, Zhu J, Lu S, Ge C, Gu H, Pan Y. Facile preparation of hybrid core–shell nanorods for photothermal and radiation combined therapy. Nanoscale 2016;8:3895-9. [DOI: 10.1039/c5nr09102k] [Cited by in Crossref: 52] [Cited by in F6Publishing: 12] [Article Influence: 8.7] [Reference Citation Analysis]
440 Ng KK, Zheng G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. Chem Rev 2015;115:11012-42. [PMID: 26244706 DOI: 10.1021/acs.chemrev.5b00140] [Cited by in Crossref: 302] [Cited by in F6Publishing: 275] [Article Influence: 43.1] [Reference Citation Analysis]
441 Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, Thangavelu L, Rajeshkumar S, Tambuwala M, Bakshi HA, Chellappan DK, Dua K, Satija S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chemico-Biological Interactions 2019;309:108720. [DOI: 10.1016/j.cbi.2019.06.033] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 18.7] [Reference Citation Analysis]
442 Ramachandra Kurup Sasikala A, Unnithan AR, Thomas RG, Batgerel T, Jeong YY, Park CH, Kim CS. Hexa-functional tumour-seeking nano voyagers and annihilators for synergistic cancer theranostic applications. Nanoscale 2018;10:19568-78. [DOI: 10.1039/c8nr06116e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
443 Wang J, Tao W, Chen X, Farokhzad OC, Liu G. Emerging Advances in Nanotheranostics with Intelligent Bioresponsive Systems. Theranostics 2017;7:3915-9. [PMID: 29109787 DOI: 10.7150/thno.21317] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
444 Yao X, Zhu Q, Li C, Yuan K, Che R, Zhang P, Yang C, Lu W, Wu W, Jiang X. Carbamoylmannose enhances the tumor targeting ability of supramolecular nanoparticles formed through host-guest complexation of a pair of homopolymers. J Mater Chem B 2017;5:834-48. [PMID: 32263852 DOI: 10.1039/c6tb02863b] [Cited by in Crossref: 13] [Article Influence: 2.6] [Reference Citation Analysis]
445 Wang T, Wang D, Yu H, Wang M, Liu J, Feng B, Zhou F, Yin Q, Zhang Z, Huang Y, Li Y. Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug-Resistant Tumor. ACS Nano 2016;10:3496-508. [PMID: 26866752 DOI: 10.1021/acsnano.5b07706] [Cited by in Crossref: 188] [Cited by in F6Publishing: 191] [Article Influence: 31.3] [Reference Citation Analysis]
446 Zhao R, Xiang J, Wang B, Chen L, Tan S, De Matteis V. Recent Advances in the Development of Noble Metal NPs for Cancer Therapy. Bioinorganic Chemistry and Applications 2022;2022:1-14. [DOI: 10.1155/2022/2444516] [Reference Citation Analysis]
447 Golovin YI, Klyachko NL, Majouga AG, Sokolsky M, Kabanov AV. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-3746-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 6.8] [Reference Citation Analysis]
448 Wang F, Xu L, Zhang Y, Petrenko VA, Liu A. An efficient strategy to synthesize a multifunctional ferroferric oxide core@dye/SiO 2 @Au shell nanocomposite and its targeted tumor theranostics. J Mater Chem B 2017;5:8209-18. [DOI: 10.1039/c7tb02004j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.2] [Reference Citation Analysis]
449 Yu G, Zhang M, Saha ML, Mao Z, Chen J, Yao Y, Zhou Z, Liu Y, Gao C, Huang F, Chen X, Stang PJ. Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. J Am Chem Soc 2017;139:15940-9. [PMID: 29019660 DOI: 10.1021/jacs.7b09224] [Cited by in Crossref: 146] [Cited by in F6Publishing: 117] [Article Influence: 29.2] [Reference Citation Analysis]
450 Nakad EA, Chaud J, Morville C, Bolze F, Specht A. Monitoring of uncaging processes by designing photolytical reactions. Photochem Photobiol Sci 2020;19:1122-33. [PMID: 32756690 DOI: 10.1039/d0pp00169d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
451 Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021;18:849-76. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
452 Ding N, Li Z, Tian X, Zhang J, Guo K, Wang P. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo. Chem Commun 2019;55:13172-5. [DOI: 10.1039/c9cc06727b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
453 Xiao D, Zhao L, Xie F, Fan S, Liu L, Li W, Cao R, Li S, Zhong W, Zhou X. A bifunctional molecule-based strategy for the development of theranostic antibody-drug conjugate. Theranostics 2021;11:2550-63. [PMID: 33456559 DOI: 10.7150/thno.51232] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
454 Gong M, Yang J, Li Y, Gu J. Glutathione-responsive nanoscale MOFs for effective intracellular delivery of the anticancer drug 6-mercaptopurine. Chem Commun 2020;56:6448-51. [DOI: 10.1039/d0cc02872j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
455 Leigh T, Fernandez-trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020;4:291-310. [DOI: 10.1038/s41570-020-0180-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 9.5] [Reference Citation Analysis]
456 Nosrati H, Baghdadchi Y, Abbasi R, Barsbay M, Ghaffarlou M, Abhari F, Mohammadi A, Kavetskyy T, Bochani S, Rezaeejam H, Davaran S, Danafar H. Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. J Mater Chem B 2021;9:4510-22. [PMID: 34027529 DOI: 10.1039/d0tb02561e] [Reference Citation Analysis]
457 Wen H, Dong H, Liu J, Shen A, Li Y, Shi D. Redox-mediated dissociation of PEG–polypeptide-based micelles for on-demand release of anticancer drugs. J Mater Chem B 2016;4:7859-69. [DOI: 10.1039/c6tb02364a] [Cited by in Crossref: 15] [Article Influence: 2.5] [Reference Citation Analysis]
458 Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Advanced Drug Delivery Reviews 2017;110-111:80-101. [DOI: 10.1016/j.addr.2016.08.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 7.2] [Reference Citation Analysis]
459 Yang Y, Huang M, Qian J, Gao D, Liang X. Tunable Fe3O4 Nanorods for Enhanced Magnetic Hyperthermia Performance. Sci Rep 2020;10:8331. [PMID: 32433578 DOI: 10.1038/s41598-020-65095-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
460 Fan W, Yung BC, Chen X. Stimuliresponsive NO‐Freisetzung für die abrufbereite Gas‐sensibilisierte synergistische Krebstherapie. Angew Chem 2018;130:8516-28. [DOI: 10.1002/ange.201800594] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
461 Hoffmann M, Schletz D, Steiner AM, Wolf D, Mayer M, Fery A. Conjugated Polymer–Gold–Silver Hybrid Nanoparticles for Plasmonic Energy Focusing. J Phys Chem C. [DOI: 10.1021/acs.jpcc.1c08583] [Reference Citation Analysis]
462 Rajkumar S, Prabaharan M. Theranostic Application of Fe3O4–Au Hybrid Nanoparticles. Noble Metal-Metal Oxide Hybrid Nanoparticles. Elsevier; 2019. pp. 607-23. [DOI: 10.1016/b978-0-12-814134-2.00029-2] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
463 Wang YQ, Ji MY, Wang C. Endoplasmic reticulum-targeted glutathione and pH dual responsive vitamin lipid nanovesicles for tocopheryl DM1 delivery and cancer therapy. Int J Pharm 2020;582:119331. [PMID: 32289484 DOI: 10.1016/j.ijpharm.2020.119331] [Reference Citation Analysis]
464 Ling X, Jin Z, Jiang Q, Wang X, Wei B, Wang Z, Xu Y, Ca T, Engle JW, Cai W, Su C, He Q. Engineering biocompatible TeSex nano-alloys as a versatile theranostic nanoplatform. Natl Sci Rev 2021;8:nwaa156. [PMID: 34262791 DOI: 10.1093/nsr/nwaa156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
465 Saikia P, Miah AT, Das PP. Highly efficient catalytic reductive degradation of various organic dyes by Au/CeO 2 -TiO 2 nano-hybrid. J Chem Sci 2017;129:81-93. [DOI: 10.1007/s12039-016-1203-0] [Cited by in Crossref: 72] [Cited by in F6Publishing: 35] [Article Influence: 14.4] [Reference Citation Analysis]
466 Yang Y, Mu J, Xing B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 27094696 DOI: 10.1002/wnan.1408] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
467 Pitto-barry A, Barry NPE. Influence of boron doping on the dynamics of formation of Os metal nanoclusters on graphitic surfaces. Chem Commun 2019;55:6038-41. [DOI: 10.1039/c9cc01974j] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
468 Gong L, Yan L, Zhou R, Xie J, Wu W, Gu Z. Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J Mater Chem B 2017;5:1873-95. [DOI: 10.1039/c7tb00195a] [Cited by in Crossref: 73] [Cited by in F6Publishing: 6] [Article Influence: 14.6] [Reference Citation Analysis]
469 Cai K, Wang AZ, Yin L, Cheng J. Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. Journal of Controlled Release 2017;263:211-22. [DOI: 10.1016/j.jconrel.2016.11.034] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
470 He Z, Zhu JJ. Near-infrared photothermally activated nanomachines for cancer theragnosis. Dalton Trans 2019;48:13120-4. [PMID: 31348472 DOI: 10.1039/c9dt02623a] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
471 Barbalinardo M, Bertacchini J, Bergamini L, Magarò MS, Ortolani L, Sanson A, Palumbo C, Cavallini M, Gentili D. Surface properties modulate protein corona formation and determine cellular uptake and cytotoxicity of silver nanoparticles. Nanoscale 2021;13:14119-29. [PMID: 34477693 DOI: 10.1039/d0nr08259g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
472 Wu X, Peng Y, Duan X, Yang L, Lan J, Wang F. Homologous Gold Nanoparticles and Nanoclusters Composites with Enhanced Surface Raman Scattering and Metal Fluorescence for Cancer Imaging. Nanomaterials (Basel) 2018;8:E819. [PMID: 30314327 DOI: 10.3390/nano8100819] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
473 Turin-Moleavin IA, Fifere A, Lungoci AL, Rosca I, Coroaba A, Peptanariu D, Pasca SA, Bostanaru AC, Mares M, Pinteala M. In Vitro and In Vivo Antioxidant Activity of the New Magnetic-Cerium Oxide Nanoconjugates. Nanomaterials (Basel) 2019;9:E1565. [PMID: 31690040 DOI: 10.3390/nano9111565] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
474 Wang W, Li X, Wang Z, Zhang J, Dong X, Wu Y, Fang C, Zhou A, Wu Y. A novel “mosaic-type” nanoparticle for selective drug release targeting hypoxic cancer cells. Nanoscale 2019;11:2211-22. [DOI: 10.1039/c8nr06452k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
475 Jin M, Liu X, Zhang X, Wang L, Bing T, Zhang N, Zhang Y, Shangguan D. Thiazole Orange-Modified Carbon Dots for Ratiometric Fluorescence Detection of G-Quadruplex and Double-Stranded DNA. ACS Appl Mater Interfaces 2018;10:25166-73. [PMID: 29979027 DOI: 10.1021/acsami.8b07869] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
