BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 2011;111:253-80. [PMID: 21077606 DOI: 10.1021/cr1001832] [Cited by in Crossref: 331] [Cited by in F6Publishing: 347] [Article Influence: 27.6] [Reference Citation Analysis]
Number Citing Articles
1 Liu S, Gao C, Peng F. Micro/nanomotors in regenerative medicine. Materials Today Advances 2022;16:100281. [DOI: 10.1016/j.mtadv.2022.100281] [Reference Citation Analysis]
2 Frontiers in Biomedical Engineering. Biomedical Engineering 2022. [DOI: 10.1002/9783527826674.ch11] [Reference Citation Analysis]
3 Early Stage Detection Technology. Biomedical Engineering 2022. [DOI: 10.1002/9783527826674.ch7] [Reference Citation Analysis]
4 Concepts of Biomedical Engineering. Biomedical Engineering 2022. [DOI: 10.1002/9783527826674.ch1] [Reference Citation Analysis]
5 Self‐Assembled Nanomaterials. Biomedical Engineering 2022. [DOI: 10.1002/9783527826674.ch4] [Reference Citation Analysis]
6 Liu H, Sun R, Wang L, Chen X, Li G, Cheng Y, Zhai G, Bay B, Yang F, Gu N, Guo Y, Fan H. Biocompatible Iron Oxide Nanoring-Labeled Mesenchymal Stem Cells: An Innovative Magnetothermal Approach for Cell Tracking and Targeted Stroke Therapy. ACS Nano 2022. [DOI: 10.1021/acsnano.2c07581] [Reference Citation Analysis]
7 Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022;:1-29. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Reference Citation Analysis]
8 Swapnadarshi Sahu S, Bera D. Performance evaluation of nano slag incorporating in concrete. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.07.322] [Reference Citation Analysis]
9 Aroutiounian VM. On Nanoteranostics and Breath Analysis of Cancer Tumor. J Contemp Phys 2022;57:198-208. [DOI: 10.3103/s1068337222020074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Parashar M, Bathla A, Shishir D, Gokhale A, Bandyopadhyay S, Saha K. Sub-second temporal magnetic field microscopy using quantum defects in diamond. Sci Rep 2022;12:8743. [PMID: 35610314 DOI: 10.1038/s41598-022-12609-3] [Reference Citation Analysis]
11 Арутюнян ВМ, Ереванский государственный университет, Ереван, Армения. О нанотераностике и анализе дыхания пациентов с раковой опухолью. Proceedings of NAS RA Physics 2022;57:288-305. [DOI: 10.54503/0002-3035-2022-57.2-288] [Reference Citation Analysis]
12 Hasan Z, Rouf HK, Khan MNI. Structural, magnetic, dielectric and electrical properties of Ba0.77Ca0.23TiO3–Ni0.6Zn0.25La0.15Fe2O4 multiferroic composites. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-05441-z] [Reference Citation Analysis]
13 Ali Z, Zou J, Liu X, Bai Y, Hussain M, Zhang L, Chen Z, Chen H, Li S, Deng Y, Zhang Y, Tang Y. Coating Silica Layer on Fe₃O₄ Magnetic Nanoparticles and Application in Extracting High Quality Nucleic Acids from Blood Sample. J Biomed Nanotechnol 2022;18:828-36. [PMID: 35715923 DOI: 10.1166/jbn.2022.3295] [Reference Citation Analysis]
14 Wang S, Xu J, Li W, Sun S, Gao S, Hou Y. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chem Rev 2022. [PMID: 35014799 DOI: 10.1021/acs.chemrev.1c00370] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
15 C. A, Handral HK, C. P. Applications of Metal and Metal Oxide-Based Nanomaterials in Medical and Biological Activities. Handbook of Research on Green Synthesis and Applications of Nanomaterials 2022. [DOI: 10.4018/978-1-7998-8936-6.ch014] [Reference Citation Analysis]
16 Kannan G, Pal J, Sivasankar S, Mahesh A. Marine Biopolymer for Theranostic Applications. Marine Biomaterials 2022. [DOI: 10.1007/978-981-16-5374-2_8] [Reference Citation Analysis]
17 Berkani H, Siab R, Tebib W, Redouani L, Boukeffa S, Bououdina M. Dependence of magnetic properties with structural/microstructural parameters of ball-milled Fe15Co2P3 powder mixture. Int J Adv Manuf Technol. [DOI: 10.1007/s00170-021-08397-1] [Reference Citation Analysis]
18 Kraus S, Khandadash R, Hof R, Nyska A, Sigalov E, Eltanani M, Rukenstein P, Rabinovitz R, Kassem R, Antebi A, Shalev O, Cohen-Erner M, Goss G, Cyjon A. Novel Nanoparticle-Based Cancer Treatment, Effectively Inhibits Lung Metastases and Improves Survival in a Murine Breast Cancer Model. Front Oncol 2021;11:761045. [PMID: 34804962 DOI: 10.3389/fonc.2021.761045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Islam J, So KH, Kc E, Moon HC, Kim A, Hyun SH, Kim S, Park YS. Transplantation of human embryonic stem cells alleviates motor dysfunction in AAV2-Htt171-82Q transfected rat model of Huntington's disease. Stem Cell Res Ther 2021;12:585. [PMID: 34809707 DOI: 10.1186/s13287-021-02653-7] [Reference Citation Analysis]
20 Liu X, Zhang H, Zhang T, Wang Y, Jiao W, Lu X, Gao X, Xie M, Shan Q, Wen N, Liu C, Lee WSV, Fan H. Magnetic nanomaterials-mediated cancer diagnosis and therapy. Prog Biomed Eng 2021;4:012005. [DOI: 10.1088/2516-1091/ac3111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Shalaby M, Farag S, Haddad A, Hamouda D, Hassan A, Saeed H. Collagen polymer and magnetic collagen nanocomposite recycled from waste to reduce polluted water toxicity. Polymers and Polymer Composites 2021;29:1515-1527. [DOI: 10.1177/0967391120974570] [Reference Citation Analysis]
22 Liu W, Yin S, Hu Y, Deng T, Li J. Microemulsion-Confined Biomineralization of PEGylated Ultrasmall Fe3O4 Nanocrystals for T2-T1 Switchable MRI of Tumors. Anal Chem 2021;93:14223-30. [PMID: 34647451 DOI: 10.1021/acs.analchem.1c03128] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
23 Haba MȘC, Șerban DN, Șerban L, Tudorancea IM, Haba RM, Mitu O, Iliescu R, Tudorancea I. Nanomaterial-Based Drug Targeted Therapy for Cardiovascular Diseases: Ischemic Heart Failure and Atherosclerosis. Crystals 2021;11:1172. [DOI: 10.3390/cryst11101172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Roni MM, Hoque K, Paul TC, Khan M, Hossain ME. Synthesis of La-doped Mn0·6Zn0.4LaxFe2-xO4 and the study of its structural, electrical and magnetic properties for high frequency applications. Results in Materials 2021;11:100215. [DOI: 10.1016/j.rinma.2021.100215] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Joo J. Diagnostic and Therapeutic Nanomedicine. Adv Exp Med Biol 2021;1310:401-47. [PMID: 33834444 DOI: 10.1007/978-981-33-6064-8_15] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Okubo K, Takeda R, Murayama S, Umezawa M, Kamimura M, Osada K, Aoki I, Soga K. Size-controlled bimodal in vivo nanoprobes as near-infrared phosphors and positive contrast agents for magnetic resonance imaging. Sci Technol Adv Mater 2021;22:160-72. [PMID: 33762891 DOI: 10.1080/14686996.2021.1887712] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
27 Lv M, Jan Cornel E, Fan Z, Du J. Advances and Perspectives of Peptide and Polypeptide‐Based Materials for Biomedical Imaging. Adv NanoBio Res 2021;1:2000109. [DOI: 10.1002/anbr.202000109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kalkidan Mamo W, Fufa Abunna K, Yonas Tolosa R. A review on nanotechnology and its application in modern veterinary science. Int J Nanomater Nanotechnol Nanomed 2021. [DOI: 10.17352/2455-3492.000041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Yeo EF, Markides H, Schade AT, Studd AJ, Oliver JM, Waters SL, El Haj AJ. Experimental and mathematical modelling of magnetically labelled mesenchymal stromal cell delivery. J R Soc Interface 2021;18:20200558. [PMID: 33593212 DOI: 10.1098/rsif.2020.0558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Zhang Q, Dai X, Zhang H, Zeng Y, Luo K, Li W. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater 2021;16:024101. [PMID: 33472182 DOI: 10.1088/1748-605X/abddf4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Raoofi A, Delbari A, Mahdian D, Mojadadi MS, Akhlaghi M, Dadashizadeh G, Ebrahimi V, Amini A, Golmohammadi R, Javadinia SS, Khaneghah AM. Effects of curcumin nanoparticle on the histological changes and apoptotic factors expression in testis tissue after methylphenidate administration in rats. Acta Histochem 2021;123:151656. [PMID: 33249311 DOI: 10.1016/j.acthis.2020.151656] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Ashwin Kumar N, Suresh Anand BS, Krishnamurthy G. Nanomaterials for Medical Imaging and In Vivo Sensing. Nanomaterials and Their Biomedical Applications 2021. [DOI: 10.1007/978-981-33-6252-9_13] [Reference Citation Analysis]
33 Avolio M, Innocenti C, Lascialfari A, Mariani M, Sangregorio C. Medical Applications of Magnetic Nanoparticles. New Trends in Nanoparticle Magnetism 2021. [DOI: 10.1007/978-3-030-60473-8_14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Cherukulappurath S. Multifunctional plasmonic nanomaterials. Fundamentals and Properties of Multifunctional Nanomaterials 2021. [DOI: 10.1016/b978-0-12-822352-9.00002-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhang Y, Huang D, Zhang C, Meng J, Tan B, Deng Z. IQF characterization of a cathepsin B-responsive nanoprobe for report of differentiation of HL60 cells into macrophages. RSC Adv 2021;11:16522-9. [DOI: 10.1039/d1ra01549d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Khosravi A, Hasani A, Rahimi K, Aliaghaei A, Pirani M, Azad N, Ramezani F, Tamimi A, Behnam P, Raoofi A, Fathabadi FF, Abdi S, Abdollahifar MA, Hejazi F. Ameliorating effects of curcumin-loaded superparamagnetic iron oxide nanoparticles (SPIONs) on the mouse testis exposed to the transient hyperthermia: A molecular and stereological study. Acta Histochem 2020;122:151632. [PMID: 33128988 DOI: 10.1016/j.acthis.2020.151632] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
37 Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today 2021;26:94-105. [PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
38 Yeo E, Markides H, Schade A, Studd A, Oliver J, Waters S, El Haj A. Experimental and mathematical modelling of magnetically labelled mesenchymal stromal cell delivery.. [DOI: 10.1101/2020.10.27.356725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Afshar A, Aliaghaei A, Nazarian H, Abbaszadeh H, Naserzadeh P, Fathabadi FF, Abdi S, Raee P, Aghajanpour F, Norouzian M, Abdollahifar M. Curcumin-Loaded Iron Particle Improvement of Spermatogenesis in Azoospermic Mouse Induced by Long-Term Scrotal Hyperthermia. Reprod Sci 2021;28:371-80. [DOI: 10.1007/s43032-020-00288-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
40 Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water-Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomater Sci Eng 2020;6:4377-89. [PMID: 33455176 DOI: 10.1021/acsbiomaterials.0c00409] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
41 Suciu M, Ionescu CM, Ciorita A, Tripon SC, Nica D, Al-Salami H, Barbu-Tudoran L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J Nanotechnol 2020;11:1092-109. [PMID: 32802712 DOI: 10.3762/bjnano.11.94] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
42 Chakraborty S, Joseph MM, Varughese S, Ghosh S, Maiti KK, Samanta A, Ajayaghosh A. A new pentacyclic pyrylium fluorescent probe that responds to pH imbalance during apoptosis. Chem Sci 2020;11:12695-700. [PMID: 34094464 DOI: 10.1039/d0sc02623a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
43 Malhotra N, Audira G, Chen JR, Siregar P, Hsu HS, Lee JS, Ger TR, Hsiao CD. Surface Modification of Magnetic Nanoparticles by Carbon-Coating Can Increase Its Biosafety: Evidences from Biochemical and Neurobehavioral Tests in Zebrafish. Molecules 2020;25:E2256. [PMID: 32403340 DOI: 10.3390/molecules25092256] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
44 Hu H. Recent Advances of Bioresponsive Nano-Sized Contrast Agents for Ultra-High-Field Magnetic Resonance Imaging. Front Chem 2020;8:203. [PMID: 32266217 DOI: 10.3389/fchem.2020.00203] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
45 Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 2020;8:36. [PMID: 32169105 DOI: 10.1186/s40168-020-00821-0] [Cited by in Crossref: 126] [Cited by in F6Publishing: 140] [Article Influence: 63.0] [Reference Citation Analysis]
46 Xu H, Cao B, Li Y, Mao C. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1623. [PMID: 32147974 DOI: 10.1002/wnan.1623] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
47 Fatemi Abhari SM, Khanbabaei R, Hayati Roodbari N, Parivar K, Yaghmaei P. Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone - A molecular and stereological study. Life Sci 2020;249:117515. [PMID: 32147428 DOI: 10.1016/j.lfs.2020.117515] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
48 Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. Reactive and Functional Polymers 2020;148:104501. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Cited by in Crossref: 86] [Cited by in F6Publishing: 58] [Article Influence: 43.0] [Reference Citation Analysis]
49 Zhang Q, Yu L, Liu B, Li F, Tang B. Reduction of nitroarenes by magnetically recoverable nitroreductase immobilized on Fe3O4 nanoparticles. Sci Rep 2020;10:2810. [PMID: 32071344 DOI: 10.1038/s41598-020-59754-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
50 Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P. Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS Appl Mater Interfaces 2020;12:3279-300. [PMID: 31873003 DOI: 10.1021/acsami.9b19435] [Cited by in Crossref: 83] [Cited by in F6Publishing: 85] [Article Influence: 41.5] [Reference Citation Analysis]
51 Zoppellaro G. Iron Oxide Magnetic Nanoparticles (NPs) Tailored for Biomedical Applications. Magnetic Nanoheterostructures 2020. [DOI: 10.1007/978-3-030-39923-8_2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
52 Altuntaş E, Gözütok K, Özkan B. Nanoengineering of stem cells for neural regenerative medicine. Neural Regenerative Nanomedicine 2020. [DOI: 10.1016/b978-0-12-820223-4.00006-1] [Reference Citation Analysis]
53 Gao Z, Mu W, Tian Y, Su Y, Sun H, Zhang G, Li A, Yu D, Zhang N, Hao J, Liu Y, Cui J. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J Mater Chem B 2020;8:6866-76. [DOI: 10.1039/d0tb00405g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
54 Aneesh PM, Jayaraj MK. Optical Properties of Metal, Semiconductor and Ceramic Nanostructures Grown by Liquid Phase-Pulsed Laser Ablation. Materials Horizons: From Nature to Nanomaterials 2020. [DOI: 10.1007/978-981-15-3314-3_3] [Reference Citation Analysis]
55 Hollands P. Application of Nanomaterials in Stem Cells, Tissue Engineering and Regenerative Medicine. Applications of Nanomaterials in Human Health 2020. [DOI: 10.1007/978-981-15-4802-4_5] [Reference Citation Analysis]
56 Mehrani M, Abbasi SH, Amin A, Kassaian SE, Mahmoudi M. Ischemic cardiomyopathy. Nanomedicine for Ischemic Cardiomyopathy 2020. [DOI: 10.1016/b978-0-12-817434-0.00001-5] [Reference Citation Analysis]
57 Nabipour Chakoli A. Poly(L-Lactide) Bionanocomposites. Peptide Synthesis 2019. [DOI: 10.5772/intechopen.85035] [Reference Citation Analysis]
58 Thorat ND, Tofail SAM, von Rechenberg B, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews 2019;6:041306. [DOI: 10.1063/1.5049467] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
59 Park SB, White SB, Steadman CS, Pechan T, Pechanova O, Clemente HJ, Thirumalai RVKG, Willard ST, Ryan PL, Feugang JM. Silver-coated magnetic nanocomposites induce growth inhibition and protein changes in foodborne bacteria. Sci Rep 2019;9:17499. [PMID: 31767879 DOI: 10.1038/s41598-019-53080-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
60 Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019;17:383. [PMID: 31752920 DOI: 10.1186/s12967-019-02137-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 16.3] [Reference Citation Analysis]
61 Natarajan S, Harini K, Gajula GP, Sarmento B, Neves-petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mat 2019;1. [DOI: 10.1186/s42833-019-0002-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
62 Qian X, Han X, Yu L, Xu T, Chen Y. Manganese‐Based Functional Nanoplatforms: Nanosynthetic Construction, Physiochemical Property, and Theranostic Applicability. Adv Funct Mater 2019;30:1907066. [DOI: 10.1002/adfm.201907066] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 19.7] [Reference Citation Analysis]
63 Liu XL, Chen S, Zhang H, Zhou J, Fan HM, Liang XJ. Magnetic Nanomaterials for Advanced Regenerative Medicine: The Promise and Challenges. Adv Mater 2019;31:e1804922. [PMID: 30511746 DOI: 10.1002/adma.201804922] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
64 Anna IM, Sathy BN, Ashokan A, Gowd GS, Ramachandran R, Kochugovindan Unni AK, Manohar M, Chulliyath D, Nair S, Bhakoo K, Koyakutty M. nCP:Fe—A Biomineral Magnetic Nanocontrast Agent for Tracking Implanted Stem Cells in Brain Using MRI. ACS Appl Bio Mater 2019;2:5390-403. [DOI: 10.1021/acsabm.9b00709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
65 Lahooti A, Shanehsazzadeh S, Laurent S. Preliminary studies of 68 Ga-NODA-USPION-BBN as a dual-modality contrast agent for use in positron emission tomography/magnetic resonance imaging. Nanotechnology 2020;31:015102. [DOI: 10.1088/1361-6528/ab4446] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
66 Guo B, Košiček M, Fu J, Qu Y, Lin G, Baranov O, Zavašnik J, Cheng Q, Ostrikov KK, Cvelbar U. Single-Crystalline Metal Oxide Nanostructures Synthesized by Plasma-Enhanced Thermal Oxidation. Nanomaterials (Basel) 2019;9:E1405. [PMID: 31581687 DOI: 10.3390/nano9101405] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
67 Gautam A, Komal P, Singh RS. Future demands for high field MRI diagnostic. J Chem Sci 2019;131. [DOI: 10.1007/s12039-019-1668-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
68 Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Kamali Shahri SM, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019;119:11352-90. [PMID: 31490059 DOI: 10.1021/acs.chemrev.8b00323] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
69 Zand Z, Khaki PA, Salihi A, Sharifi M, Qadir Nanakali NM, Alasady AA, Aziz FM, Shahpasand K, Hasan A, Falahati M. Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated cytotoxicity. Int J Nanomedicine 2019;14:6989-7000. [PMID: 31695369 DOI: 10.2147/IJN.S220380] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
70 Kargar Karkhah M, Kefayati H, Shariati S. Enantioselective synthesis of 3‐amino‐1‐aryl‐1 H ‐benzo[ f ]chromene‐2‐carbonitrile derivatives by Fe 3 O 4 @PS‐arginine as an efficient chiral magnetic nanocatalyst. Appl Organometal Chem 2019;33. [DOI: 10.1002/aoc.5139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
71 Hosseinkhani H, Domb AJ. Biodegradable polymers in gene‐silencing technology. Polym Adv Technol 2019;30:2647-55. [DOI: 10.1002/pat.4713] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
72 Thakur P, Sharma R, Kumar M, Katyal S, Barman P, Sharma V, Sharma P. Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 2019;479:317-25. [DOI: 10.1016/j.jmmm.2019.02.048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
73 Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Recent Developments in Antibacterial Therapy: Focus on Stimuli-Responsive Drug-Delivery Systems and Therapeutic Nanoparticles. Molecules 2019;24:E1991. [PMID: 31137622 DOI: 10.3390/molecules24101991] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 28.7] [Reference Citation Analysis]
74 Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019;14:3875-92. [PMID: 31213807 DOI: 10.2147/IJN.S205574] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
75 Putri Fauzia, Denkova, Djanashvili. Potential of MRI in Radiotherapy Mediated by Small Conjugates and Nanosystems. Inorganics 2019;7:59. [DOI: 10.3390/inorganics7050059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
76 Harrison R, Luckett J, Marsh S, Lugo Leija HA, Salih S, Alkharji R, Sottile V. Magnetically Assisted Control of Stem Cells Applied in 2D, 3D and In Situ Models of Cell Migration. Molecules 2019;24:E1563. [PMID: 31010261 DOI: 10.3390/molecules24081563] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
77 Lyubutin I, Lin C, Tseng Y, Spivakov A, Baskakov A, Starchikov S, Funtov K, Jhang C, Tsai Y, Hsu H. Structural and magnetic evolution of FexOy@carbon core-shell nanoparticles synthesized by a one-step thermal pyrolysis. Materials Characterization 2019;150:213-9. [DOI: 10.1016/j.matchar.2019.02.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
78 Ma W, Gehret PM, Hoff RE, Kelly LP, Suh WH. The Investigation into the Toxic Potential of Iron Oxide Nanoparticles Utilizing Rat Pheochromocytoma and Human Neural Stem Cells. Nanomaterials (Basel) 2019;9:E453. [PMID: 30889833 DOI: 10.3390/nano9030453] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
79 Imaging Technology. Nanomaterials in Advanced Medicine 2019. [DOI: 10.1002/9783527818921.ch6] [Reference Citation Analysis]
80 Safety Issue of Nanomaterials. Nanomaterials in Advanced Medicine 2019. [DOI: 10.1002/9783527818921.ch9] [Reference Citation Analysis]
81 Classification of Nanomaterials. Nanomaterials in Advanced Medicine 2019. [DOI: 10.1002/9783527818921.ch3] [Reference Citation Analysis]
82 Introduction to Nanotechnology. Nanomaterials in Advanced Medicine 2019. [DOI: 10.1002/9783527818921.ch1] [Reference Citation Analysis]
83 Quarta A, Piccirillo C, Mandriota G, Di Corato R. Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies. Materials (Basel) 2019;12:E139. [PMID: 30609839 DOI: 10.3390/ma12010139] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
84 Varanda LC, Souza CGSD, Perecin CJ, Moraes DAD, Queiróz DFD, Neves HR, Souza Junior JB, Silva MFD, Albers RF, Silva TLD. Inorganic and organic–inorganic composite nanoparticles with potential biomedical applications: synthesis challenges for enhanced performance. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-818431-8.00004-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
85 Sebastian V, Arruebo M. Microfluidic production of inorganic nanomaterials for biomedical applications. Microfluidics for Pharmaceutical Applications 2019. [DOI: 10.1016/b978-0-12-812659-2.00008-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Xie M, Luo S, Li Y, Lu L, Deng C, Cheng Y, Yin F. Intra-articular tracking of adipose-derived stem cells by chitosan-conjugated iron oxide nanoparticles in a rat osteoarthritis model. RSC Adv 2019;9:12010-9. [DOI: 10.1039/c8ra09570a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
87 Saeed M, Iqbal MZ, Ren W, Xia Y, Khan WS, Wu A. Tunable fabrication of new theranostic Fe 3 O 4 -black TiO 2 nanocomposites: dual wavelength stimulated synergistic imaging-guided phototherapy in cancer. J Mater Chem B 2019;7:210-23. [DOI: 10.1039/c8tb02704h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
88 Megha C, Sushma J. Detection of Brain Tumor Using Machine Learning Approach. Communications in Computer and Information Science 2019. [DOI: 10.1007/978-981-13-9939-8_17] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