476 Gu W, Hua Z, Li Z, Cai Z, Wang W, Guo K, Yuan F, Gao F, Chen H. Palladium cubes with Pt shell deposition for localized surface plasmon resonance enhanced photodynamic and photothermal therapy of hypoxic tumors. Biomater Sci 2021;10:216-26. [PMID: 34843611 DOI: 10.1039/d1bm01406d] [Reference Citation Analysis]
477 Mrówczyński R, Jędrzak A, Szutkowski K, Grześkowiak BF, Coy E, Markiewicz R, Jesionowski T, Jurga S. Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy. Nanomaterials (Basel) 2018;8:E170. [PMID: 29547559 DOI: 10.3390/nano8030170] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
478 Li Y, Jin J, Wang D, Lv J, Hou K, Liu Y, Chen C, Tang Z. Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res 2018;11:3294-305. [DOI: 10.1007/s12274-017-1874-y] [Cited by in Crossref: 116] [Cited by in F6Publishing: 74] [Article Influence: 29.0] [Reference Citation Analysis]
479 Chen H, Liu F, Lei Z, Ma L, Wang Z. Fe 2 O 3 @Au core@shell nanoparticle–graphene nanocomposites as theranostic agents for bioimaging and chemo-photothermal synergistic therapy. RSC Adv 2015;5:84980-7. [DOI: 10.1039/c5ra17143a] [Cited by in Crossref: 28] [Article Influence: 4.0] [Reference Citation Analysis]
480 Yang X, Zhang D, Li J, Ji W, Yang N, Gu S, Wu Q, Jiang Q, Shi P, Li L. A mitochondrion-targeting Mn(ii)-terpyridine complex for two-photon photodynamic therapy. Chem Commun (Camb) 2020;56:9032-5. [PMID: 32643722 DOI: 10.1039/d0cc02051f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
481 He L, Ji S, Lai H, Chen T. Selenadiazole derivatives as theranostic agents for simultaneous cancer chemo-/radiotherapy by targeting thioredoxin reductase. J Mater Chem B 2015;3:8383-93. [DOI: 10.1039/c5tb01501d] [Cited by in Crossref: 37] [Article Influence: 5.3] [Reference Citation Analysis]
482 Liu Y, Mo F, Hu J, Jiang Q, Wang X, Zou Z, Zhang XZ, Pang DW, Liu X. Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics. Chem Sci 2021;12:10097-105. [PMID: 34349972 DOI: 10.1039/d1sc02203b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
483 Ke K, Yang W, Xie X, Liu R, Wang LL, Lin WW, Huang G, Lu CH, Yang HH. Copper Manganese Sulfide Nanoplates: A New Two-Dimensional Theranostic Nanoplatform for MRI/MSOT Dual-Modal Imaging-Guided Photothermal Therapy in the Second Near-Infrared Window. Theranostics 2017;7:4763-76. [PMID: 29187902 DOI: 10.7150/thno.21694] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 11.4] [Reference Citation Analysis]
484 Xiong D, Zhang X, Peng S, Gu H, Zhang L. Smart pH-sensitive micelles based on redox degradable polymers as DOX/GNPs carriers for controlled drug release and CT imaging. Colloids and Surfaces B: Biointerfaces 2018;163:29-40. [DOI: 10.1016/j.colsurfb.2017.12.008] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
485 Bünzli JG. Lanthanide light for biology and medical diagnosis. Journal of Luminescence 2016;170:866-78. [DOI: 10.1016/j.jlumin.2015.07.033] [Cited by in Crossref: 185] [Cited by in F6Publishing: 102] [Article Influence: 30.8] [Reference Citation Analysis]
486 Qiu G, Lu W, Hu P, Jiang Z, Bai L, Wang T, Li M, Chen J. A metal-organic framework based PCR-free biosensor for the detection of gastric cancer associated microRNAs. Journal of Inorganic Biochemistry 2017;177:138-42. [DOI: 10.1016/j.jinorgbio.2017.08.036] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
487 Guo K, Zhao X, Dai X, Zhao N, Xu FJ. Organic/inorganic nanohybrids as multifunctional gene delivery systems. J Gene Med 2019;21:e3084. [PMID: 30850992 DOI: 10.1002/jgm.3084] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
488 Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coordination Chemistry Reviews 2019;398:113012. [DOI: 10.1016/j.ccr.2019.07.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
489 Nguyen JVL, Ghafar-zadeh E. Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. Actuators 2020;9:137. [DOI: 10.3390/act9040137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
490 Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. Adv Funct Mater 2017;27:1603524. [PMID: 28824357 DOI: 10.1002/adfm.201603524] [Cited by in Crossref: 125] [Cited by in F6Publishing: 116] [Article Influence: 20.8] [Reference Citation Analysis]
491 Wei T, Xing H, Wang H, Zhang Y, Wang J, Shen J, Dai Z. Bovine serum albumin encapsulation of near infrared fluorescent nano-probe with low nonspecificity and cytotoxicity for imaging of HER2-positive breast cancer cells. Talanta 2020;210:120625. [PMID: 31987166 DOI: 10.1016/j.talanta.2019.120625] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
492 Sun Z, Zheng W, Zhu G, Lian J, Wang J, Hui P, He S, Chen W, Jiang X. Albumin Broadens the Antibacterial Capabilities of Nonantibiotic Small Molecule-Capped Gold Nanoparticles. ACS Appl Mater Interfaces 2019;11:45381-9. [DOI: 10.1021/acsami.9b15107] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
493 Choi SK. Mechanistic basis of light induced cytotoxicity of photoactive nanomaterials. NanoImpact 2016;3-4:81-9. [DOI: 10.1016/j.impact.2016.09.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
494 Mahmoudi M, Lohse SE, Murphy CJ, Suslick KS. Identification of Nanoparticles with a Colorimetric Sensor Array. ACS Sens 2016;1:17-21. [DOI: 10.1021/acssensors.5b00014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
495 Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G, Cetin B, Çavuş Kokuroǧlu A, Gürek AG. Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules 2021;22:1555-67. [PMID: 33793222 DOI: 10.1021/acs.biomac.0c01811] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
496 Zhang Y, Han X, Liu Y, Wang S, Han X, Cheng C. Research progress on nano-sensitizers for enhancing the effects of radiotherapy. Mater Adv . [DOI: 10.1039/d2ma00094f] [Reference Citation Analysis]
497 Huang Y, Zhang G, Hu F, Jin Y, Zhao R, Zhang D. Emissive nanoparticles from pyridinium-substituted tetraphenylethylene salts: imaging and selective cytotoxicity towards cancer cells in vitro and in vivo by varying counter anions. Chem Sci 2016;7:7013-9. [PMID: 28451137 DOI: 10.1039/c6sc02395a] [Cited by in Crossref: 52] [Cited by in F6Publishing: 5] [Article Influence: 8.7] [Reference Citation Analysis]
498 Liang L, Hu W, Xue Z, Shen J. Theoretical study on the interaction of nucleotides on two-dimensional atomically thin graphene and molybdenum disulfide. FlatChem 2017;2:8-14. [DOI: 10.1016/j.flatc.2017.02.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
499 Tang W, Han L, Lu X, Wang Z, Liu F, Li Y, Liu S, Liu S, Tian R, Liu J, Ding B. A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy. ACS Appl Mater Interfaces 2021;13:20974-81. [PMID: 33909408 DOI: 10.1021/acsami.1c02122] [Reference Citation Analysis]
500 Luo Y, Qiao B, Zhang P, Yang C, Cao J, Yuan X, Ran H, Wang Z, Hao L, Cao Y, Ren J, Zhou Z. TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics 2020;10:6987-7001. [PMID: 32550917 DOI: 10.7150/thno.44569] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
501 Lu D, Chen M, Yu L, Chen Z, Guo H, Zhang Y, Han Z, Xu T, Wang H, Zhou X, Zhou Z, Teng G. Smart-Polypeptide-Coated Mesoporous Fe3O4 Nanoparticles: Non-Interventional Target-Embolization/Thermal Ablation and Multimodal Imaging Combination Theranostics for Solid Tumors. Nano Lett 2021;21:10267-78. [PMID: 34878286 DOI: 10.1021/acs.nanolett.1c03340] [Reference Citation Analysis]
502 He Z, Zhang Y, Feng N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Materials Science and Engineering: C 2020;106:110298. [DOI: 10.1016/j.msec.2019.110298] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 18.0] [Reference Citation Analysis]
503 Wang G, Qian K, Mei X. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1 & T2 -MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy. Nanoscale 2018;10:10467-78. [DOI: 10.1039/c8nr02429d] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
504 Sheveleva AM, Ivanov MY, Shundrina IK, Bukhtoyarova AD, Bagryanskaya EG, Fedin MV. Continuous Wave and Time-Resolved Electron Paramagnetic Resonance Study of Photoinduced Radicals in Fluoroacrylic Porous Polymer Films. J Phys Chem C 2016;120:14767-73. [DOI: 10.1021/acs.jpcc.6b05016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
505 Prasad R, Jain N, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances 2020;8:100087. [DOI: 10.1016/j.mtadv.2020.100087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
506 Huang Y, He N, Wang Y, Shen D, Kang Q, Zhao R, Chen L. Self-assembly of nanoparticles by human serum albumin and photosensitizer for targeted near-infrared emission fluorescence imaging and effective phototherapy of cancer. J Mater Chem B 2019;7:1149-59. [DOI: 10.1039/c8tb03054e] [Cited by in Crossref: 21] [Article Influence: 7.0] [Reference Citation Analysis]
507 Xianwei M. What potential is there for the use of ZrO 2 nanostructures for image-guided thermotherapy? Nanomedicine 2015;10:3311-3. [DOI: 10.2217/nnm.15.147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
508 Raghavendra GM, Jung J, Kim D, Varaprasad K, Seo J. Identification of silver cubic structures during ultrasonication of chitosan AgNO 3 solution. Carbohydrate Polymers 2016;152:558-65. [DOI: 10.1016/j.carbpol.2016.07.045] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
509 Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022. [PMID: 34995461 DOI: 10.1021/acs.chemrev.1c00746] [Reference Citation Analysis]
510 Rainone P, De Palma A, Sudati F, Roffia V, Rigamonti V, Salvioni L, Colombo M, Ripamonti M, Spinelli AE, Mazza D, Mauri P, Moresco RM, Prosperi D, Belloli S. 99mTc-Radiolabeled Silica Nanocarriers for Targeted Detection and Treatment of HER2-Positive Breast Cancer. Int J Nanomedicine 2021;16:1943-60. [PMID: 33727808 DOI: 10.2147/IJN.S276033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
511 Ding Y, Huang R, Luo L, Guo W, Zhu C, Shen X. Full-spectrum responsive WO 3−x @HA nanotheranostics for NIR-II photoacoustic imaging-guided PTT/PDT/CDT synergistic therapy. Inorg Chem Front 2021;8:636-46. [DOI: 10.1039/d0qi01249a] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
512 Gulfam M, Matini T, Monteiro PF, Riva R, Collins H, Spriggs K, Howdle SM, Jérôme C, Alexander C. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomater Sci 2017;5:532-50. [DOI: 10.1039/c6bm00888g] [Cited by in Crossref: 31] [Cited by in F6Publishing: 4] [Article Influence: 6.2] [Reference Citation Analysis]