89 Mostafavi E, Soltantabar P, Webster TJ. Nanotechnology and picotechnology. Biomaterials in Translational Medicine 2019. [DOI: 10.1016/b978-0-12-813477-1.00009-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
90 Wei Y, Zhou L, Yang D, Yao T, Shi S. Stem Cells Controlling, Imaging and Labeling by Functional Nanomaterials. Nano LIFE 2018;08:1841007. [DOI: 10.1142/s1793984418410076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
91 Moradi A, Kheirollahkhani Y, Fatahi P, Abdollahifar MA, Amini A, Naserzadeh P, Ashtari K, Ghoreishi SK, Chien S, Rezaei F, Fridoni M, Bagheri M, Taheri S, Bayat M. An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci 2019;34:779-91. [PMID: 30393833 DOI: 10.1007/s10103-018-2664-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
92 Chellapan J, Vincent Samrot A, Annamalai AA, Bhattacharya RK, Sathiyamoorthy P, Sai Sahithya C. Biopolymer Coated Coreshell Magnetite Nanoparticles for Rifampicin Delivery. Orient J Chem 2018;34:2389-96. [DOI: 10.13005/ojc/340521] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
93 Mahmoudi M, Pakpour S, Perry G. Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chem Neurosci 2018;9:2288-98. [PMID: 29851334 DOI: 10.1021/acschemneuro.8b00127] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
94 Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018;108:1244-52. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
95 Zhang W, Li H, Wang J, Zhang Q. Preparation and Application of Magnetically Recoverable Cationic Exchanger Support on Monodisperse Fe3O4 Nanoparticles. Russ J Appl Chem 2018;91:1694-1700. [DOI: 10.1134/s107042721810018x] [Reference Citation Analysis]
96 Bai C, Jia Z, Song L, Zhang W, Chen Y, Zang F, Ma M, Gu N, Zhang Y. Time-Dependent T 1 -T 2 Switchable Magnetic Resonance Imaging Realized by c(RGDyK) Modified Ultrasmall Fe 3 O 4 Nanoprobes. Adv Funct Mater 2018;28:1802281. [DOI: 10.1002/adfm.201802281] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
97 Chandrasekharan P, Tay ZW, Zhou XY, Yu E, Orendorff R, Hensley D, Huynh Q, Fung KLB, VanHook CC, Goodwill P, Zheng B, Conolly S. A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation. Br J Radiol 2018;91:20180326. [PMID: 29888968 DOI: 10.1259/bjr.20180326] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
98 Kaushik AC, Bharadwaj S, Kumar S, Wei DQ. Nano-particle mediated inhibition of Parkinson's disease using computational biology approach. Sci Rep 2018;8:9169. [PMID: 29907754 DOI: 10.1038/s41598-018-27580-1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
99 Polo E, del Pino P, Pardo A, Taboada P, Pelaz B. Magnetic Nanoparticles for Cancer Therapy and Bioimaging. In: Gonçalves G, Tobias G, editors. Nanooncology. Cham: Springer International Publishing; 2018. pp. 239-79. [DOI: 10.1007/978-3-319-89878-0_7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
100 Hasani-Sadrabadi MM, Majedi FS, Bensinger SJ, Wu BM, Bouchard LS, Weiss PS, Moshaverinia A. Mechanobiological Mimicry of Helper T Lymphocytes to Evaluate Cell-Biomaterials Crosstalk. Adv Mater 2018;30:e1706780. [PMID: 29682803 DOI: 10.1002/adma.201706780] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
101 Saeed M, Iqbal MZ, Ren W, Xia Y, Liu C, Khan WS, Wu A. Controllable synthesis of Fe3O4 nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2. J Mater Chem B 2018;6:3800-10. [PMID: 32254842 DOI: 10.1039/c8tb00745d] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
102 Awaad A, Adly MA, Hosny D. Spleen immunotoxicities induced by intra-testicular injection of magnetic nanoparticles and the role of Echinacea purpurea extract: a histological and immunohistochemical study. Journal of Histotechnology 2018. [DOI: 10.1080/01478885.2018.1472857] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
103 Yoo E, Liu Y, Nwasike CA, Freeman SR, DiPaolo BC, Cordovez B, Doiron AL. Surface characterization of nanoparticles using near-field light scattering. Beilstein J Nanotechnol 2018;9:1228-38. [PMID: 29765800 DOI: 10.3762/bjnano.9.114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
104 Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. Adv Mater 2018;30:e1705694. [PMID: 29543350 DOI: 10.1002/adma.201705694] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 12.0] [Reference Citation Analysis]
105 Zhang P, Zhang Y, Li B, Zhang H, Lin H, Deng Z, Tan B. Cell-assembled nanoclusters of MSC-targeting Gd-DOTA-peptide as a T2 contrast agent for MRI cell tracking. J Pept Sci 2018;24:e3077. [PMID: 29582508 DOI: 10.1002/psc.3077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
106 Li Y, Yang D, Wang S, Li C, Xue B, Yang L, Shen Z, Jin M, Wang J, Qiu Z. The Detailed Bactericidal Process of Ferric Oxide Nanoparticles on E. coli. Molecules 2018;23:E606. [PMID: 29518002 DOI: 10.3390/molecules23030606] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
107 Zhang Y, Zhang H, Li B, Zhang H, Tan B, Deng Z. Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants. Nano Res 2018;11:1625-41. [DOI: 10.1007/s12274-017-1778-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
108 Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018;118:1770-839. [DOI: 10.1021/acs.chemrev.7b00425] [Cited by in Crossref: 461] [Cited by in F6Publishing: 479] [Article Influence: 115.3] [Reference Citation Analysis]
109 Xiong F, Huang S, Gu N. Magnetic nanoparticles: recent developments in drug delivery system. Drug Dev Ind Pharm 2018;44:697-706. [PMID: 29370711 DOI: 10.1080/03639045.2017.1421961] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 9.8] [Reference Citation Analysis]
110 Qin X, Chen H, Yang H, Wu H, Zhao X, Wang H, Chour T, Neofytou E, Ding D, Daldrup-Link H, Heilshorn SC, Li K, Wu JC. Photoacoustic Imaging of Embryonic Stem Cell-Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles. Adv Funct Mater 2018;28:1704939. [PMID: 30473658 DOI: 10.1002/adfm.201704939] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 11.3] [Reference Citation Analysis]
111 Zanganeh S, Ho J, Aieneravaie M, Erfanzadeh M, Spitler R. Protein Corona: The Challenge at the Nanobiointerfaces. Iron Oxide Nanoparticles for Biomedical Applications 2018. [DOI: 10.1016/b978-0-08-101925-2.00011-5] [Reference Citation Analysis]
112 Liu J, Wang S, Cai X, Zhou S, Liu B. Hydrogen peroxide degradable conjugated polymer nanoparticles for fluorescence and photoacoustic bimodal imaging. Chem Commun 2018;54:2518-21. [DOI: 10.1039/c7cc09856a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
113 Hu Y, Mignani S, Majoral J, Shen M, Shi X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 2018;47:1874-900. [DOI: 10.1039/c7cs00657h] [Cited by in Crossref: 217] [Cited by in F6Publishing: 229] [Article Influence: 54.3] [Reference Citation Analysis]
114 Chakoli AN, Sadeghzadeh M. Recent Trends in Biomedical and Pharmaceutical Industry Due to Engineered Nanomaterials. Handbook of Nanomaterials for Industrial Applications 2018. [DOI: 10.1016/b978-0-12-813351-4.00028-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
115 Testa-anta M, Liébana-viñas S, Rivas-murias B, Rodríguez González B, Farle M, Salgueiriño V. Shaping iron oxide nanocrystals for magnetic separation applications. Nanoscale 2018;10:20462-7. [DOI: 10.1039/c8nr05864d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
116 Cruz IF, Freire C, Araújo JP, Pereira C, Pereira AM. Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future. Magnetic Nanostructured Materials. Elsevier; 2018. pp. 59-116. [DOI: 10.1016/b978-0-12-813904-2.00003-6] [Cited by in Crossref: 18] [Article Influence: 4.5] [Reference Citation Analysis]
117 Skandalis A, Sergides A, Bakandritsos A, Pispas S. PLMA-b-POEGMA Amphiphilic Block Copolymers as Nanocarriers for the Encapsulation of Magnetic Nanoparticles and Indomethacin. Polymers (Basel) 2017;10:E14. [PMID: 30966050 DOI: 10.3390/polym10010014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
118 Uzhytchak M, Lynnyk A, Zablotskii V, Dempsey NM, Dias AL, Bonfim M, Lunova M, Jirsa M, Kubinová Š, Lunov O, Dejneka A. The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells. Appl Phys Lett 2017;111:243703. [DOI: 10.1063/1.5007797] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
119 Phukan B, Ghorai S, Deka K, Deb P, Mukherjee C. Interactions of Alkali and Alkaline-Earth Metals in Water-Soluble Heterometallic Fe III /M (M = Na + , K + , Ca 2+ )-Type Coordination Complex. Crystal Growth & Design 2018;18:531-9. [DOI: 10.1021/acs.cgd.7b01588] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
120 Xie L, Qian W, Sun J, Zou B. Engineering Nanobiomaterials for Improved Tissue Regeneration. Nanobiomaterials 2017. [DOI: 10.1002/9783527698646.ch12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
121 Ottersbach A, Mykhaylyk O, Heidsieck A, Eberbeck D, Rieck S, Zimmermann K, Breitbach M, Engelbrecht B, Brügmann T, Hesse M, Welz A, Sasse P, Wenzel D, Plank C, Gleich B, Hölzel M, Bloch W, Pfeifer A, Fleischmann BK, Roell W. Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials 2018;155:176-90. [PMID: 29179133 DOI: 10.1016/j.biomaterials.2017.11.012] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
122 Chen YT, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing Using Magnetic Particle Detection Techniques. Sensors (Basel) 2017;17:E2300. [PMID: 28994727 DOI: 10.3390/s17102300] [Cited by in Crossref: 91] [Cited by in F6Publishing: 95] [Article Influence: 18.2] [Reference Citation Analysis]
123 Chandra A, Kumar Sahu P, Chakraborty S, Ghosh A, Sarkar M. Spin-lattice relaxation studies on deep eutectic solvent/Choliniumtetrachloroferrate mixtures: Suitability of DES-based systems towards magnetic resonance imaging studies. Magn Reson Chem 2018;56:120-6. [PMID: 28960443 DOI: 10.1002/mrc.4668] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
124 Zanganeh S, Spitler R, Hutter G, Ho JQ, Pauliah M, Mahmoudi M. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy 2017;9:819-35. [DOI: 10.2217/imt-2017-0041] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
125 Li G, Hu Y, Chen Y, Tang Z. Strategies to Improve the Migration of Mesenchymal Stromal Cells in Cell Therapy. Translational Neuroscience and Clinics 2017;3:159-75. [DOI: 10.18679/cn11-6030_r.2017.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
126 Yang T, Feng W, Hu C, Lv Z, Wei H, Jiang J, Liu S, Zhao Q. Manganese porphyrin-incorporated conjugated polymer nanoparticles for T1-enhanced magnetic resonance and fluorescent imaging. Inorganica Chimica Acta 2017;466:604-611. [DOI: 10.1016/j.ica.2017.06.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
127 Hachani R, Birchall MA, Lowdell MW, Kasparis G, Tung LD, Manshian BB, Soenen SJ, Gsell W, Himmelreich U, Gharagouzloo CA, Sridhar S, Thanh NTK. Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging. Sci Rep 2017;7:7850. [PMID: 28798327 DOI: 10.1038/s41598-017-08092-w] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 9.2] [Reference Citation Analysis]
128 Maneeprakorn W, Maurizi L, Siriket H, Wutikhun T, Dharakul T, Hofmann H. Superparamagnetic nanohybrids with cross-linked polymers providing higher in vitro stability. J Mater Sci 2017;52:9249-9261. [DOI: 10.1007/s10853-017-1098-2] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
129 Li B, Gu Z, Kurniawan N, Chen W, Xu ZP. Manganese-Based Layered Double Hydroxide Nanoparticles as a T1 -MRI Contrast Agent with Ultrasensitive pH Response and High Relaxivity. Adv Mater 2017;29. [PMID: 28585312 DOI: 10.1002/adma.201700373] [Cited by in Crossref: 143] [Cited by in F6Publishing: 149] [Article Influence: 28.6] [Reference Citation Analysis]
130 Zhang Y, Zhang H, Ding L, Zhang H, Zhang P, Jiang H, Tan B, Deng Z. MRI reveals slow clearance of dead cell transplants in mouse forelimb muscles. Mol Med Rep 2017;16:4068-74. [PMID: 28765924 DOI: 10.3892/mmr.2017.7100] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
131 Zhou Z, Chen X. Magnetic Nanomaterials for Diagnostics. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications 2017. [DOI: 10.1002/9783527803255.ch12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
132 Joris F, Valdepérez D, Pelaz B, Wang T, Doak SH, Manshian BB, Soenen SJ, Parak WJ, De Smedt SC, Raemdonck K. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomater 2017;55:204-13. [PMID: 28373085 DOI: 10.1016/j.actbio.2017.03.053] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
133 Thanikachalam V, Sarojpurani E, Jayabharathi J. Interfacial charge-transfer process in nanosemiconductor- N -benzylpiperidine phenanthroimidazole (BDPI)-metal heterostructure: A combined experimental and theoretical studies of BDPI-(FeO) n composites. Journal of Photochemistry and Photobiology A: Chemistry 2017;342:59-77. [DOI: 10.1016/j.jphotochem.2017.04.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
134 Wu Q, Jin R, Feng T, Liu L, Yang L, Tao Y, Anderson JM, Ai H, Li H. Iron oxide nanoparticles and induced autophagy in human monocytes. Int J Nanomedicine 2017;12:3993-4005. [PMID: 28603414 DOI: 10.2147/IJN.S135189] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
135 Lin BL, Zhang JZ, Lu LJ, Mao JJ, Cao MH, Mao XH, Zhang F, Duan XH, Zheng CS, Zhang LM, Shen J. Superparamagnetic Iron Oxide Nanoparticles-Complexed Cationic Amylose for In Vivo Magnetic Resonance Imaging Tracking of Transplanted Stem Cells in Stroke. Nanomaterials (Basel). 2017;7. [PMID: 28489049 DOI: 10.3390/nano7050107] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
136 Kaushik AC, Kumar A, Dwivedi VD, Bharadwaj S, Kumar S, Bharti K, Kumar P, Chaudhary RK, Mishra SK. Deciphering the Biochemical Pathway and Pharmacokinetic Study of Amyloid βeta-42 with Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Using Systems Biology Approach. Mol Neurobiol 2018;55:3224-36. [DOI: 10.1007/s12035-017-0546-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
137 Mata A, Azevedo HS, Botto L, Gavara N, Su L. New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. Curr Stem Cell Rep 2017;3:83-97. [PMID: 28596936 DOI: 10.1007/s40778-017-0081-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
138 Thapa B, Diaz-Diestra D, Beltran-Huarac J, Weiner BR, Morell G. Enhanced MRI T 2 Relaxivity in Contrast-Probed Anchor-Free PEGylated Iron Oxide Nanoparticles. Nanoscale Res Lett 2017;12:312. [PMID: 28454478 DOI: 10.1186/s11671-017-2084-y] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
139 Nold P, Hartmann R, Feliu N, Kantner K, Gamal M, Pelaz B, Hühn J, Sun X, Jungebluth P, Del Pino P, Hackstein H, Macchiarini P, Parak WJ, Brendel C. Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs. J Nanobiotechnology 2017;15:24. [PMID: 28356160 DOI: 10.1186/s12951-017-0258-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
140 Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe2O4) Nanocomposites. Chem Res Toxicol 2017;30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
141 Kheiri R, Koohi MK, Sadeghi-Hashjin G, Nouri H, Khezli N, Hassan MA, Hoomani F, Shams G, Rasouli A, Motaghinejad M. Comparison of the Effects of Iron Oxide, as a New Form of Iron Supplement, and Ferrous Sulfate on the Blood Levels of Iron and Total Iron-Binding Globulin in the Rabbit. Iran J Med Sci 2017;42:79-84. [PMID: 28293054] [Reference Citation Analysis]
142 Lu L, Wang Y, Cao M, Chen M, Lin B, Duan X, Zhang F, Mao J, Shuai X, Shen J. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv 2017;7:15041-52. [DOI: 10.1039/c7ra00345e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
143 Correia Carreira S. Stem Cell Labelling with Cationised Magnetoferritin. Rapid Cell Magnetisation Using Cationised Magnetoferritin 2017. [DOI: 10.1007/978-3-319-60333-9_4] [Reference Citation Analysis]
144 Yi DK, Nanda SS, Kim K, Tamil Selvan S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B 2017;5:9429-51. [DOI: 10.1039/c7tb02532g] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
145 Galli M, Guerrini A, Cauteruccio S, Thakare P, Dova D, Orsini F, Arosio P, Carrara C, Sangregorio C, Lascialfari A, Maggioni D, Licandro E. Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Adv 2017;7:15500-12. [DOI: 10.1039/c7ra00519a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
146 Sun D, Gong L, Xie J, He X, Chen S, A L, Li Q, Gu Z, Xu H. Evaluating the toxicity of silicon dioxide nanoparticles on neural stem cells using RNA-Seq. RSC Adv 2017;7:47552-64. [DOI: 10.1039/c7ra09512k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
147 Strehl C, Maurizi L, Gaber T, Hoff P, Broschard T, Poole AR, Hofmann H, Buttgereit F. Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. Int J Nanomedicine 2016;11:5883-96. [PMID: 27877036 DOI: 10.2147/IJN.S110579] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
148 Fink J, Andersson-Rolf A, Koo BK. Adult stem cell lineage tracing and deep tissue imaging. BMB Rep 2015;48:655-67. [PMID: 26634741 DOI: 10.5483/bmbrep.2015.48.12.249] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
149 Lu A, Zhang X, Sun Q, Zhang Y, Song Q, Schüth F, Chen C, Cheng F. Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy. Nano Res 2016;9:1460-9. [DOI: 10.1007/s12274-016-1042-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
150 Gong T, Gao Z, Bian W, Tai F, Liang W, Liang W, Dong Q, Dong C. Co-containing and Pt-containing polymer blend to ferromagnetic CoPt NPs: Synthesis, characterization and patterning study by nanoimprint lithography. Journal of Organometallic Chemistry 2016;819:237-41. [DOI: 10.1016/j.jorganchem.2016.07.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
151 Jarockyte G, Daugelaite E, Stasys M, Statkute U, Poderys V, Tseng TC, Hsu SH, Karabanovas V, Rotomskis R. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals. Int J Mol Sci 2016;17:E1193. [PMID: 27548152 DOI: 10.3390/ijms17081193] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 11.2] [Reference Citation Analysis]
152 Karponis D, Azzawi M, Seifalian A. An arsenal of magnetic nanoparticles; perspectives in the treatment of cancer. Nanomedicine 2016;11:2215-32. [DOI: 10.2217/nnm-2016-0113] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
153 Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, Hei DJ, Hematti P, Raval AN. Biodistribution and Clearance of Human Mesenchymal Stem Cells by Quantitative Three-Dimensional Cryo-Imaging After Intravenous Infusion in a Rat Lung Injury Model. Stem Cells Transl Med 2016;5:1668-75. [PMID: 27460855 DOI: 10.5966/sctm.2015-0379] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
154 Caracciolo G, Palchetti S, Colapicchioni V, Digiacomo L, Pozzi D, Capriotti AL, La Barbera G, Laganà A. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir 2015;31:10764-73. [PMID: 26378619 DOI: 10.1021/acs.langmuir.5b02158] [Cited by in Crossref: 92] [Cited by in F6Publishing: 95] [Article Influence: 15.3] [Reference Citation Analysis]
155 Das J, Choi Y, Song H, Kim J. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016;22:588-619. [DOI: 10.1093/humupd/dmw020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
156 Zhou L, He B, Wu F, Wu J. Castor oil-stabilized magnetic Fe 3 O 4 and luminescent ZnO nanocrystals: One-step green synthesis and application for polymer composites. Advanced Powder Technology 2016;27:1839-44. [DOI: 10.1016/j.apt.2016.06.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
157 Mahmoudi M, Tachibana A, Goldstone AB, Woo YJ, Chakraborty P, Lee KR, Foote CS, Piecewicz S, Barrozo JC, Wakeel A, Rice BW, Bell Iii CB, Yang PC. Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes. Sci Rep 2016;6:26960. [PMID: 27264636 DOI: 10.1038/srep26960] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
158 Gao Y, Lim J, Teoh SH, Xu C. Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem Soc Rev 2015;44:6306-29. [PMID: 26505058 DOI: 10.1039/c4cs00322e] [Cited by in Crossref: 74] [Cited by in F6Publishing: 76] [Article Influence: 12.3] [Reference Citation Analysis]
159 Gräfe C, Slabu I, Wiekhorst F, Bergemann C, von Eggeling F, Hochhaus A, Trahms L, Clement JH. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells. Phys Med Biol 2016;61:3986-4000. [PMID: 27163489 DOI: 10.1088/0031-9155/61/11/3986] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
160 Hu B, Zeng M, Chen J, Zhang Z, Zhang X, Fan Z, Zhang X. External Magnetic Field-Induced Targeted Delivery of Highly Sensitive Iron Oxide Nanocubes for MRI of Myocardial Infarction. Small 2016;12:4707-12. [DOI: 10.1002/smll.201600263] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
161 Wu S, Chi C, Yang C, Yan X. Penetrating Peptide-Bioconjugated Persistent Nanophosphors for Long-Term Tracking of Adipose-Derived Stem Cells with Superior Signal-to-Noise Ratio. Anal Chem 2016;88:4114-21. [DOI: 10.1021/acs.analchem.6b00449] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 10.7] [Reference Citation Analysis]
162 Kallel T, Koubaa T, Dammak M, Pandya S, Kordesch M., Wang J, Jadwisienczak W, Wang Y. Spectra, energy levels and crystal field calculation of Er3+ doped in AlN nanoparticles. Journal of Luminescence 2016;171:42-50. [DOI: 10.1016/j.jlumin.2015.11.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
163 Tran VC, Nguyen VH, Tuma D, Shim J. Ionic liquid mediated synthesis of poly(2-hydroxyethyl methacrylate-block-methyl methacrylate)/Fe3O4 core–shell structured nanocomposite by ATRP method. Colloid Polym Sci 2016;294:777-85. [DOI: 10.1007/s00396-016-3835-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
164 Hosseinzadeh H, Mohammadi S. Biosorption of anionic dyes from aqueous solutions using a novel magnetic nanocomposite adsorbent based on rice husk ash. Separation Science and Technology 2016;51:939-53. [DOI: 10.1080/01496395.2016.1142564] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
165 Zhang F, Kong X, Li Q, Sun T, Chai C, Shen W, Hong Z, He X, Li W, Zhang Y. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging. Talanta 2016;148:108-15. [DOI: 10.1016/j.talanta.2015.10.046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
166 Mirsadeghi S, Shanehsazzadeh S, Atyabi F, Dinarvand R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Materials Science and Engineering: C 2016;59:390-7. [DOI: 10.1016/j.msec.2015.10.026] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
167 Peng HS, Chiu DT. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev 2015;44:4699-722. [PMID: 25531691 DOI: 10.1039/c4cs00294f] [Cited by in Crossref: 305] [Cited by in F6Publishing: 311] [Article Influence: 50.8] [Reference Citation Analysis]
168 Liao N, Wu M, Pan F, Lin J, Li Z, Zhang D, Wang Y, Zheng Y, Peng J, Liu X, Liu J. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells. Sci Rep 2016;6:18746. [PMID: 26728448 DOI: 10.1038/srep18746] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 5.5] [Reference Citation Analysis]