513 Mu J, Lin J, Huang P, Chen X. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev 2018;47:5554-73. [PMID: 29856446 DOI: 10.1039/c7cs00663b] [Cited by in Crossref: 120] [Cited by in F6Publishing: 28] [Article Influence: 40.0] [Reference Citation Analysis]
514 Xia N, Li N, Rao W, Yu J, Wu Q, Tan L, Li H, Gou L, Liang P, Li L, Meng X. Multifunctional and flexible ZrO 2 -coated EGaIn nanoparticles for photothermal therapy. Nanoscale 2019;11:10183-9. [DOI: 10.1039/c9nr01963d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 6.3] [Reference Citation Analysis]
515 Pitto-barry A, Sadler PJ, Barry NPE. Dynamics of formation of Ru, Os, Ir and Au metal nanocrystals on doped graphitic surfaces. Chem Commun 2016;52:3895-8. [DOI: 10.1039/c5cc09564f] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
516 Freitas LBDO, Corgosinho LDM, Faria JAQA, dos Santos VM, Resende JM, Leal AS, Gomes DA, Sousa EMBD. Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials 2017;242:271-83. [DOI: 10.1016/j.micromeso.2017.01.036] [Cited by in Crossref: 49] [Cited by in F6Publishing: 23] [Article Influence: 9.8] [Reference Citation Analysis]
517 Zhang YM, Xia M, Ao R, Gao LX, Tang Y, Huang JH, Luo YF, Chen ZZ, Wang BC, Huang Z. Smart Design of Mitochondria-Targeted and ROS-Responsive CPI-613 Delivery Nanoplatform for Bioenergetic Pancreatic Cancer Therapy. Nanomaterials (Basel) 2021;11:2875. [PMID: 34835640 DOI: 10.3390/nano11112875] [Reference Citation Analysis]
518 Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020;173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
519 Li J, Zhou C, Zhang J, Xu F, Zheng Y, Wang S, Zou D. Photo-induced tumor therapy using MnO2/IrO2-PVP nano-enzyme with TME-responsive behaviors. Colloids Surf B Biointerfaces 2021;205:111852. [PMID: 34030106 DOI: 10.1016/j.colsurfb.2021.111852] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
520 Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Badshah H, Munir A. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol 2018;102:9449-70. [DOI: 10.1007/s00253-018-9352-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
521 Zhu T, Ma X, Chen R, Ge Z, Xu J, Shen X, Jia L, Zhou T, Luo Y, Ma T. Using fluorescently-labeled magnetic nanocomposites as a dual contrast agent for optical and magnetic resonance imaging. Biomater Sci 2017;5:1090-100. [DOI: 10.1039/c7bm00031f] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
522 Zhang YH, Zhang YM, Yu J, Wang J, Liu Y. Boronate-crosslinked polysaccharide conjugates for pH-responsive and targeted drug delivery. Chem Commun (Camb) 2019;55:1164-7. [PMID: 30632564 DOI: 10.1039/c8cc09956a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
523 Zhang Y, Xiu W, Sun Y, Zhu D, Zhang Q, Yuwen L, Weng L, Teng Z, Wang L. RGD-QD-MoS2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. Nanoscale 2017;9:15835-45. [PMID: 28994430 DOI: 10.1039/c7nr05278b] [Cited by in Crossref: 59] [Cited by in F6Publishing: 9] [Article Influence: 14.8] [Reference Citation Analysis]
524 Lalitha K, Prasad YS, Sridharan V, Maheswari CU, John G, Nagarajan S. A renewable resource-derived thixotropic self-assembled supramolecular gel: magnetic stimuli responsive and real-time self-healing behaviour. RSC Adv 2015;5:77589-94. [DOI: 10.1039/c5ra14744a] [Cited by in Crossref: 22] [Article Influence: 3.1] [Reference Citation Analysis]
525 Sepand MR, Ranjbar S, Kempson IM, Akbariani M, Muganda WCA, Müller M, Ghahremani MH, Raoufi M. Targeting non-apoptotic cell death in cancer treatment by nanomaterials: Recent advances and future outlook. Nanomedicine 2020;29:102243. [PMID: 32623018 DOI: 10.1016/j.nano.2020.102243] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
526 Lei L, Xu Z, Hu X, Lai Y, Xu J, Hou B, Wang Y, Yu H, Tian Y, Zhang W. Bioinspired Multivalent Peptide Nanotubes for Sialic Acid Targeting and Imaging-Guided Treatment of Metastatic Melanoma. Small 2019;15:e1900157. [PMID: 31018037 DOI: 10.1002/smll.201900157] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
527 Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Appl Bio Mater 2019;2:5492-511. [DOI: 10.1021/acsabm.9b00587] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
528 Zhang H, Liu XL, Zhang YF, Gao F, Li GL, He Y, Peng ML, Fan HM. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci 2018;61:400-14. [DOI: 10.1007/s11427-017-9271-1] [Cited by in Crossref: 49] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
529 Kour R, Arya S, Young S, Gupta V, Bandhoria P, Khosla A. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J Electrochem Soc 2020;167:037555. [DOI: 10.1149/1945-7111/ab6bc4] [Cited by in Crossref: 98] [Cited by in F6Publishing: 5] [Article Influence: 49.0] [Reference Citation Analysis]
530 Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020;5:522-41. [PMID: 32322763 DOI: 10.1016/j.bioactmat.2020.04.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 20.0] [Reference Citation Analysis]
531 Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019;20:E2323. [PMID: 31083402 DOI: 10.3390/ijms20092323] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
532 Liu T, Conde J, Lipiński T, Bednarkiewicz A, Huang C. Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater 2016;8:e295-e295. [DOI: 10.1038/am.2016.106] [Cited by in Crossref: 88] [Cited by in F6Publishing: 51] [Article Influence: 14.7] [Reference Citation Analysis]
533 Guk K, Hwang SG, Lim J, Son HY, Choi Y, Huh YM, Kang T, Jung J, Lim EK. Fluorescence amplified sensing platforms enabling miRNA detection by self-circulation of a molecular beacon circuit. Chem Commun (Camb) 2019;55:3457-60. [PMID: 30735212 DOI: 10.1039/c9cc00351g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
534 Cheng H, Cui Y, Wang R, Kwon N, Yoon J. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coordination Chemistry Reviews 2019;392:237-54. [DOI: 10.1016/j.ccr.2019.04.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 10.7] [Reference Citation Analysis]
535 Vijayaraghavan P, Chiang C, Chiang HK, Li M, Hwang KC. Multi-Branched Plasmonic Gold Nanoechinus-Based Triple Modal Bioimaging: An Efficient NIR-to-NIR Up and Down-Conversion Emission and Photoacoustic Imaging. Adv Mater Technol 2016;1:1600107. [DOI: 10.1002/admt.201600107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
536 Xing R, Zou Q, Yuan C, Zhao L, Chang R, Yan X. Self‐Assembling Endogenous Biliverdin as a Versatile Near‐Infrared Photothermal Nanoagent for Cancer Theranostics. Adv Mater 2019;31:1900822. [DOI: 10.1002/adma.201900822] [Cited by in Crossref: 135] [Cited by in F6Publishing: 120] [Article Influence: 45.0] [Reference Citation Analysis]
537 Song G, Liang C, Gong H, Li M, Zheng X, Cheng L, Yang K, Jiang X, Liu Z. Core-Shell MnSe@Bi2 Se3 Fabricated via a Cation Exchange Method as Novel Nanotheranostics for Multimodal Imaging and Synergistic Thermoradiotherapy. Adv Mater 2015;27:6110-7. [PMID: 26331476 DOI: 10.1002/adma.201503006] [Cited by in Crossref: 264] [Cited by in F6Publishing: 250] [Article Influence: 37.7] [Reference Citation Analysis]
538 Jin Y, Huang Y, Yang H, Liu G, Zhao R. A peptide-based pH-sensitive drug delivery system for targeted ablation of cancer cells. Chem Commun 2015;51:14454-7. [DOI: 10.1039/c5cc05184c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
539 Luchini A, Irace C, Santamaria R, Montesarchio D, Heenan RK, Szekely N, Flori A, Menichetti L, Paduano L. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications. Nanoscale 2016;8:10078-86. [PMID: 26751053 DOI: 10.1039/c5nr08486e] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
540 Rainone P, Riva B, Belloli S, Sudati F, Ripamonti M, Verderio P, Colombo M, Colzani B, Gilardi MC, Moresco RM, Prosperi D. Development of 99mTc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer. Int J Nanomedicine 2017;12:3447-61. [PMID: 28496321 DOI: 10.2147/IJN.S129720] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
541 Zhang C, Fu Y, Zhang X, Yu C, Zhao Y, Sun S. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Dalton Trans 2015;44:13112-8. [DOI: 10.1039/c5dt01467k] [Cited by in Crossref: 72] [Cited by in F6Publishing: 8] [Article Influence: 10.3] [Reference Citation Analysis]
542 Moukheiber D, Chitgupi U, Carter KA, Luo D, Sun B, Goel S, Ferreira CA, Engle JW, Wang D, Geng J, Zhang Y, Xia J, Cai W, Lovell JF. Surfactant-Stripped Pheophytin Micelles for Multimodal Tumor Imaging and Photodynamic Therapy. ACS Appl Bio Mater 2019;2:544-54. [PMID: 31853516 DOI: 10.1021/acsabm.8b00703] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
543 Hong M, Xu L, Xue Q, Li L, Tang B. Fluorescence Imaging of Intracellular Telomerase Activity Using Enzyme-Free Signal Amplification. Anal Chem 2016;88:12177-82. [DOI: 10.1021/acs.analchem.6b03108] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 10.7] [Reference Citation Analysis]
544 Yi S, Lu Z, Zhang J, Wang J, Xie Z, Hou L. Amphiphilic Gemini Iridium(III) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces 2019;11:15276-89. [DOI: 10.1021/acsami.9b01205] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 11.7] [Reference Citation Analysis]
545 Zeng L, Pan Y, Wang S, Wang X, Zhao X, Ren W, Lu G, Wu A. Raman Reporter-Coupled Ag core @Au shell Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers. ACS Appl Mater Interfaces 2015;7:16781-91. [DOI: 10.1021/acsami.5b04548] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 6.9] [Reference Citation Analysis]
546 Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021;18:1261-90. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Reference Citation Analysis]
547 Kong Y, Santos-carballal D, Martin D, Sergeeva NN, Wang W, Liu G, Johnson B, Bhayana B, Lin Z, Wang Y, Le Guével X, de Leeuw NH, Zhou D, Wu MX. A NIR-II-emitting gold nanocluster-based drug delivery system for smartphone-triggered photodynamic theranostics with rapid body clearance. Materials Today 2021;51:96-107. [DOI: 10.1016/j.mattod.2021.09.022] [Reference Citation Analysis]
548 Jiang Y, Huo S, Hardie J, Liang XJ, Rotello VM. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert Opin Drug Deliv 2016;13:547-59. [PMID: 26735861 DOI: 10.1517/17425247.2016.1134486] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
549 Ariga K, Li J, Fei J, Ji Q, Hill JP. Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. Adv Mater 2016;28:1251-86. [PMID: 26436552 DOI: 10.1002/adma.201502545] [Cited by in Crossref: 344] [Cited by in F6Publishing: 286] [Article Influence: 49.1] [Reference Citation Analysis]
550 O'Malley WI, Rubbiani R, Aulsebrook ML, Grace MR, Spiccia L, Tuck KL, Gasser G, Graham B. Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III)-DOTA-Naphthalimide Complex "Clicked" to a Lipidated Tat Peptide. Molecules 2016;21:E194. [PMID: 26861271 DOI: 10.3390/molecules21020194] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
551 Souza CGSD, Souza JB, Beck W, Varanda LC. Luminomagnetic Silica-Coated Heterodimers of Core/Shell FePt/Fe 3 O 4 and CdSe Quantum Dots as Potential Biomedical Sensor. Journal of Nanomaterials 2017;2017:1-9. [DOI: 10.1155/2017/2160278] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
552 Chen Y, Li Z, Wang H, Wang Y, Han H, Jin Q, Ji J. IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS Appl Mater Interfaces 2016;8:6852-8. [PMID: 26918365 DOI: 10.1021/acsami.6b00251] [Cited by in Crossref: 85] [Cited by in F6Publishing: 77] [Article Influence: 14.2] [Reference Citation Analysis]
553 Zheng D, Liu J, Ding Y, Xie L, Zhang Y, Chen Y, Peng R, Cai M, Wang L, Wang H, Gao J, Yang Z. Tandem molecular self-assembly for selective lung cancer therapy with an increase in efficiency by two orders of magnitude. Nanoscale 2021;13:10891-7. [PMID: 34125124 DOI: 10.1039/d1nr01174j] [Reference Citation Analysis]
554 Li L, Fu S, Chen C, Wang X, Fu C, Wang S, Guo W, Yu X, Zhang X, Liu Z, Qiu J, Liu H. Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy. ACS Nano 2016;10:7094-105. [DOI: 10.1021/acsnano.6b03238] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 12.5] [Reference Citation Analysis]
555 Charchar P, Christofferson AJ, Todorova N, Yarovsky I. Understanding and Designing the Gold–Bio Interface: Insights from Simulations. Small 2016;12:2395-418. [DOI: 10.1002/smll.201503585] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
556 Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A. Transferrin-Copper Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug. ACS Appl Mater Interfaces 2018;10:3282-94. [PMID: 29278317 DOI: 10.1021/acsami.7b15165] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 11.3] [Reference Citation Analysis]
557 Verma N, Kumar N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater Sci Eng 2019;5:1170-88. [DOI: 10.1021/acsbiomaterials.8b01092] [Cited by in Crossref: 77] [Cited by in F6Publishing: 36] [Article Influence: 25.7] [Reference Citation Analysis]
558 Cassano D, Pocoví-Martínez S, Voliani V. Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics. Bioconjug Chem 2018;29:4-16. [PMID: 29186662 DOI: 10.1021/acs.bioconjchem.7b00664] [Cited by in Crossref: 67] [Cited by in F6Publishing: 57] [Article Influence: 13.4] [Reference Citation Analysis]
559 Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha NK, Gupta PK, Thakur VK. Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. J Funct Biomater 2021;12:54. [PMID: 34698244 DOI: 10.3390/jfb12040054] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
560 Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics 2021;11:10091-113. [PMID: 34815806 DOI: 10.7150/thno.62218] [Reference Citation Analysis]
561 Matczuk M, Anecka K, Scaletti F, Messori L, Keppler BK, Timerbaev AR, Jarosz M. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: a case study of gold nanoparticles. Metallomics 2015;7:1364-70. [PMID: 26095799 DOI: 10.1039/c5mt00109a] [Cited by in Crossref: 41] [Cited by in F6Publishing: 4] [Article Influence: 6.8] [Reference Citation Analysis]
562 Thorat ND, Bohara RA, Tofail SAM, Alothman ZA, Shiddiky MJA, A Hossain MS, Yamauchi Y, Wu KC. Superparamagnetic Gadolinium Ferrite Nanoparticles with Controllable Curie Temperature - Cancer Theranostics for MR-Imaging-Guided Magneto-Chemotherapy: Superparamagnetic Gadolinium Ferrite Nanoparticles with Controllable Curie Temperature - Cancer Theranostics for MR-Imaging-Guided Magneto-Chemotherap. Eur J Inorg Chem 2016;2016:4586-97. [DOI: 10.1002/ejic.201600706] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 4.7] [Reference Citation Analysis]
563 Xing P, Zhao Y. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine. Adv Mater 2016;28:7304-39. [DOI: 10.1002/adma.201600906] [Cited by in Crossref: 107] [Cited by in F6Publishing: 89] [Article Influence: 17.8] [Reference Citation Analysis]
564 Fu Y, Chen X, Mou X, Ren Z, Li X, Han G. A Dual-Color Luminescent Localized Drug Delivery System with Ratiometric-Monitored Doxorubicin Release Functionalities. ACS Biomater Sci Eng 2016;2:652-61. [DOI: 10.1021/acsbiomaterials.6b00046] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
565 Yan X, Su M, Liu Y, Zhang Y, Zhang H, Li C. Molecularly Engineered Hierarchical Nanodisc from Antiparallel J‐stacked BODIPY Conjugates: Application to Theranostics with Mutually Beneficial Properties. Adv Funct Mater 2021;31:2008406. [DOI: 10.1002/adfm.202008406] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
566 Ortgies DH, de la Cueva L, del Rosal B, Sanz-rodríguez F, Fernández N, Iglesias-de la Cruz MC, Salas G, Cabrera D, Teran FJ, Jaque D, Martín Rodríguez E. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures. ACS Appl Mater Interfaces 2016;8:1406-14. [DOI: 10.1021/acsami.5b10617] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
567 Zhou J, Xiong Q, Ma J, Ren J, Messersmith PB, Chen P, Duan H. Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. ACS Nano 2016;10:11066-75. [PMID: 28024348 DOI: 10.1021/acsnano.6b05951] [Cited by in Crossref: 82] [Cited by in F6Publishing: 72] [Article Influence: 13.7] [Reference Citation Analysis]
568 Kaviani M, Di Valentin C. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling. Nanoscale 2019;11:15576-88. [PMID: 31403155 DOI: 10.1039/c9nr03763b] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
569 Matos JC, Gonçalves MC, Pereira LCJ, Vieira BJC, Waerenborgh JC. SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of γ-Fe2O3/Fe3O4 Ratio and Coating Composition on Magnetic Properties. Nanomaterials (Basel) 2019;9:E943. [PMID: 31261832 DOI: 10.3390/nano9070943] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
570 Wei Y, Xu H, Xu S, Su H, Zhang L, Sun R, Huang D, Zhao L, Wang K, Hu Y, Lian X. Inhibiting Cell Viability and Motility by Layer-by-Layer Assembly and Biomineralization. ACS Omega 2020;5:17118-28. [PMID: 32715197 DOI: 10.1021/acsomega.0c00846] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
571 Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. Adv Mater 2019;31:e1802244. [PMID: 30156333 DOI: 10.1002/adma.201802244] [Cited by in Crossref: 88] [Cited by in F6Publishing: 74] [Article Influence: 22.0] [Reference Citation Analysis]
572 Wu J, Qu Y, Yu Q, Chen H. Gold nanoparticle layer: a versatile nanostructured platform for biomedical applications. Mater Chem Front 2018;2:2175-90. [DOI: 10.1039/c8qm00449h] [Cited by in Crossref: 23] [Article Influence: 5.8] [Reference Citation Analysis]
573 Shu G, Chen M, Song J, Xu X, Lu C, Du Y, Xu M, Zhao Z, Zhu M, Fan K, Fan X, Fang S, Tang B, Dai Y, Du Y, Ji J. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer. Bioact Mater 2021;6:1423-35. [PMID: 33210034 DOI: 10.1016/j.bioactmat.2020.10.020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
574 Song L, Zhao N, Xu F. Hydroxyl-Rich Polycation Brushed Multifunctional Rare-Earth-Gold Core-Shell Nanorods for Versatile Therapy Platforms. Adv Funct Mater 2017;27:1701255. [DOI: 10.1002/adfm.201701255] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
575 Holtkamp H, Grabmann G, Hartinger CG. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry: General. ELECTROPHORESIS 2016;37:959-72. [DOI: 10.1002/elps.201500502] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
576 Feng L, Chen M, Li R, Zhou L, Wang C, Ye P, Hu X, Yang J, Sun Y, Zhu Z, Fang K, Chai K, Shi S, Dong C. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy. Acta Biomater 2021:S1742-7061(21)00703-0. [PMID: 34718179 DOI: 10.1016/j.actbio.2021.10.032] [Reference Citation Analysis]
577 Zhu W, Li Y, Dai L, Li J, Li X, Li W, Duan T, Lei J, Chen T. Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chemical Engineering Journal 2018;339:214-22. [DOI: 10.1016/j.cej.2018.01.134] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 12.0] [Reference Citation Analysis]
578 Peng H, Tang J, Zheng R, Guo G, Dong A, Wang Y, Yang W. Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Adv Healthcare Mater 2017;6:1601289. [DOI: 10.1002/adhm.201601289] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 13.6] [Reference Citation Analysis]
579 Gao X, Wang G, Shi T, Shao Z, Zhao P, Shi D, Ren J, Lin C, Wang P. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging. Materials Science and Engineering: C 2016;65:181-7. [DOI: 10.1016/j.msec.2016.04.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
580 Jia J, Wang J, Zhang K, Zhou D, Ge F, Zhao Y. Aescin nanoparticles prepared using SEDS: Composition stability and dissolution enhancement. The Journal of Supercritical Fluids 2017;130:267-72. [DOI: 10.1016/j.supflu.2017.06.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
581 Li S, Jiang Q, Liu Y, Wang W, Yu W, Wang F, Liu X. Precision Spherical Nucleic Acids Enable Sensitive FEN1 Imaging and Controllable Drug Delivery for Cancer-Specific Therapy. Anal Chem 2021;93:11275-83. [PMID: 34342424 DOI: 10.1021/acs.analchem.1c02264] [Reference Citation Analysis]
582 Yang Y, Qi Y, Zhu M, Zhao N, Xu F. Facile synthesis of wormlike quantum dots-encapsulated nanoparticles and their controlled surface functionalization for effective bioapplications. Nano Res 2016;9:2531-43. [DOI: 10.1007/s12274-016-1139-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
583 Li J, Cheng Y, Zhang C, Cheng H, Feng J, Zhuo R, Zeng X, Zhang X. Dual Drug Delivery System Based on Biodegradable Organosilica Core–Shell Architectures. ACS Appl Mater Interfaces 2018;10:5287-95. [DOI: 10.1021/acsami.7b17949] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
584 Yu Q, Gao P, Zhang KY, Tong X, Yang H, Liu S, Du J, Zhao Q, Huang W. Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light Sci Appl 2017;6:e17107. [PMID: 30167221 DOI: 10.1038/lsa.2017.107] [Cited by in Crossref: 59] [Cited by in F6Publishing: 44] [Article Influence: 11.8] [Reference Citation Analysis]