169 Dong Q, Qu W, Liang W, Guo K, Xue H, Guo Y, Meng Z, Ho C, Leung C, Wong W. Metallopolymer precursors to L1 0 -CoPt nanoparticles: synthesis, characterization, nanopatterning and potential application. Nanoscale 2016;8:7068-74. [DOI: 10.1039/c6nr00034g] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
170 Bi H, Dai Y, Lv R, Zhong C, He F, Gai S, Gulzar A, Yang G, Yang P. Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light. Dalton Trans 2016;45:5101-10. [DOI: 10.1039/c5dt04842g] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 6.3] [Reference Citation Analysis]
171 Jayabharathi J, Prabhakaran A, Karunakaran C, Thanikachalam V, Sundharesan M. Structural, optical and photoconductivity characteristics of pristine FeO·Fe 2 O 3 and NTPI–FeO·Fe 2 O 3 nanocomposite: aggregation induced emission enhancement of fluorescent organic nanoprobe of thiophene appended phenanthrimidazole derivative. RSC Adv 2016;6:18718-36. [DOI: 10.1039/c5ra25545g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
172 Liu X, Wei Z, Wu M, Zhang X, Zhang D, Li B, Liu J. A highly stable and biocompatible optical bioimaging nanoprobe based on carbon nanospheres. RSC Adv 2016;6:37472-7. [DOI: 10.1039/c6ra02754g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
173 Rezaeifard A, Jafarpour M, Farrokhi A, Parvin S, Feizpour F. Enhanced aqueous oxidation activity and durability of simple manganese( iii ) salen complex axially anchored to maghemite nanoparticles. RSC Adv 2016;6:64640-50. [DOI: 10.1039/c6ra10527k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
174 Pang YL, Lim S, Ong HC, Chong WT. Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceramics International 2016;42:9-34. [DOI: 10.1016/j.ceramint.2015.08.144] [Cited by in Crossref: 130] [Cited by in F6Publishing: 133] [Article Influence: 21.7] [Reference Citation Analysis]
175 Singh M, Savchenko A, Shetinin I, Majouga A. An original route to target delivery via core-shell modification of SPIONs. Materials Today: Proceedings 2016;3:2652-61. [DOI: 10.1016/j.matpr.2016.06.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
176 Ai F, Ferreira CA, Chen F, Cai W. Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:619-30. [PMID: 26692551 DOI: 10.1002/wnan.1386] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
177 Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine 2016;12:287-307. [PMID: 26707817 DOI: 10.1016/j.nano.2015.10.019] [Cited by in Crossref: 116] [Cited by in F6Publishing: 96] [Article Influence: 16.6] [Reference Citation Analysis]
178 Li Y, Huang Y, Wang Z, Carniato F, Xie Y, Patterson JP, Thompson MP, Andolina CM, Ditri TB, Millstone JE, Figueroa JS, Rinehart JD, Scadeng M, Botta M, Gianneschi NC. Polycatechol Nanoparticle MRI Contrast Agents. Small 2016;12:668-77. [PMID: 26681255 DOI: 10.1002/smll.201502754] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 8.3] [Reference Citation Analysis]
179 Hasani-sadrabadi MM, Dashtimoghadam E, Bahlakeh G, Majedi FS, Keshvari H, Van Dersarl JJ, Bertsch A, Panahifar A, Renaud P, Tayebi L, Mahmoudi M, Jacob KI. On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Nanomedicine 2015;10:3431-49. [DOI: 10.2217/nnm.15.162] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
180 Bagheri H, Ahmadi M, Madrakian T, Afkhami A. Preconcentration and spectrofluorometric determination of l-tryptophan in the presence of d-tryptophan using a chiral magnetic nanoselector. Sensors and Actuators B: Chemical 2015;221:681-7. [DOI: 10.1016/j.snb.2015.07.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
181 Wan X, Song Y, Song N, Li J, Yang L, Li Y, Tan H. The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging. Carbohydr Res 2016;419:33-40. [PMID: 26649917 DOI: 10.1016/j.carres.2015.11.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
182 Bi C, Zhao Y, Shen L, Zhang K, He X, Chen L, Zhang Y. Click Synthesis of Hydrophilic Maltose-Functionalized Iron Oxide Magnetic Nanoparticles Based on Dopamine Anchors for Highly Selective Enrichment of Glycopeptides. ACS Appl Mater Interfaces 2015;7:24670-8. [DOI: 10.1021/acsami.5b06991] [Cited by in Crossref: 86] [Cited by in F6Publishing: 86] [Article Influence: 12.3] [Reference Citation Analysis]
183 Pham BT, Jain N, Kuchel PW, Chapman BE, Bickley SA, Jones SK, Hawkett BS. The interaction of sterically stabilized magnetic nanoparticles with fresh human red blood cells. Int J Nanomedicine 2015;10:6645-55. [PMID: 26604741 DOI: 10.2147/IJN.S93225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
184 Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NT. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 2016;8:3278-87. [PMID: 26460932 DOI: 10.1039/c5nr03867g] [Cited by in Crossref: 143] [Cited by in F6Publishing: 121] [Article Influence: 20.4] [Reference Citation Analysis]
185 Azhdarzadeh M, Saei AA, Sharifi S, Hajipour MJ, Alkilany AM, Sharifzadeh M, Ramazani F, Laurent S, Mashaghi A, Mahmoudi M. Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine (Lond) 2015;10:2931-52. [PMID: 26370561 DOI: 10.2217/nnm.15.130] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 8.9] [Reference Citation Analysis]
186 Pul’kova NV, Tonevitskaya SA, Gerasimov VM, Rudakovskaya PG, Mazhuga AG, Sakharov DA. Synthesis and optimization of methods for the production of magnetite nanoparticles with different sizes and morphology for biological application. Nanotechnol Russia 2015;10:570-5. [DOI: 10.1134/s1995078015040175] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
187 McMahill BG, Spriet M, Sisó S, Manzer MD, Mitchell G, McGee J, Garcia TC, Borjesson DL, Sieber-Blum M, Nolta JA, Sturges BK. Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs. Stem Cells Transl Med 2015;4:1173-86. [PMID: 26273065 DOI: 10.5966/sctm.2015-0018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
188 Bhandari S, Khandelia R, Pan UN, Chattopadhyay A. Surface Complexation-Based Biocompatible Magnetofluorescent Nanoprobe for Targeted Cellular Imaging. ACS Appl Mater Interfaces 2015;7:17552-7. [DOI: 10.1021/acsami.5b04022] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
189 Saha S, Joachim Loo SC. Application-driven multi-layered particles – The role of polymers in the architectural design of particles. Polymer 2015;71:A1-A11. [DOI: 10.1016/j.polymer.2015.06.033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
190 Ebert S, Bannwarth MB, Musyanovych A, Landfester K, Münnemann K. How morphology influences relaxivity - comparative study of superparamagnetic iron oxide-polymer hybrid nanostructures. Contrast Media Mol Imaging 2015;10:456-64. [PMID: 26153149 DOI: 10.1002/cmmi.1648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
191 He Y, Cheng Z, Qin Y, Xu B, Ning L, Zhou L. Facile synthesis and functionalization of hyperbranched polyglycerol capped magnetic Fe3O4 nanoparticles for efficient dye removal. Materials Letters 2015;151:100-3. [DOI: 10.1016/j.matlet.2015.03.044] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
192 Gizzatov A, Hernández-Rivera M, Keshishian V, Mackeyev Y, Law JJ, Guven A, Sethi R, Qu F, Muthupillai R, Cabreira-Hansen Mda G, Willerson JT, Perin EC, Ma Q, Bryant RG, Wilson LJ. Surfactant-free Gd(3+)-ion-containing carbon nanotube MRI contrast agents for stem cell labeling. Nanoscale 2015;7:12085-91. [PMID: 26119138 DOI: 10.1039/c5nr02078f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
193 Scharf A, Holmes S, Thoresen M, Mumaw J, Stumpf A, Peroni J. Superparamagnetic iron oxide nanoparticles as a means to track mesenchymal stem cells in a large animal model of tendon injury. Contrast Media Mol Imaging 2015;10:388-97. [PMID: 26033748 DOI: 10.1002/cmmi.1642] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
194 Li W, Bing W, Huang S, Ren J, Qu X. Mussel Byssus-Like Reversible Metal-Chelated Supramolecular Complex Used for Dynamic Cellular Surface Engineering and Imaging. Adv Funct Mater 2015;25:3775-84. [DOI: 10.1002/adfm.201500039] [Cited by in Crossref: 68] [Cited by in F6Publishing: 68] [Article Influence: 9.7] [Reference Citation Analysis]
195 Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H. Silk fibroin nanoparticle as a novel drug delivery system. Journal of Controlled Release 2015;206:161-76. [DOI: 10.1016/j.jconrel.2015.03.020] [Cited by in Crossref: 235] [Cited by in F6Publishing: 242] [Article Influence: 33.6] [Reference Citation Analysis]
196 Liu J, Li K, Liu B. Far-Red/Near-Infrared Conjugated Polymer Nanoparticles for Long-Term In Situ Monitoring of Liver Tumor Growth. Adv Sci (Weinh) 2015;2:1500008. [PMID: 27980934 DOI: 10.1002/advs.201500008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 5.9] [Reference Citation Analysis]
197 Pourjavadi A, Tehrani ZM, Mahmoudi N. The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating. J Nanopart Res 2015;17. [DOI: 10.1007/s11051-015-3008-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
198 Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging 2015;10:329-55. [PMID: 25882768 DOI: 10.1002/cmmi.1638] [Cited by in Crossref: 94] [Cited by in F6Publishing: 100] [Article Influence: 13.4] [Reference Citation Analysis]
199 Shuai H, Shi C, Lan J, Chen D, Luo X. Double labelling of human umbilical cord mesenchymal stem cells with Gd-DTPA and PKH26 and the influence on biological characteristics of hUCMSCs. Int J Exp Pathol. 2015;96:63-72. [PMID: 25649907 DOI: 10.1111/iep.12111] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
200 Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 2015;115:2109-35. [PMID: 25757742 DOI: 10.1021/cr400714j] [Cited by in Crossref: 340] [Cited by in F6Publishing: 355] [Article Influence: 48.6] [Reference Citation Analysis]
201 Yen SK, Varma DP, Guo WM, Ho VH, Vijayaragavan V, Padmanabhan P, Bhakoo K, Selvan ST. Synthesis of small-sized, porous, and low-toxic magnetite nanoparticles by thin POSS silica coating. Chemistry 2015;21:3914-8. [PMID: 25630810 DOI: 10.1002/chem.201406388] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
202 Li Y, Duong HT, Laurent S, MacMillan A, Whan RM, Elst LV, Muller RN, Hu J, Lowe A, Boyer C, Davis TP. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity. Adv Healthc Mater 2015;4:148-56. [PMID: 24985790 DOI: 10.1002/adhm.201400164] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 6.3] [Reference Citation Analysis]
203 Sheikh L, Vohra R, Verma AK, Nayar S. Biomimetically Synthesized Aqueous Ferrofluids Having Antibacterial and Anticancer Properties. MSA 2015;06:242-50. [DOI: 10.4236/msa.2015.63029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
204 Behzadi S, Ghasemi F, Ghalkhani M, Ashkarran AA, Akbari SM, Pakpour S, Hormozi-nezhad MR, Jamshidi Z, Mirsadeghi S, Dinarvand R, Atyabi F, Mahmoudi M. Determination of nanoparticles using UV-Vis spectra. Nanoscale 2015;7:5134-9. [DOI: 10.1039/c4nr00580e] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
205 Ereath Beeran A, Nazeer SS, Fernandez FB, Muvvala KS, Wunderlich W, Anil S, Vellappally S, Ramachandra Rao MS, John A, Jayasree RS, Harikrishna Varma PR. An aqueous method for the controlled manganese (Mn 2+ ) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI. Phys Chem Chem Phys 2015;17:4609-19. [DOI: 10.1039/c4cp05122j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
206 Kelkar SS, Mohs AM. Translational Imaging for Regenerative Medicine. Translational Regenerative Medicine 2015. [DOI: 10.1016/b978-0-12-410396-2.00021-9] [Reference Citation Analysis]