585 Yang Y, Zeng H, Huo WS, Zhang YH. Direct Electrochemistry and Catalytic Function on Oxygen Reduction Reaction of Electrodes Based on Two Kinds of Magnetic Nano-particles with Immobilized Laccase Molecules. J Inorg Organomet Polym 2017;27:201-14. [DOI: 10.1007/s10904-016-0464-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
586 Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews 2021;441:213978. [DOI: 10.1016/j.ccr.2021.213978] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
587 Zhang L, Wang S, Zhou Y, Wang C, Zhang X, Deng H. Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angew Chem Int Ed 2019;58:14213-8. [DOI: 10.1002/anie.201909020] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 20.3] [Reference Citation Analysis]
588 Ovejero JG, Yoon SJ, Li J, Mayoral A, Gao X, O'Donnell M, García MA, Herrasti P, Hernando A. Synthesis of hybrid magneto-plasmonic nanoparticles with potential use in photoacoustic detection of circulating tumor cells. Mikrochim Acta 2018;185:130. [PMID: 29594629 DOI: 10.1007/s00604-017-2637-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
589 Yu J, Loh XJ, Luo Y, Ge S, Fan X, Ruan J. Insights into the epigenetic effects of nanomaterials on cells. Biomater Sci 2020;8:763-75. [PMID: 31808476 DOI: 10.1039/c9bm01526d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
590 Saxena S, Pradeep A, Jayakannan M. Enzyme-Responsive Theranostic FRET Probe Based on l -Aspartic Amphiphilic Polyester Nanoassemblies for Intracellular Bioimaging in Cancer Cells. ACS Appl Bio Mater 2019;2:5245-62. [DOI: 10.1021/acsabm.9b00450] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
591 Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong K, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019;119:9559-656. [DOI: 10.1021/acs.chemrev.9b00099] [Cited by in Crossref: 135] [Cited by in F6Publishing: 92] [Article Influence: 45.0] [Reference Citation Analysis]
592 Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114113] [Reference Citation Analysis]
593 Pan L, Liu J, Shi J. Nuclear-Targeting Gold Nanorods for Extremely Low NIR Activated Photothermal Therapy. ACS Appl Mater Interfaces 2017;9:15952-61. [DOI: 10.1021/acsami.7b03017] [Cited by in Crossref: 82] [Cited by in F6Publishing: 71] [Article Influence: 16.4] [Reference Citation Analysis]
594 Luo L, Iqbal MZ, Liu C, Xing J, Akakuru OU, Fang Q, Li Z, Dai Y, Li A, Guan Y, Wu A. Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma. Biomaterials 2019;223:119464. [PMID: 31525691 DOI: 10.1016/j.biomaterials.2019.119464] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
595 Gonçalves MC. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018;23:E2021. [PMID: 30104542 DOI: 10.3390/molecules23082021] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
596 Choi SK. Nanomaterial-Enabled Sensors and Therapeutic Platforms for Reactive Organophosphates. Nanomaterials (Basel) 2021;11:224. [PMID: 33467113 DOI: 10.3390/nano11010224] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
597 Ye S, Cui C, Cheng X, Zhao M, Mao Q, Zhang Y, Wang A, Fang J, Zhao Y, Shi H. Red Light-Initiated Cross-Linking of NIR Probes to Cytoplasmic RNA: An Innovative Strategy for Prolonged Imaging and Unexpected Tumor Suppression. J Am Chem Soc 2020;142:21502-12. [PMID: 33306393 DOI: 10.1021/jacs.0c10755] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
598 Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. National Science Review 2019;6:551-61. [DOI: 10.1093/nsr/nwz037] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 12.3] [Reference Citation Analysis]
599 Wu J, Williams GR, Niu S, Yang Y, Li Y, Zhang X, Zhu LM. Biomineralized Bimetallic Oxide Nanotheranostics for Multimodal Imaging-Guided Combination Therapy. Theranostics 2020;10:841-55. [PMID: 31903154 DOI: 10.7150/thno.40715] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
600 Azizi M, Valizadeh H, Shahgolzari M, Talebi M, Baybordi E, Dadpour MR, Salehi R, Mehrmohammadi M. Synthesis of Self-Targeted Carbon Dot with Ultrahigh Quantum Yield for Detection and Therapy of Cancer. ACS Omega 2020;5:24628-38. [PMID: 33015480 DOI: 10.1021/acsomega.0c03215] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
601 Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. Nano Today 2021;38:101146. [PMID: 33897805 DOI: 10.1016/j.nantod.2021.101146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
602 Hou M, Lu X, Zhang Z, Xia Q, Yan C, Yu Z, Xu Y, Liu R. Conjugated Polymer Containing Organic Radical for Optical/MR Dual-Modality Bioimaging. ACS Appl Mater Interfaces 2017;9:44316-23. [DOI: 10.1021/acsami.7b15052] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
603 Kenry, Yeo T, She DT, Nai MH, Marcelo Valerio VL, Pan Y, Middha E, Lim CT, Liu B. Differential Collective Cell Migratory Behaviors Modulated by Phospholipid Nanocarriers. ACS Nano 2021. [PMID: 34767716 DOI: 10.1021/acsnano.1c03060] [Reference Citation Analysis]
604 Purushothaman B, Choi J, Park S, Lee J, Samson AAS, Hong S, Song JM. Biotin-conjugated PEGylated porphyrin self-assembled nanoparticles co-targeting mitochondria and lysosomes for advanced chemo-photodynamic combination therapy. J Mater Chem B 2019;7:65-79. [DOI: 10.1039/c8tb01923a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 9.3] [Reference Citation Analysis]
605 Tan L, Shang L. Smart Delivery Systems Based on Poly(glycidyl methacrylate)s‐Coated Organic/Inorganic Core–Shell Nanohybrids. Macromol Rapid Commun 2019;40:1800879. [DOI: 10.1002/marc.201800879] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
606 Malcolm DW, Wang Y, Overby C, Newman M, Benoit DSW. Delivery of RNAi-Based Therapeutics for Bone Regeneration. Curr Osteoporos Rep 2020;18:312-24. [PMID: 32394316 DOI: 10.1007/s11914-020-00587-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
607 Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK. Highly Hydrophilic Luminescent Magnetic Mesoporous Carbon Nanospheres for Controlled Release of Anticancer Drug and Multimodal Imaging. Langmuir 2016;32:1611-20. [DOI: 10.1021/acs.langmuir.5b03898] [Cited by in Crossref: 55] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
608 Lim E, Chung BH. Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications. Nat Protoc 2016;11:236-51. [DOI: 10.1038/nprot.2015.135] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
609 Negrín-Montecelo Y, Testa-Anta M, Marín-Caba L, Pérez-Lorenzo M, Salgueiriño V, Correa-Duarte MA, Comesaña-Hermo M. Titanate Nanowires as One-Dimensional Hot Spot Generators for Broadband Au-TiO2 Photocatalysis. Nanomaterials (Basel) 2019;9:E990. [PMID: 31323986 DOI: 10.3390/nano9070990] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
610 Rahmani S, Villa CH, Dishman AF, Grabowski ME, Pan DC, Durmaz H, Misra AC, Colón-Meléndez L, Solomon MJ, Muzykantov VR, Lahann J. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J Drug Target 2015;23:750-8. [PMID: 26453170 DOI: 10.3109/1061186X.2015.1076428] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
611 Fan Y, Sun W, Shi X. Design and Biomedical Applications of Poly(amidoamine)-Dendrimer-Based Hybrid Nanoarchitectures. Small Methods 2017;1:1700224. [DOI: 10.1002/smtd.201700224] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
612 Liu Y, Wang J, Zhang M, Li H, Lin Z. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS Nano 2020;14:12491-521. [PMID: 32975934 DOI: 10.1021/acsnano.0c06936] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
613 Cao W, Wang X, Song L, Wang P, Hou X, Zhang H, Tian X, Liu X, Zhang Y. Folic acid-conjugated gold nanorod@polypyrrole@Fe 3 O 4 nanocomposites for targeted MR/CT/PA multimodal imaging and chemo-photothermal therapy. RSC Adv 2019;9:18874-87. [DOI: 10.1039/c9ra00541b] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
614 Paul TJ, Rübel S, Hildebrandt M, Strzelczyk AK, Spormann C, Lindhorst TK, Schmidt S. Thermosensitive Display of Carbohydrate Ligands on Microgels for Switchable Binding of Proteins and Bacteria. ACS Appl Mater Interfaces 2019;11:26674-83. [DOI: 10.1021/acsami.9b08537] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
615 Tchounwou C, Sinha SS, Viraka Nellore BP, Pramanik A, Kanchanapally R, Jones S, Chavva SR, Ray PC. Hybrid Theranostic Platform for Second Near-IR Window Light Triggered Selective Two-Photon Imaging and Photothermal Killing of Targeted Melanoma Cells. ACS Appl Mater Interfaces 2015;7:20649-56. [PMID: 26327304 DOI: 10.1021/acsami.5b05225] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
616 Shi H, Wang Y, Huang X, Liang P, Tang Y, Zhang Y, Fu N, Huang W, Dong X. NIR-Absorbing water-soluble conjugated polymer dots for photoacoustic imaging-guided photothermal/photodynamic synergetic cancer therapy. J Mater Chem B 2018;6:7402-10. [PMID: 32254741 DOI: 10.1039/c8tb02349b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
617 Kasprzak A, Popławska M, Bystrzejewski M, Łabędź O, Grudziński IP. Conjugation of polyethylenimine and its derivatives to carbon-encapsulated iron nanoparticles. RSC Adv 2015;5:85556-67. [DOI: 10.1039/c5ra17912b] [Cited by in Crossref: 26] [Article Influence: 3.7] [Reference Citation Analysis]
618 Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano 2017;11:9594-613. [PMID: 28926225 DOI: 10.1021/acsnano.7b04855] [Cited by in Crossref: 179] [Cited by in F6Publishing: 162] [Article Influence: 35.8] [Reference Citation Analysis]
619 Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir 2018;34:12428-35. [DOI: 10.1021/acs.langmuir.8b02901] [Reference Citation Analysis]
620 Yu X, Li A, Zhao C, Yang K, Chen X, Li W. Ultrasmall Semimetal Nanoparticles of Bismuth for Dual-Modal Computed Tomography/Photoacoustic Imaging and Synergistic Thermoradiotherapy. ACS Nano 2017;11:3990-4001. [PMID: 28395135 DOI: 10.1021/acsnano.7b00476] [Cited by in Crossref: 187] [Cited by in F6Publishing: 161] [Article Influence: 37.4] [Reference Citation Analysis]
621 Yuzhakova DV, Lermontova SA, Grigoryev IS, Muravieva MS, Gavrina AI, Shirmanova MV, Balalaeva IV, Klapshina LG, Zagaynova EV. In vivo multimodal tumor imaging and photodynamic therapy with novel theranostic agents based on the porphyrazine framework-chelated gadolinium (III) cation. Biochim Biophys Acta Gen Subj 2017;1861:3120-30. [PMID: 28916141 DOI: 10.1016/j.bbagen.2017.09.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
622 Jung HS, Han J, Lee J, Lee JH, Choi J, Kweon H, Han JH, Kim J, Byun KM, Jung JH, Kang C, Kim JS. Enhanced NIR Radiation-Triggered Hyperthermia by Mitochondrial Targeting. J Am Chem Soc 2015;137:3017-23. [DOI: 10.1021/ja5122809] [Cited by in Crossref: 131] [Cited by in F6Publishing: 128] [Article Influence: 18.7] [Reference Citation Analysis]
623 Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. Nanoscale 2020;12:14957-75. [DOI: 10.1039/d0nr03346d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
624 Wong XY, Sena-torralba A, Álvarez-diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano 2020;14:2585-627. [DOI: 10.1021/acsnano.9b08133] [Cited by in Crossref: 75] [Cited by in F6Publishing: 54] [Article Influence: 37.5] [Reference Citation Analysis]
625 Bani-yaseen AD. The supramolecular host-guest complexation of Vemurafenib with β-cyclodextrin and cucurbit[7]uril as drug photoprotecting systems: A DFT/TD-DFT study. Computational and Theoretical Chemistry 2020;1191:113026. [DOI: 10.1016/j.comptc.2020.113026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
626 Cano-Cortes MV, Navarro-Marchal SA, Ruiz-Blas MP, Diaz-Mochon JJ, Marchal JA, Sanchez-Martin RM. A versatile theranostic nanodevice based on an orthogonal bioconjugation strategy for efficient targeted treatment and monitoring of triple negative breast cancer. Nanomedicine 2020;24:102120. [PMID: 31676374 DOI: 10.1016/j.nano.2019.102120] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
627 Hanske C, Sanz-Ortiz MN, Liz-Marzán LM. Silica-Coated Plasmonic Metal Nanoparticles in Action. Adv Mater 2018;30:e1707003. [PMID: 29736945 DOI: 10.1002/adma.201707003] [Cited by in Crossref: 99] [Cited by in F6Publishing: 57] [Article Influence: 24.8] [Reference Citation Analysis]
628 Rathore B, Sunwoo K, Jangili P, Kim J, Kim JH, Huang M, Xiong J, Sharma A, Yang Z, Qu J, Kim JS. Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review. Biomaterials 2019;211:25-47. [DOI: 10.1016/j.biomaterials.2019.05.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 11.7] [Reference Citation Analysis]
629 Mu X, Wu F, Tang Y, Wang R, Li Y, Li K, Li C, Lu Y, Zhou X, Li Z. Boost photothermal theranostics via self‐assembly‐induced crystallization (SAIC). Aggregate. [DOI: 10.1002/agt2.170] [Reference Citation Analysis]
630 Yang F, Yang Q, Yang L, Li J, Zhang Y, Lu H, Dong H, Zhang X. Endogenous MicroRNA Accurate Diagnostics to Guide Photothermal Therapy. Anal Chem 2022. [PMID: 35445600 DOI: 10.1021/acs.analchem.2c00712] [Reference Citation Analysis]
631 Raja S, Hamouda AEI, de Toledo MAS, Hu C, Bernardo MP, Schalla C, Leite LSF, Buhl EM, Dreschers S, Pich A, Zenke M, Mattoso LHC, Sechi A. Functionalized Cellulose Nanocrystals for Cellular Labeling and Bioimaging. Biomacromolecules 2021;22:454-66. [PMID: 33284004 DOI: 10.1021/acs.biomac.0c01317] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
632 Navyatha B, Nara S. Gold nanostructures as cancer theranostic probe: promises and hurdles. Nanomedicine 2019;14:766-96. [DOI: 10.2217/nnm-2018-0170] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
633 Sokołowski K, Huang J, Földes T, McCune JA, Xu DD, de Nijs B, Chikkaraddy R, Collins SM, Rosta E, Baumberg JJ, Scherman OA. Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer. Nat Nanotechnol 2021;16:1121-9. [PMID: 34475556 DOI: 10.1038/s41565-021-00949-6] [Reference Citation Analysis]
634 Li Y, Ju D. The Application, Neurotoxicity, and Related Mechanism of Cationic Polymers∗∗Conflict of Interests: All the Figures and Table in “The application, neurotoxicity, and related mechanism of cationic polymers” are original, unpublished materials designed and prepared by Yubin Li and Dianwen Ju. The authors declared that there’s no conflict of interests. Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier; 2017. pp. 285-329. [DOI: 10.1016/b978-0-12-804598-5.00012-x] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
635 Kavand A, Anton N, Vandamme T, Serra CA, Chan-seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. Journal of Controlled Release 2020;321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
636 Yu G, Cen TY, He Z, Wang SP, Wang Z, Ying XW, Li S, Jacobson O, Wang S, Wang L, Lin LS, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin Nanocage-Embedded Single-Molecular Nanoparticles for Cancer Nanotheranostics. Angew Chem Int Ed Engl 2019;58:8799-803. [PMID: 31034679 DOI: 10.1002/anie.201903277] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
637 Li Y, Lu J, Zhang J, Zhu X, Liu J, Zhang Y. Phase-Change Nanotherapeutic Agents Based on Mesoporous Carbon for Multimodal Imaging and Tumor Therapy. ACS Appl Bio Mater 2020;3:8705-13. [DOI: 10.1021/acsabm.0c01102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
638 Kotagiri N, Sakon J, Han H, Zharov VP, Kim JW. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization. Nanoscale 2016;8:12658-67. [PMID: 26935543 DOI: 10.1039/c5nr08686h] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
639 Feng S, Ren Y, Li H, Tang Y, Yan J, Shen Z, Zhang H, Chen F. Cancer Cell-Membrane Biomimetic Boron Nitride Nanospheres for Targeted Cancer Therapy. Int J Nanomedicine 2021;16:2123-36. [PMID: 33731994 DOI: 10.2147/IJN.S266948] [Reference Citation Analysis]
640 Ettlinger R, Moreno N, Ziółkowska N, Ullrich A, Krug von Nidda H, Jirák D, Kerl K, Bunzen H. In Vitro Studies of Fe 3 O 4 ‐ZIF‐8 Core–Shell Nanoparticles Designed as Potential Theragnostics. Part Part Syst Charact 2020;37:2000185. [DOI: 10.1002/ppsc.202000185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
641 Chu B, Peng F, Wang H, Su Y, He Y. Synergistic effects between silicon nanowires and doxorubicin at non-toxic doses lead to high-efficacy destruction of cancer cells. J Mater Chem B 2018;6:7378-82. [DOI: 10.1039/c8tb02070a] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
642 Chung YJ, Kim J, Park CB. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano 2020;14:6470-97. [PMID: 32441509 DOI: 10.1021/acsnano.0c02114] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 20.5] [Reference Citation Analysis]
643 Yang R, Hong Y, Wang Y, Zhao L, Shen L, Feng Y. The embodiment of the strategy of “using active chemicals as excipients” in compound preparation. J Pharm Investig 2022;52:1-22. [DOI: 10.1007/s40005-021-00531-1] [Reference Citation Analysis]
644 Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater 2020;117:93-107. [PMID: 32980543 DOI: 10.1016/j.actbio.2020.09.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
645 Zhang J, Li C, Xue Q, Yin X, Li Y, He W, Chen X, Zhang J, Reis RL, Wang Y. An Efficient Carbon-Based Drug Delivery System for Cancer Therapy through the Nucleus Targeting and Mitochondria Mediated Apoptotic Pathway. Small Methods 2021;5:e2100539. [PMID: 34928029 DOI: 10.1002/smtd.202100539] [Reference Citation Analysis]
646 Lotfi M, Morsali A, Bozorgmehr MR. Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Applied Surface Science 2018;462:720-9. [DOI: 10.1016/j.apsusc.2018.08.151] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
647 Mirzaei H, Masoudifar A, Sahebkar A, Zare N, Sadri Nahand J, Rashidi B, Mehrabian E, Mohammadi M, Mirzaei HR, Jaafari MR. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol 2018;233:3004-15. [DOI: 10.1002/jcp.26055] [Cited by in Crossref: 126] [Cited by in F6Publishing: 123] [Article Influence: 25.2] [Reference Citation Analysis]
648 Yoon D, Jin H, Ryu S, Park S, Baik H, Oh SJ, Haam S, Joo C, Lee K. Scalable synthesis of djurleite copper sulphide (Cu 1.94 S) hexagonal nanoplates from a single precursor copper thiocyanate and their photothermal properties. CrystEngComm 2015;17:4627-31. [DOI: 10.1039/c5ce00638d] [Cited by in Crossref: 26] [Article Influence: 3.7] [Reference Citation Analysis]
649 Rahman AA, Huang R, Whittaker-brooks L. Distinctive Extrinsic Atom Effects on the Structural, Optical, and Electronic Properties of Bi 2 S 3-x Se x Solid Solutions. Chem Mater 2016;28:6544-52. [DOI: 10.1021/acs.chemmater.6b02081] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
650 Zhou Q, Hou Y, Zhang L, Wang J, Qiao Y, Guo S, Fan L, Yang T, Zhu L, Wu H. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity. Theranostics 2017;7:1806-19. [PMID: 28638469 DOI: 10.7150/thno.18607] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
651 Liébana-viñas S, Simeonidis K, Wiedwald U, Li Z, Ma Z, Myrovali E, Makridis A, Sakellari D, Vourlias G, Spasova M, Farle M, Angelakeris M. Optimum nanoscale design in ferrite based nanoparticles for magnetic particle hyperthermia. RSC Adv 2016;6:72918-25. [DOI: 10.1039/c6ra17892h] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
652 Lin W, Zhang W, Sun T, Liu S, Zhu Y, Xie Z. Rational Design of Polymeric Nanoparticles with Tailorable Biomedical Functions for Cancer Therapy. ACS Appl Mater Interfaces 2017;9:29612-22. [PMID: 28812347 DOI: 10.1021/acsami.7b10763] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
653 Wang Y, Wu Y, Liu Y, Shen J, Lv L, Li L, Yang L, Zeng J, Wang Y, Zhang LW, Li Z, Gao M, Chai Z. BSA-Mediated Synthesis of Bismuth Sulfide Nanotheranostic Agents for Tumor Multimodal Imaging and Thermoradiotherapy. Adv Funct Mater 2016;26:5335-44. [DOI: 10.1002/adfm.201601341] [Cited by in Crossref: 179] [Cited by in F6Publishing: 152] [Article Influence: 29.8] [Reference Citation Analysis]
654 Yao X, Huang P, Nie Z. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Progress in Polymer Science 2019;93:1-35. [DOI: 10.1016/j.progpolymsci.2019.03.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 20] [Article Influence: 15.3] [Reference Citation Analysis]
655 Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018;61:1503-52. [DOI: 10.1007/s11426-018-9397-5] [Cited by in Crossref: 215] [Cited by in F6Publishing: 155] [Article Influence: 53.8] [Reference Citation Analysis]
656 Monteiro JHSK, Hiti EA, Hardy EE, Wilkinson GR, Gorden JD, Gorden AEV, de Bettencourt-Dias A. New up-conversion luminescence in molecular cyano-substituted naphthylsalophen lanthanide(iii) complexes. Chem Commun (Camb) 2021;57:2551-4. [PMID: 33585852 DOI: 10.1039/d0cc08128k] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