207 Pereira C, Pereira AM, Rocha M, Freire C, Geraldes CFGC. Architectured design of superparamagnetic Fe 3 O 4 nanoparticles for application as MRI contrast agents: mastering size and magnetism for enhanced relaxivity. J Mater Chem B 2015;3:6261-73. [DOI: 10.1039/c5tb00789e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
208 Zhu B, Witzel T, Jiang S, Huang SY, Rosen BR, Wald LL. Selective magnetic resonance imaging of magnetic nanoparticles by acoustically induced rotary saturation. Magn Reson Med 2016;75:97-106. [PMID: 25537578 DOI: 10.1002/mrm.25522] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
209 Ma X, Gong A, Chen B, Zheng J, Chen T, Shen Z, Wu A. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Colloids Surf B Biointerfaces 2015;126:44-9. [PMID: 25543982 DOI: 10.1016/j.colsurfb.2014.11.045] [Cited by in Crossref: 63] [Cited by in F6Publishing: 57] [Article Influence: 7.9] [Reference Citation Analysis]
210 Hosseinkhani H, Abedini F, Ou K, Domb AJ. Polymers in gene therapy technology: GENE THERAPY TECHNOLOGY. Polym Adv Technol 2015;26:198-211. [DOI: 10.1002/pat.3432] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
211 Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. Contrast Media Mol Imaging 2015;10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
212 Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, Daha FJ, Oghabian MA. Monoclonal antibody conjugated magnetic nanoparticles could target MUC-1-positive cells in vitro but not in vivo. Contrast Media Mol Imaging 2015;10:225-36. [PMID: 25327822 DOI: 10.1002/cmmi.1627] [Cited by in Crossref: 35] [Cited by in F6Publishing: 41] [Article Influence: 4.4] [Reference Citation Analysis]
213 Danhier P, De Preter G, Magat J, Godechal Q, Porporato PE, Jordan BF, Feron O, Sonveaux P, Gallez B. Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence. Contrast Media Mol Imaging 2014;9:143-53. [PMID: 24523059 DOI: 10.1002/cmmi.1553] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
214 Ou KL, Hosseinkhani H. Development of 3D in vitro technology for medical applications. Int J Mol Sci. 2014;15:17938-17962. [PMID: 25299693 DOI: 10.3390/ijms151017938] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 8.3] [Reference Citation Analysis]
215 He W, Hosseinkhani H, Mohammadinejad R, Roveimiab Z, Hueng D, Ou K, Domb AJ. Polymeric nanoparticles for therapy and imaging: BIOIMAGING TECHNOLOGY. Polym Adv Technol 2014;25:1216-25. [DOI: 10.1002/pat.3381] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
216 Nguyen HD, Nguyen TD, Nguyen DH, Nguyen PT. Magnetic properties of Cr doped Fe 3 O 4 porous nanoparticles prepared through a co-precipitation method using surfactant. Adv Nat Sci: Nanosci Nanotechnol 2014;5:035017. [DOI: 10.1088/2043-6262/5/3/035017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
217 Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb). 2014;6:9-26. [PMID: 24104563 DOI: 10.1039/c3ib40165k] [Cited by in Crossref: 251] [Cited by in F6Publishing: 262] [Article Influence: 31.4] [Reference Citation Analysis]
218 Tian F, Chen G, Yi P, Zhang J, Li A, Zhang J, Zheng L, Deng Z, Shi Q, Peng R, Wang Q. Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials 2014;35:6412-21. [DOI: 10.1016/j.biomaterials.2014.04.052] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
219 Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK. Enhanced specific absorption rate in silanol functionalized Fe3O4 core-shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf B Biointerfaces 2014;122:396-403. [PMID: 25089699 DOI: 10.1016/j.colsurfb.2014.07.019] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 6.9] [Reference Citation Analysis]
220 Shen H, Hou J, Gao Z, Chen B, Tan T. Solvothermal Synthesis of Functional Magnetic Nanoparticles for Biocatalyst. Appl Biochem Biotechnol 2014;173:2279-86. [DOI: 10.1007/s12010-014-1033-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
221 Alkilany AM, Boulos SP, Lohse SE, Thompson LB, Murphy CJ. Homing Peptide-Conjugated Gold Nanorods: The Effect of Amino Acid Sequence Display on Nanorod Uptake and Cellular Proliferation. Bioconjugate Chem 2014;25:1162-71. [DOI: 10.1021/bc500174b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
222 Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11:1449-1470. [PMID: 24870351 DOI: 10.1517/17425247.2014.924501] [Cited by in Crossref: 283] [Cited by in F6Publishing: 301] [Article Influence: 35.4] [Reference Citation Analysis]
223 Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci Rep 2014;4:5020. [PMID: 24846348 DOI: 10.1038/srep05020] [Cited by in Crossref: 151] [Cited by in F6Publishing: 170] [Article Influence: 18.9] [Reference Citation Analysis]
224 Prodan AM, Ciobanu CS, Popa CL, Iconaru SL, Predoi D. Toxicity evaluation following intratracheal instillation of iron oxide in a silica matrix in rats. Biomed Res Int 2014;2014:134260. [PMID: 24949417 DOI: 10.1155/2014/134260] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
225 Chen L, Geissler A, Bonaccurso E, Zhang K. Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater Interfaces 2014;6:6969-76. [PMID: 24749513 DOI: 10.1021/am5020343] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 7.3] [Reference Citation Analysis]
226 Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014;114:6130-78. [DOI: 10.1021/cr200359p] [Cited by in Crossref: 587] [Cited by in F6Publishing: 592] [Article Influence: 73.4] [Reference Citation Analysis]
227 Abdukayum A, Yang C, Zhao Q, Chen J, Dong L, Yan X. Gadolinium Complexes Functionalized Persistent Luminescent Nanoparticles as a Multimodal Probe for Near-Infrared Luminescence and Magnetic Resonance Imaging in Vivo. Anal Chem 2014;86:4096-101. [DOI: 10.1021/ac500644x] [Cited by in Crossref: 118] [Cited by in F6Publishing: 122] [Article Influence: 14.8] [Reference Citation Analysis]
228 O'Cearbhaill ED, Ng KS, Karp JM. Emerging medical devices for minimally invasive cell therapy. Mayo Clin Proc 2014;89:259-73. [PMID: 24485137 DOI: 10.1016/j.mayocp.2013.10.020] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
229 Du H, Yang X, Zhai G. Design of chitosan-based nanoformulations for efficient intracellular release of active compounds. Nanomedicine 2014;9:723-40. [DOI: 10.2217/nnm.14.8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
230 Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine. 2014;9:1641-1653. [PMID: 24729700 DOI: 10.2147/ijn.s48979] [Cited by in Crossref: 20] [Cited by in F6Publishing: 48] [Article Influence: 2.5] [Reference Citation Analysis]
231 Wang J, Li W, Zhu J. Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: Strategies and precise localization of nanoparticles. Polymer 2014;55:1079-96. [DOI: 10.1016/j.polymer.2014.01.027] [Cited by in Crossref: 83] [Cited by in F6Publishing: 86] [Article Influence: 10.4] [Reference Citation Analysis]
232 Maerz T, Mu R, Baker KC. Cell and scaffold surface engineering to enhance cell migration and tissue regeneration. Surface Innovations 2014;2:17-25. [DOI: 10.1680/si.13.00023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
233 Saldívar-ramírez MMG, Sánchez-torres CG, Cortés-hernández DA, Escobedo-bocardo JC, Almanza-robles JM, Larson A, Reséndiz-hernández PJ, Acuña-gutiérrez IO. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J Mater Sci: Mater Med 2014;25:2229-36. [DOI: 10.1007/s10856-014-5187-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
234 Li Y, Laurent S, Esser L, Elst LV, Muller RN, Lowe AB, Boyer C, Davis TP. The precise molecular location of gadolinium atoms has a significant influence on the efficacy of nanoparticulate MRI positive contrast agents. Polym Chem 2014;5:2592-601. [DOI: 10.1039/c3py01676e] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
235 Zhou J, Lu Z, Shan G, Wang S, Liao Y. Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging. Biomaterials 2014;35:368-77. [DOI: 10.1016/j.biomaterials.2013.09.088] [Cited by in Crossref: 62] [Cited by in F6Publishing: 66] [Article Influence: 7.8] [Reference Citation Analysis]
236 Emam AN, Girgis E, Khalil WK, Mohamed MB. Toxicity of Plasmonic Nanomaterials and Their Hybrid Nanocomposites. Advances in Molecular Toxicology 2014. [DOI: 10.1016/b978-0-444-63406-1.00005-2] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
237 Li L, Jiang L, Zeng Y, Liu G. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine. Chinese Phys B 2013;22:127503. [DOI: 10.1088/1674-1056/22/12/127503] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
238 Wu J, Su P, Yang Y, Huang J, Wang Y, Yang Y. Immobilization of HSA on polyamidoamine-dendronized magnetic microspheres for application in direct chiral separation of racemates. J Mater Chem B 2014;2:775-82. [PMID: 32261309 DOI: 10.1039/c3tb21340d] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
239 Lamanna G, Garofalo A, Popa G, Wilhelm C, Bégin-Colin S, Felder-Flesch D, Bianco A, Gazeau F, Ménard-Moyon C. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations. Nanoscale 2013;5:4412-21. [PMID: 23579421 DOI: 10.1039/c3nr00636k] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 5.4] [Reference Citation Analysis]
240 Shu C, Li R, Guo J, Ding L, Zhong W. New generation of β-cyclodextrin-chitosan nanoparticles encapsulated quantum dots loaded with anticancer drug for tumor-target drug delivery and imaging of cancer cells. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1927-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
241 Amiri H, Saeidi K, Borhani P, Manafirad A, Ghavami M, Zerbi V. Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem Neurosci 2013;4:1417-29. [PMID: 24024702 DOI: 10.1021/cn4001582] [Cited by in Crossref: 68] [Cited by in F6Publishing: 73] [Article Influence: 7.6] [Reference Citation Analysis]
242 Wang A, Qi W, Wang N, Zhao J, Muhammad F, Cai K, Ren H, Sun F, Chen L, Guo Y, Guo M, Zhu G. A smart nanoporous theranostic platform for simultaneous enhanced MRI and drug delivery. Microporous and Mesoporous Materials 2013;180:1-7. [DOI: 10.1016/j.micromeso.2013.06.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
243 Figueiredo S, Geraldes CFGC. Metal-Based Chelates and Nanosystems as MRI Contrast Agents. Advances in Organometallic Chemistry and Catalysis 2013. [DOI: 10.1002/9781118742952.ch46] [Reference Citation Analysis]
244 Ohno K, Mori C, Akashi T, Yoshida S, Tago Y, Tsujii Y, Tabata Y. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization. Biomacromolecules 2013;14:3453-62. [PMID: 23957585 DOI: 10.1021/bm400770n] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 5.3] [Reference Citation Analysis]
245 Hu Z, Ahrén M, Selegård L, Skoglund C, Söderlind F, Engström M, Zhang X, Uvdal K. Highly Water-Dispersible Surface-Modified Gd 2 O 3 Nanoparticles for Potential Dual-Modal Bioimaging. Chem Eur J 2013;19:12658-67. [DOI: 10.1002/chem.201301687] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
246 Cohen Y, Shoushan SY. Magnetic nanoparticles-based diagnostics and theranostics. Current Opinion in Biotechnology 2013;24:672-81. [DOI: 10.1016/j.copbio.2013.01.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
247 Sahoo P, Murthy PS, Dhara S, Venugopalan VP, Das A, Tyagi AK. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1841-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
248 Hosseinkhani H, He W, Chiang C, Hong P, Yu D, Domb AJ, Ou K. Biodegradable nanoparticles for gene therapy technology. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1794-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
249 Sahu S, Mohapatra S. Multifunctional magnetic fluorescent hybrid nanoparticles as carriers for the hydrophobic anticancer drug 5-fluorouracil. Dalton Trans 2013;42:2224-31. [PMID: 23197328 DOI: 10.1039/c2dt31812a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
250 Landázuri N, Tong S, Suo J, Joseph G, Weiss D, Sutcliffe DJ, Giddens DP, Bao G, Taylor WR. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small. 2013;9:4017-4026. [PMID: 23766267 DOI: 10.1002/smll.201300570] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 8.7] [Reference Citation Analysis]
251 Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, Hao N, Zhang Y, Wu X, Ren J, Tang F. Multifunctional Fe 3 O 4 @P(St/MAA)@Chitosan@Au Core/Shell Nanoparticles for Dual Imaging and Photothermal Therapy. ACS Appl Mater Interfaces 2013;5:4966-71. [DOI: 10.1021/am400721s] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 8.8] [Reference Citation Analysis]
252 Panahifar A, Mahmoudi M, Doschak MR. Synthesis and in Vitro Evaluation of Bone-Seeking Superparamagnetic Iron Oxide Nanoparticles as Contrast Agents for Imaging Bone Metabolic Activity. ACS Appl Mater Interfaces 2013;5:5219-26. [DOI: 10.1021/am4010495] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
253 Huang J, Wang L, Lin R, Wang AY, Yang L, Kuang M, Qian W, Mao H. Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces 2013;5:4632-9. [PMID: 23633522 DOI: 10.1021/am400713j] [Cited by in Crossref: 117] [Cited by in F6Publishing: 125] [Article Influence: 13.0] [Reference Citation Analysis]
254 Lobsien D, Dreyer AY, Stroh A, Boltze J, Hoffmann KT. Imaging of VSOP labeled stem cells in agarose phantoms with susceptibility weighted and T2* weighted MR Imaging at 3T: determination of the detection limit. PLoS One 2013;8:e62644. [PMID: 23667503 DOI: 10.1371/journal.pone.0062644] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
255 Yang X, Wang A, Liu J. A facile label-free electrochemiluminescence biosensor for target protein specific recognition based on the controlled-release delivery system. Talanta 2013;114:5-10. [PMID: 23953433 DOI: 10.1016/j.talanta.2013.03.077] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
256 Hosseinkhani H, Hong PD, Yu DS. Self-assembled proteins and peptides for regenerative medicine. Chem Rev 2013;113:4837-61. [PMID: 23547530 DOI: 10.1021/cr300131h] [Cited by in Crossref: 219] [Cited by in F6Publishing: 228] [Article Influence: 24.3] [Reference Citation Analysis]
257 Mahmoudi M, Quinlan-Pluck F, Monopoli MP, Sheibani S, Vali H, Dawson KA, Lynch I. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem Neurosci 2013;4:475-85. [PMID: 23509983 DOI: 10.1021/cn300196n] [Cited by in Crossref: 112] [Cited by in F6Publishing: 118] [Article Influence: 12.4] [Reference Citation Analysis]
258 Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev 2013;113:3391-406. [PMID: 23428231 DOI: 10.1021/cr3002627] [Cited by in Crossref: 125] [Cited by in F6Publishing: 131] [Article Influence: 13.9] [Reference Citation Analysis]
259 Fayol D, Luciani N, Lartigue L, Gazeau F, Wilhelm C. Managing magnetic nanoparticle aggregation and cellular uptake: a precondition for efficient stem-cell differentiation and MRI tracking. Adv Healthc Mater 2013;2:313-25. [PMID: 23184893 DOI: 10.1002/adhm.201200294] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 7.0] [Reference Citation Analysis]
260 Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M. Significance of cell “observer” and protein source in nanobiosciences. Journal of Colloid and Interface Science 2013;392:431-45. [DOI: 10.1016/j.jcis.2012.10.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 7.2] [Reference Citation Analysis]
261 Uchegbu IF, Siew A. Nanomedicines and Nanodiagnostics Come of Age. Journal of Pharmaceutical Sciences 2013;102:305-10. [DOI: 10.1002/jps.23377] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
262 Yi P, Chen G, Zhang H, Tian F, Tan B, Dai J, Wang Q, Deng Z. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials 2013;34:3010-9. [PMID: 23357367 DOI: 10.1016/j.biomaterials.2013.01.022] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 6.0] [Reference Citation Analysis]
263 Fadeel B, Feliu N, Vogt C, Abdelmonem AM, Parak WJ. Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:111-29. [PMID: 23335558 DOI: 10.1002/wnan.1206] [Cited by in Crossref: 75] [Cited by in F6Publishing: 76] [Article Influence: 8.3] [Reference Citation Analysis]
264 Riva E, Mattarella M, Borrelli S, Christodoulou MS, Cartelli D, Main M, Faulkner S, Sykes D, Cappelletti G, Snaith JS, Passarella D. Preparation of Fluorescent Tubulin Binders. ChemPlusChem 2013;78:222-6. [DOI: 10.1002/cplu.201200260] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
265 Hosseinkhani H, Chen Y, He W, Hong P, Yu D, Domb AJ. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-012-1345-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
266 Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G, Rahuman AA. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J Cell Mol Med 2012;16:1991-2000. [PMID: 22260258 DOI: 10.1111/j.1582-4934.2012.01534.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
267 Yan B, Jeong Y, Mercante LA, Tonga GY, Kim C, Zhu Z, Vachet RW, Rotello VM. Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS). Nanoscale 2013;5:5063. [DOI: 10.1039/c3nr01384g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
268 Ghavami M, Saffar S, Abd Emamy B, Peirovi A, Shokrgozar MA, Serpooshan V, Mahmoudi M. Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 2013;3:1119-26. [DOI: 10.1039/c2ra22093h] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 6.8] [Reference Citation Analysis]
269 Prow TW, Sundh D, Lutty GA. Nanoscale biosensor for detection of reactive oxygen species. Methods Mol Biol 2013;1028:3-14. [PMID: 23740110 DOI: 10.1007/978-1-62703-475-3_1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
270 Bakhtiyari S, Haghani K, Basati G, Karimfar MH. siRNA therapeutics in the treatment of diseases. Therapeutic Delivery 2013;4:45-57. [DOI: 10.4155/tde.12.136] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
271 Zhang Q, Han X, Tang B. Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles. RSC Adv 2013;3:9924. [DOI: 10.1039/c3ra40192h] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
272 Amiri H, Bordonali L, Lascialfari A, Wan S, Monopoli MP, Lynch I, Laurent S, Mahmoudi M. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale 2013;5:8656. [DOI: 10.1039/c3nr00345k] [Cited by in Crossref: 77] [Cited by in F6Publishing: 82] [Article Influence: 8.6] [Reference Citation Analysis]
273 Hasna K, Kumar SS, Komath M, Varma MR, Jayaraj MK, Kumar KR. Synthesis of chemically pure, luminescent Eu3+ doped HAp nanoparticles: a promising fluorescent probe for in vivo imaging applications. Phys Chem Chem Phys 2013;15:8106. [DOI: 10.1039/c3cp42648c] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
274 Mahmoudi M, Shokrgozar MA, Behzadi S. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles. Nanoscale 2013;5:3240. [DOI: 10.1039/c3nr32551b] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 5.7] [Reference Citation Analysis]
275 Sugii Y, Inada M, Yano H, Obora Y, Iwasaki Y, Arakawa R, Kawasaki H. Single nanosized FeO nanocrystals with photoluminescence properties. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-012-1379-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
276 Geppert M, Petters C, Thiel K, Dringen R. The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-012-1349-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
277 Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH. Fe 3 O 4 @SiO 2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chem Mater 2012;24:4572-80. [DOI: 10.1021/cm302828d] [Cited by in Crossref: 379] [Cited by in F6Publishing: 388] [Article Influence: 37.9] [Reference Citation Analysis]
278 Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chem Rev 2013;113:1877-903. [DOI: 10.1021/cr200472g] [Cited by in Crossref: 147] [Cited by in F6Publishing: 158] [Article Influence: 14.7] [Reference Citation Analysis]
279 Rauch J, Kolch W, Mahmoudi M. Cell type-specific activation of AKT and ERK signaling pathways by small negatively-charged magnetic nanoparticles. Sci Rep 2012;2:868. [PMID: 23162692 DOI: 10.1038/srep00868] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 4.2] [Reference Citation Analysis]
280 Hosseini F, Panahifar A, Adeli M, Amiri H, Lascialfari A, Orsini F, Doschak MR, Mahmoudi M. Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Colloids Surf B Biointerfaces 2013;103:652-7. [PMID: 23199519 DOI: 10.1016/j.colsurfb.2012.10.035] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
281 Maleki H, Simchi A, Imani M, Costa B. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. Journal of Magnetism and Magnetic Materials 2012;324:3997-4005. [DOI: 10.1016/j.jmmm.2012.06.045] [Cited by in Crossref: 86] [Cited by in F6Publishing: 88] [Article Influence: 8.6] [Reference Citation Analysis]
282 Tsai ZT, Tsai FY, Yang WC, Wang JF, Liu CL, Shen CR, Yen TC. Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent. Mar Drugs 2012;10:2403-14. [PMID: 23203267 DOI: 10.3390/md10112403] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
283 Hernández-Ortiz M, Acosta-Torres LS, Hernández-Padrón G, Mendieta AI, Bernal R, Cruz-Vázquez C, Castaño VM. Biocompatibility of crystalline opal nanoparticles. Biomed Eng Online 2012;11:78. [PMID: 23088559 DOI: 10.1186/1475-925X-11-78] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
284 Zhao X, Du P, Liu P. Preparation of aggregation-resistant biocompatible superparamagnetic noncovalent hybrid multilayer hollow microspheres for controlled drug release. Mol Pharm 2012;9:3330-9. [PMID: 22931055 DOI: 10.1021/mp300363g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
285 Liu G, Gao J, Ai H, Chen X. Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small 2013;9:1533-45. [DOI: 10.1002/smll.201201531] [Cited by in Crossref: 368] [Cited by in F6Publishing: 384] [Article Influence: 36.8] [Reference Citation Analysis]
286 Wang Q, Xie L, He Z, Di D, Liu J. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy. Int J Nanomedicine 2012;7:4715-25. [PMID: 22956872 DOI: 10.2147/IJN.S34902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
287 Kamonsatikul C, Khamnaen T, Phiriyawirut P, Charoenchaidet S, Somsook E. Synergistic activities of magnetic iron-oxide nanoparticles and stabilizing ligands containing ferrocene moieties in selective oxidation of benzyl alcohol. Catalysis Communications 2012;26:1-5. [DOI: 10.1016/j.catcom.2012.04.016] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
288 Mojtahedi MM, Abaee MS, Rajabi A, Mahmoodi P, Bagherpoor S. Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides. Journal of Molecular Catalysis A: Chemical 2012;361-362:68-71. [DOI: 10.1016/j.molcata.2012.05.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
289 Rahman MA, Miah MAJ, Minami H, Ahmad H. Preparation of magnetically doped multilayered functional silica particles via surface modification with organic polymer: MAGNETICALLY DOPED FUNCTIONAL SILICA PARTICLES. Polym Adv Technol 2013;24:174-80. [DOI: 10.1002/pat.3067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