657 Singh RK, Patel KD, Leong KW, Kim HW. Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS Appl Mater Interfaces 2017;9:10309-37. [PMID: 28274115 DOI: 10.1021/acsami.6b16505] [Cited by in Crossref: 72] [Cited by in F6Publishing: 56] [Article Influence: 14.4] [Reference Citation Analysis]
658 Zhang H, Liu K, Li S, Xin X, Yuan S, Ma G, Yan X. Self-Assembled Minimalist Multifunctional Theranostic Nanoplatform for Magnetic Resonance Imaging-Guided Tumor Photodynamic Therapy. ACS Nano 2018;12:8266-76. [PMID: 30091901 DOI: 10.1021/acsnano.8b03529] [Cited by in Crossref: 110] [Cited by in F6Publishing: 94] [Article Influence: 27.5] [Reference Citation Analysis]
659 Gupta PK, Pappuru S, Gupta S, Patra B, Chakraborty D, Verma RS. Self-assembled dual-drug loaded core-shell nanoparticles based on metal-free fully alternating polyester for cancer theranostics. Mater Sci Eng C Mater Biol Appl 2019;101:448-63. [PMID: 31029340 DOI: 10.1016/j.msec.2019.03.041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
660 Moreno VM, Baeza A, Vallet-Regí M. Evaluation of the penetration process of fluorescent collagenase nanocapsules in a 3D collagen gel. Acta Biomater 2021;121:263-74. [PMID: 33326884 DOI: 10.1016/j.actbio.2020.12.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
661 Kang Y, Ju X, Ding L, Zhang S, Li B. Reactive Oxygen Species and Glutathione Dual Redox-Responsive Supramolecular Assemblies with Controllable Release Capability. ACS Appl Mater Interfaces 2017;9:4475-84. [DOI: 10.1021/acsami.6b14640] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 11.4] [Reference Citation Analysis]
662 Suárez-garcía S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-molina D. Coordination polymers nanoparticles for bioimaging. Coordination Chemistry Reviews 2021;432:213716. [DOI: 10.1016/j.ccr.2020.213716] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
663 Kumar P, Kim K, Bansal V, Kumar S, Dilbaghi N, Kim Y. Modern progress and future challenges in nanocarriers for probe applications. TrAC Trends in Analytical Chemistry 2017;86:235-50. [DOI: 10.1016/j.trac.2016.10.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
664 Lee MH, Sessler JL, Kim JS. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc Chem Res 2015;48:2935-46. [PMID: 26513450 DOI: 10.1021/acs.accounts.5b00406] [Cited by in Crossref: 156] [Cited by in F6Publishing: 142] [Article Influence: 22.3] [Reference Citation Analysis]
665 Zheng D, Chen Y, Ai S, Zhang R, Gao Z, Liang C, Cao L, Chen Y, Hong Z, Shi Y, Wang L, Li X, Yang Z. Tandem Molecular Self-Assembly Selectively Inhibits Lung Cancer Cells by Inducing Endoplasmic Reticulum Stress. Research (Wash D C) 2019;2019:4803624. [PMID: 31912037 DOI: 10.34133/2019/4803624] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
666 Chen W, Yang C, Qiu W, Luo G, Jia H, Lei Q, Wang X, Liu G, Zhuo R, Zhang X. Multifunctional Theranostic Nanoplatform for Cancer Combined Therapy Based on Gold Nanorods. Adv Healthcare Mater 2015;4:2247-59. [DOI: 10.1002/adhm.201500453] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 7.6] [Reference Citation Analysis]
667 Mrówczyński R. Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS Appl Mater Interfaces 2018;10:7541-61. [DOI: 10.1021/acsami.7b08392] [Cited by in Crossref: 121] [Cited by in F6Publishing: 100] [Article Influence: 24.2] [Reference Citation Analysis]
668 Deng Y, Tian X, Lu S, Xie M, Hu H, Zhang R, Lv F, Cheng L, Gu H, Zhao Y, Pan Y. Fabrication of Multifoliate PtRu Bimetallic Nanocomplexes for Computed Tomography Imaging and Enhanced Synergistic Thermoradiotherapy. ACS Appl Mater Interfaces 2018;10:31106-13. [DOI: 10.1021/acsami.8b11507] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
669 Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 17.0] [Reference Citation Analysis]
670 Sánchez A, Ovejero Paredes K, Ruiz-Cabello J, Martínez-Ruíz P, Pingarrón JM, Villalonga R, Filice M. Hybrid Decorated Core@Shell Janus Nanoparticles as a Flexible Platform for Targeted Multimodal Molecular Bioimaging of Cancer. ACS Appl Mater Interfaces 2018;10:31032-43. [PMID: 30141615 DOI: 10.1021/acsami.8b10452] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 8.8] [Reference Citation Analysis]
671 Xu F. Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications. Progress in Polymer Science 2018;78:56-91. [DOI: 10.1016/j.progpolymsci.2017.09.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
672 Pliquett J, Amor S, Ponce-vargas M, Laly M, Racoeur C, Rousselin Y, Denat F, Bettaïeb A, Fleurat-lessard P, Paul C, Goze C, Bodio E. Design of a multifunctionalizable BODIPY platform for the facile elaboration of a large series of gold( i )-based optical theranostics. Dalton Trans 2018;47:11203-18. [DOI: 10.1039/c8dt02364f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
673 Mohammadi M, Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid Vesicular Drug Delivery Systems for Cancer Therapeutics. Adv Funct Mater 2018;28:1802136. [DOI: 10.1002/adfm.201802136] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
674 Dong P, Rakesh K, Manukumar H, Mohammed YHE, Karthik C, Sumathi S, Mallu P, Qin H. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic Chemistry 2019;85:325-36. [DOI: 10.1016/j.bioorg.2019.01.019] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 17.7] [Reference Citation Analysis]
675 Liu C, Luo L, Zeng L, Xing J, Xia Y, Sun S, Zhang L, Yu Z, Yao J, Yu Z, Akakuru OU, Saeed M, Wu A. Porous Gold Nanoshells on Functional NH 2 -MOFs: Facile Synthesis and Designable Platforms for Cancer Multiple Therapy. Small 2018;14:1801851. [DOI: 10.1002/smll.201801851] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 11.5] [Reference Citation Analysis]
676 Filip J, Andicsová-Eckstein A, Vikartovská A, Tkac J. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosens Bioelectron 2017;89:384-9. [PMID: 27297188 DOI: 10.1016/j.bios.2016.06.006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
677 Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020;8:3772-88. [DOI: 10.1039/d0tb00262c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
678 Gamella M, Guz N, Pingarrón JM, Aslebagh R, Darie CC, Katz E. A bioelectronic system for insulin release triggered by ketone body mimicking diabetic ketoacidosis in vitro. Chem Commun 2015;51:7618-21. [DOI: 10.1039/c5cc01498k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
679 Deng K, Chen Y, Li C, Deng X, Hou Z, Cheng Z, Han Y, Xing B, Lin J. 808 nm light responsive nanotheranostic agents based on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal therapy. J Mater Chem B 2017;5:1803-14. [PMID: 32263921 DOI: 10.1039/c6tb03233h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 4.6] [Reference Citation Analysis]
680 Wu X, Liu Q, Liu F, Wu T, Shang Y, Liu J, Ding B. An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. Nanoscale 2021;13:12848-53. [PMID: 34477769 DOI: 10.1039/d1nr00517k] [Reference Citation Analysis]
681 Liao J, Peng S, Long M, Zhang Y, Yang H, Zhang Y, Huang J. Nano-Bio interactions of clay nanotubes with colon cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;586:124242. [DOI: 10.1016/j.colsurfa.2019.124242] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
682 Wang T, Li S, Zou Z, Hai L, Yang X, Jia X, Zhang A, He D, He X, Wang K. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. J Mater Chem B 2018;6:3914-21. [DOI: 10.1039/c8tb00351c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 5.8] [Reference Citation Analysis]
683 Lee MH, Sharma A, Chang MJ, Lee J, Son S, Sessler JL, Kang C, Kim JS. Fluorogenic reaction-based prodrug conjugates as targeted cancer theranostics. Chem Soc Rev 2018;47:28-52. [PMID: 29057403 DOI: 10.1039/c7cs00557a] [Cited by in Crossref: 176] [Cited by in F6Publishing: 34] [Article Influence: 44.0] [Reference Citation Analysis]
684 Cooper SR, Plummer LK, Cosby AG, Lenox P, Jander A, Dhagat P, Hutchison JE. Insights into the Magnetic Properties of Sub-10 nm Iron Oxide Nanocrystals through the Use of a Continuous Growth Synthesis. Chem Mater 2018;30:6053-62. [DOI: 10.1021/acs.chemmater.8b02389] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
685 Yang B, Chen Y, Shi J. Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms. Adv Mater 2019;31:1802896. [DOI: 10.1002/adma.201802896] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 18.8] [Reference Citation Analysis]
686 Li S, Zhang W, Xue H, Xing R, Yan X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem Sci 2020;11:8644-56. [PMID: 34123123 DOI: 10.1039/d0sc02937h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
687 Tang W, Han L, Duan S, Lu X, Wang Y, Wu X, Liu J, Ding B. An Aptamer-Modified DNA Tetrahedron-Based Nanogel for Combined Chemo/Gene Therapy of Multidrug-Resistant Tumors. ACS Appl Bio Mater 2021;4:7701-7. [PMID: 35006686 DOI: 10.1021/acsabm.1c00933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
688 Fu HG, Chen Y, Yu Q, Liu Y. Polysaccharide-Based Nanoparticles for Two-Step Responsive Release of Antitumor Drug. ACS Med Chem Lett 2020;11:1191-5. [PMID: 32551000 DOI: 10.1021/acsmedchemlett.0c00040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
689 Liang T, Xing Z, Jiang L, Zhu J. Tailoring nanoparticles for targeted drug delivery: From organ to subcellular level. VIEW 2021;2:20200131. [DOI: 10.1002/viw.20200131] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
690 Ma G, Liu X, Deng G, Yuan H, Wang Q, Lu J. A novel theranostic agent based on porous bismuth nanosphere for CT imaging-guided combined chemo-photothermal therapy and radiotherapy. J Mater Chem B 2018;6:6788-95. [DOI: 10.1039/c8tb02189a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
691 Yin F, Gu B, Li J, Panwar N, Liu Y, Li Z, Yong KT, Tang BZ. In vitro anticancer activity of AIEgens. Biomater Sci 2019;7:3855-65. [PMID: 31305807 DOI: 10.1039/c9bm00881k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
692 Yan C, Wang Y, Tian Q, Wu H, Yang S. Concentration effect on large scale synthesis of high quality small gold nanorods and their potential role in cancer theranostics. Materials Science and Engineering: C 2018;87:120-7. [DOI: 10.1016/j.msec.2018.02.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