290 Bigall NC, Parak WJ, Dorfs D. Fluorescent, magnetic and plasmonic—Hybrid multifunctional colloidal nano objects. Nano Today 2012;7:282-96. [DOI: 10.1016/j.nantod.2012.06.007] [Cited by in Crossref: 146] [Cited by in F6Publishing: 148] [Article Influence: 14.6] [Reference Citation Analysis]
291 Kut C, Zhang Y, Hedayati M, Zhou H, Cornejo C, Bordelon D, Mihalic J, Wabler M, Burghardt E, Gruettner C, Geyh A, Brayton C, Deweese TL, Ivkov R. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine (Lond) 2012;7:1697-711. [PMID: 22830502 DOI: 10.2217/nnm.12.65] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 6.1] [Reference Citation Analysis]
292 Kalathil S, Khan MM, Banerjee AN, Lee J, Cho MH. A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. J Nanopart Res 2012;14. [DOI: 10.1007/s11051-012-1051-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
293 Hellebust A, Richards-Kortum R. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 2012;7:429-45. [PMID: 22385200 DOI: 10.2217/nnm.12.12] [Cited by in Crossref: 116] [Cited by in F6Publishing: 125] [Article Influence: 11.6] [Reference Citation Analysis]
294 Subbiahdoss G, Sharifi S, Grijpma DW, Laurent S, van der Mei HC, Mahmoudi M, Busscher HJ. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater 2012;8:2047-55. [PMID: 22406508 DOI: 10.1016/j.actbio.2012.03.002] [Cited by in Crossref: 126] [Cited by in F6Publishing: 131] [Article Influence: 12.6] [Reference Citation Analysis]
295 Yang X, Jiang W, Liu L, Chen B, Wu S, Sun D, Li F. One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials 2012;324:2249-57. [DOI: 10.1016/j.jmmm.2012.02.111] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
296 Zhou J, Zhu X, Chen M, Sun Y, Li F. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials 2012;33:6201-10. [PMID: 22717364 DOI: 10.1016/j.biomaterials.2012.05.036] [Cited by in Crossref: 132] [Cited by in F6Publishing: 136] [Article Influence: 13.2] [Reference Citation Analysis]
297 Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 2012;33:4515-25. [DOI: 10.1016/j.biomaterials.2012.02.064] [Cited by in Crossref: 166] [Cited by in F6Publishing: 174] [Article Influence: 16.6] [Reference Citation Analysis]
298 Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH, Hyeon T. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r₂ relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 2012;12:3127-31. [PMID: 22575047 DOI: 10.1021/nl3010308] [Cited by in Crossref: 231] [Cited by in F6Publishing: 240] [Article Influence: 23.1] [Reference Citation Analysis]
299 Li Y, Beija M, Laurent S, Elst LV, Muller RN, Duong HTT, Lowe AB, Davis TP, Boyer C. Macromolecular Ligands for Gadolinium MRI Contrast Agents. Macromolecules 2012;45:4196-204. [DOI: 10.1021/ma300521c] [Cited by in Crossref: 119] [Cited by in F6Publishing: 119] [Article Influence: 11.9] [Reference Citation Analysis]
300 Jang ES, Shin JH, Ren G, Park MJ, Cheng K, Chen X, Wu JC, Sunwoo JB, Cheng Z. The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles. Biomaterials 2012;33:5584-92. [PMID: 22575830 DOI: 10.1016/j.biomaterials.2012.04.041] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 5.5] [Reference Citation Analysis]
301 Yun J, Sonabend AM, Ulasov IV, Kim DH, Rozhkova EA, Novosad V, Dashnaw S, Brown T, Canoll P, Bruce JN. A novel adenoviral vector labeled with superparamagnetic iron oxide nanoparticles for real-time tracking of viral delivery. J Clin Neurosci. 2012;19:875-880. [PMID: 22516547 DOI: 10.1016/j.jocn.2011.12.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
302 Tu C, Louie AY. Nanoformulations for molecular MRI. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012;4:448-57. [PMID: 22488901 DOI: 10.1002/wnan.1170] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
303 Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012;41:4306-34. [PMID: 22481569 DOI: 10.1039/c2cs15337h] [Cited by in Crossref: 930] [Cited by in F6Publishing: 949] [Article Influence: 93.0] [Reference Citation Analysis]
304 Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-garcía MP, Guedes A, Tavares PB, Grenèche J, Araújo JP, Freire C. Superparamagnetic MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chem Mater 2012;24:1496-504. [DOI: 10.1021/cm300301c] [Cited by in Crossref: 364] [Cited by in F6Publishing: 373] [Article Influence: 36.4] [Reference Citation Analysis]
305 Li M, Gu H, Zhang C. Highly sensitive magnetite nano clusters for MR cell imaging. Nanoscale Res Lett 2012;7:204. [PMID: 22462693 DOI: 10.1186/1556-276X-7-204] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
306 Li Z, Yi PW, Sun Q, Lei H, Li Zhao H, Zhu ZH, Smith SC, Lan MB, Lu GQM. Ultrasmall Water-Soluble and Biocompatible Magnetic Iron Oxide Nanoparticles as Positive and Negative Dual Contrast Agents. Adv Funct Mater 2012;22:2387-93. [DOI: 10.1002/adfm.201103123] [Cited by in Crossref: 162] [Cited by in F6Publishing: 162] [Article Influence: 16.2] [Reference Citation Analysis]
307 Liu L, Ye Q, Wu Y, Hsieh WY, Chen CL, Shen HH, Wang SJ, Zhang H, Hitchens TK, Ho C. Tracking T-cells in vivo with a new nano-sized MRI contrast agent. Nanomedicine. 2012;8:1345-1354. [PMID: 22406186 DOI: 10.1016/j.nano.2012.02.017] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 5.8] [Reference Citation Analysis]
308 Srivastava S, Awasthi R, Tripathi D, Rai MK, Agarwal V, Agrawal V, Gajbhiye NS, Gupta RK. Magnetic-nanoparticle-doped carbogenic nanocomposite: an effective magnetic resonance/fluorescence multimodal imaging probe. Small 2012;8:1099-109. [PMID: 22328128 DOI: 10.1002/smll.201101863] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 4.7] [Reference Citation Analysis]
309 Zhang S, Zhao Y, Zhi D, Zhang S. Non-viral vectors for the mediation of RNAi. Bioorganic Chemistry 2012;40:10-8. [DOI: 10.1016/j.bioorg.2011.07.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
310 Pinho SLC, Faneca H, Geraldes CFGC, Rocha J, Carlos LD, Delville M. Silica Nanoparticles for Bimodal MRI-Optical Imaging by Grafting Gd3+ and Eu3+/Tb3+ Complexes. Eur J Inorg Chem 2012;2012:2828-37. [DOI: 10.1002/ejic.201101110] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
311 Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2012;2:113-21. [PMID: 22287991 DOI: 10.7150/thno.3854] [Cited by in Crossref: 104] [Cited by in F6Publishing: 116] [Article Influence: 10.4] [Reference Citation Analysis]
312 Laurent S, Burtea C, Thirifays C, Häfeli UO, Mahmoudi M. Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and "cell vision". PLoS One 2012;7:e29997. [PMID: 22253854 DOI: 10.1371/journal.pone.0029997] [Cited by in Crossref: 138] [Cited by in F6Publishing: 141] [Article Influence: 13.8] [Reference Citation Analysis]
313 Nagakawa K, Niikura K, Suzuki T, Matsuo Y, Igarashi M, Sawa H, Ijiro K. Virus Capsid Coating of Gold Nanoparticles via Cysteine–Au Interactions and Their Effective Cellular Uptakes. Chem Lett 2012;41:113-5. [DOI: 10.1246/cl.2012.113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
314 Behzadi S, Imani M, Yousefi M, Galinetto P, Simchi A, Amiri H, Stroeve P, Mahmoudi M. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications. Nanotechnology 2012;23:045102. [DOI: 10.1088/0957-4484/23/4/045102] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
315 Cotton SA. Iron, ruthenium and osmium. Annu Rep Prog Chem , Sect A: Inorg Chem 2012;108:186. [DOI: 10.1039/c2ic90010f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
316 Maity D, Zoppellaro G, Sedenkova V, Tucek J, Safarova K, Polakova K, Tomankova K, Diwoky C, Stollberger R, Machala L, Zboril R. Surface design of core–shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. Chem Commun 2012;48:11398. [DOI: 10.1039/c2cc35515a] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 4.5] [Reference Citation Analysis]
317 Mahmoudi M, Saeedi-eslami SN, Shokrgozar MA, Azadmanesh K, Hassanlou M, Kalhor HR, Burtea C, Rothen-rutishauser B, Laurent S, Sheibani S, Vali H. Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale 2012;4:5461. [DOI: 10.1039/c2nr31185b] [Cited by in Crossref: 128] [Cited by in F6Publishing: 130] [Article Influence: 12.8] [Reference Citation Analysis]
318 Holder AA. Inorganic pharmaceuticals. Annu Rep Prog Chem , Sect A: Inorg Chem 2012;108:350. [DOI: 10.1039/c2ic90009b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
319 Mahmoudi M, Shokrgozar MA. Multifunctional stable fluorescent magnetic nanoparticles. Chem Commun 2012;48:3957. [DOI: 10.1039/c2cc30213f] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
320 Markides H, Rotherham M, El Haj AJ. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine. Journal of Nanomaterials 2012;2012:1-11. [DOI: 10.1155/2012/614094] [Cited by in Crossref: 189] [Cited by in F6Publishing: 192] [Article Influence: 18.9] [Reference Citation Analysis]
321 Rahman OU, Mohapatra SC, Ahmad S. Fe3O4 inverse spinal super paramagnetic nanoparticles. Materials Chemistry and Physics 2012;132:196-202. [DOI: 10.1016/j.matchemphys.2011.11.032] [Cited by in Crossref: 137] [Cited by in F6Publishing: 139] [Article Influence: 13.7] [Reference Citation Analysis]
322 Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 2012;112:2323-38. [PMID: 22216932 DOI: 10.1021/cr2002596] [Cited by in Crossref: 426] [Cited by in F6Publishing: 445] [Article Influence: 38.7] [Reference Citation Analysis]
323 Yu MK, Park J, Jon S. Magnetic nanoparticles and their applications in image-guided drug delivery. Drug Deliv and Transl Res 2012;2:3-21. [DOI: 10.1007/s13346-011-0049-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
324 Zhou L, He B, Zhang F. Facile One-Pot Synthesis of Iron Oxide Nanoparticles Cross-linked Magnetic Poly(vinyl alcohol) Gel Beads for Drug Delivery. ACS Appl Mater Interfaces 2012;4:192-9. [DOI: 10.1021/am201649b] [Cited by in Crossref: 118] [Cited by in F6Publishing: 120] [Article Influence: 10.7] [Reference Citation Analysis]
325 Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41:2323-2343. [PMID: 22170510 DOI: 10.1039/c1cs15188f] [Cited by in Crossref: 984] [Cited by in F6Publishing: 1028] [Article Influence: 89.5] [Reference Citation Analysis]
326 Barick KC, Hassan PA. Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interface Sci 2012;369:96-102. [PMID: 22209576 DOI: 10.1016/j.jcis.2011.12.008] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 4.5] [Reference Citation Analysis]
327 Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM. Nanoparticle-based monitoring of cell therapy. Nanotechnology 2011;22:494001. [PMID: 22101191 DOI: 10.1088/0957-4484/22/49/494001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 4.7] [Reference Citation Analysis]
328 Li F, Li X, Li B. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin. Journal of Magnetism and Magnetic Materials 2011;323:2770-5. [DOI: 10.1016/j.jmmm.2011.05.045] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
329 Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell "vision" versus physicochemical properties of nanoparticles. ACS Nano 2011;5:7263-76. [PMID: 21838310 DOI: 10.1021/nn2021088] [Cited by in Crossref: 277] [Cited by in F6Publishing: 287] [Article Influence: 25.2] [Reference Citation Analysis]
330 Hohnholt MC, Dringen R. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells. J Nanopart Res 2011;13:6761-74. [DOI: 10.1007/s11051-