693 He J, Fan K, Yan X. Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release 2019;311-312:288-300. [PMID: 31494184 DOI: 10.1016/j.jconrel.2019.09.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 15.0] [Reference Citation Analysis]
694 Contreras ML, Villarroel I, Rozas R. Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes. Struct Chem 2016;27:1479-90. [DOI: 10.1007/s11224-016-0767-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
695 Tang W, Liu B, Wang S, Liu T, Fu C, Ren X, Tan L, Duan W, Meng X. Doxorubicin-loaded ionic liquid–polydopamine nanoparticles for combined chemotherapy and microwave thermal therapy of cancer. RSC Adv 2016;6:32434-40. [DOI: 10.1039/c6ra02434c] [Cited by in Crossref: 26] [Article Influence: 4.3] [Reference Citation Analysis]
696 Norris MD, Seidel K, Kirschning A. Externally Induced Drug Release Systems with Magnetic Nanoparticle Carriers: An Emerging Field in Nanomedicine. Adv Therap 2019;2:1800092. [DOI: 10.1002/adtp.201800092] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
697 Sun J, Li W, Xiao L, Yu G, Shi J. Main chain poly(bile acid) directed plasmonic nanospheres with amphiphilic binding pockets and photo-triggered destruction. RSC Adv 2016;6:62200-7. [DOI: 10.1039/c6ra11806b] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
698 Cassano D, Santi M, Cappello V, Luin S, Signore G, Voliani V. Biodegradable Passion Fruit-Like Nano-Architectures as Carriers for Cisplatin Prodrug. Part Part Syst Charact 2016;33:818-24. [DOI: 10.1002/ppsc.201600175] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
699 Liang Y, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. Nano Select 2021;2:216-50. [DOI: 10.1002/nano.202000169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
700 Yang B, Chen Y, Shi J. Exogenous/Endogenous-Triggered Mesoporous Silica Cancer Nanomedicine. Adv Healthcare Mater 2018;7:1800268. [DOI: 10.1002/adhm.201800268] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
701 Shang B, Zhang X, Ji R, Wang Y, Hu H, Peng B, Deng Z. Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. Materials Science and Engineering: C 2020;106:110174. [DOI: 10.1016/j.msec.2019.110174] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
702 Song L, Zhou X, Dai X, Wang R, Cheng G, Zhao N, Xu F. Self-destructible polysaccharide nanocomposites with unlockable Au nanorods for high-performance photothermal therapy. NPG Asia Mater 2018;10:509-21. [DOI: 10.1038/s41427-018-0053-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
703 Xu F, Zhu J, Lin L, Zhang C, Sun W, Fan Y, Yin F, van Hest JCM, Wang H, Du L, Shi X. Multifunctional PVCL nanogels with redox-responsiveness enable enhanced MR imaging and ultrasound-promoted tumor chemotherapy. Theranostics 2020;10:4349-58. [PMID: 32292499 DOI: 10.7150/thno.43402] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
704 Yang F, Lu H, Meng X, Dong H, Zhang X. Shedding Light on DNA-Based Nanoprobes for Live-Cell MicroRNA Imaging. Small 2021;:e2106281. [PMID: 34854567 DOI: 10.1002/smll.202106281] [Reference Citation Analysis]
705 Zhang Q, Wang Q, Xu S, Zuo L, You X, Hu HY. Aminoglycoside-based novel probes for bacterial diagnostic and therapeutic applications. Chem Commun (Camb) 2017;53:1366-9. [PMID: 27935615 DOI: 10.1039/c6cc08292k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
706 Colaiezzi R, Lazzarini A, Ferella F, Paolucci V, Di Giuseppe A, Crucianelli M. Catalytic oxygen atom transfer promoted by tethered Mo(VI) dioxido complexes onto silica-coated magnetic nanoparticles. Inorganica Chimica Acta 2022;531:120711. [DOI: 10.1016/j.ica.2021.120711] [Reference Citation Analysis]
707 Cai Y, Chen X, Si J, Mou X, Dong X. All-in-One Nanomedicine: Multifunctional Single-Component Nanoparticles for Cancer Theranostics. Small 2021;:e2103072. [PMID: 34561968 DOI: 10.1002/smll.202103072] [Reference Citation Analysis]
708 Dykman LA, Khlebtsov NG. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016;108:13-34. [PMID: 27614818 DOI: 10.1016/j.biomaterials.2016.08.040] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 12.5] [Reference Citation Analysis]
709 Yazdi MK, Zarrintaj P, Bagheri B, Kim YC, Ganjali MR, Saeb MR. Nanotechnology-based biosensors in drug delivery. Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier; 2020. pp. 767-79. [DOI: 10.1016/b978-0-08-102985-5.00032-2] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
710 Chedid G, Yassin A. Recent Trends in Covalent and Metal Organic Frameworks for Biomedical Applications. Nanomaterials (Basel) 2018;8:E916. [PMID: 30405018 DOI: 10.3390/nano8110916] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 9.8] [Reference Citation Analysis]
711 Chaudhary S, Singh A, Kumar P, Kaushik M. Strategic targeting of non-small-cell lung cancer utilizing genetic material-based delivery platforms of nanotechnology. J Biochem Mol Toxicol 2021;35:e22784. [PMID: 33826765 DOI: 10.1002/jbt.22784] [Reference Citation Analysis]
712 Cassano D, Santi M, D’autilia F, Mapanao AK, Luin S, Voliani V. Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures. Mater Horiz 2019;6:531-7. [DOI: 10.1039/c9mh00096h] [Cited by in Crossref: 32] [Cited by in F6Publishing: 1] [Article Influence: 10.7] [Reference Citation Analysis]
713 Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 2020;49:1253-321. [PMID: 31998912 DOI: 10.1039/c9cs00283a] [Cited by in Crossref: 76] [Cited by in F6Publishing: 14] [Article Influence: 38.0] [Reference Citation Analysis]
714 Fuchs AV, Bapat AP, Cowin GJ, Thurecht KJ. Switchable 19 F MRI polymer theranostics: towards in situ quantifiable drug release. Polym Chem 2017;8:5157-66. [DOI: 10.1039/c7py00345e] [Cited by in Crossref: 17] [Article Influence: 3.4] [Reference Citation Analysis]
715 Fan Y, Lin L, Yin F, Zhu Y, Shen M, Wang H, Du L, Mignani S, Majoral J, Shi X. Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics. Nano Today 2020;33:100899. [DOI: 10.1016/j.nantod.2020.100899] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
716 Wang Q, Niu X, Yang L, Liu J, Wang J, Xu X, Tang W, Huang W, Fan Q. Asymmetric small organic molecule-based NIR-II fluorophores for high performance tumor phototheranostics. Mater Chem Front 2021;5:5689-97. [DOI: 10.1039/d1qm00472g] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
717 Wu C, Wu KJ, Liu JB, Wang W, Leung CH, Ma DL. Structure-guided discovery of a luminescent theranostic toolkit for living cancer cells and the imaging behavior effect. Chem Sci 2020;11:11404-12. [PMID: 34094382 DOI: 10.1039/d0sc04576d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
718 Liu J, Si S, Xu J, Xue P, Li K. Construction of synergistic pH/H2O2-responsive prodrug for prolonging blood circulation and accelerating cellular internalization. Bioorg Chem 2021;119:105510. [PMID: 34847429 DOI: 10.1016/j.bioorg.2021.105510] [Reference Citation Analysis]
719 Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co-Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem Int Ed Engl 2021;60:1853-60. [PMID: 33058467 DOI: 10.1002/anie.202011174] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
720 Cai M, Chen G, Qin L, Qu C, Dong X, Ni J, Yin X. Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer. Pharmaceutics 2020;12:E232. [PMID: 32151012 DOI: 10.3390/pharmaceutics12030232] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
721 Silva F, Gano L, Cabral Campello MP, Marques R, Prudêncio I, Zambre A, Upendran A, Paulo A, Kannan R. In vitro/in vivo “peeling” of multilayered aminocarboxylate gold nanoparticles evidenced by a kinetically stable 99m Tc-label. Dalton Trans 2017;46:14572-83. [DOI: 10.1039/c7dt00864c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
722 Gao Z, Mu W, Tian Y, Su Y, Sun H, Zhang G, Li A, Yu D, Zhang N, Hao J, Liu Y, Cui J. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J Mater Chem B 2020;8:6866-76. [DOI: 10.1039/d0tb00405g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
723 Han K, Zhu J, Wang S, Li Z, Cheng S, Zhang X. Tumor targeted gold nanoparticles for FRET-based tumor imaging and light responsive on-demand drug release. J Mater Chem B 2015;3:8065-9. [DOI: 10.1039/c5tb01659b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 4] [Article Influence: 3.4] [Reference Citation Analysis]
724 Urbanová V, Jayaramulu K, Schneemann A, Kment Š, Fischer RA, Zbořil R. Hierarchical Porous Fluorinated Graphene Oxide@Metal-Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Appl Mater Interfaces 2018;10:41089-97. [PMID: 30412371 DOI: 10.1021/acsami.8b14344] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
725 Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. European Journal of Medicinal Chemistry 2018;157:1406-25. [DOI: 10.1016/j.ejmech.2018.08.051] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
726 Ding L, Lyu Z, Louis B, Tintaru A, Laurini E, Marson D, Zhang M, Shao W, Jiang Y, Bouhlel A, Balasse L, Garrigue P, Mas E, Giorgio S, Iovanna J, Huang Y, Pricl S, Guillet B, Peng L. Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study. Small 2020;16:e2003290. [PMID: 32794645 DOI: 10.1002/smll.202003290] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
727 Mishra NK, Kumar V, Joshi KB. Thermoplasmonic effect of silver nanoparticles modulates peptide amphiphile fiber into nanowreath-like assembly. Nanoscale 2015;7:20238-48. [PMID: 26578030 DOI: 10.1039/c5nr06577a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 1] [Article Influence: 3.4] [Reference Citation Analysis]
728 Shuddhodana, Judeh Z. Insights into the mechanism of formation of non-conventional cochleates and its impact on their functional properties. Journal of Molecular Liquids 2021;335:116249. [DOI: 10.1016/j.molliq.2021.116249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
729 Zhu Y, Xin N, Qiao Z, Chen S, Zeng L, Zhang Y, Wei D, Sun J, Fan H. Bioactive MOFs Based Theranostic Agent for Highly Effective Combination of Multimodal Imaging and Chemo‐Phototherapy. Adv Healthcare Mater 2020;9:2000205. [DOI: 10.1002/adhm.202000205] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
730 Otto S, Scholz N, Behnke T, Resch-genger U, Heinze K. Thermo-Chromium: A Contactless Optical Molecular Thermometer. Chem Eur J 2017;23:12131-5. [DOI: 10.1002/chem.201701726] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis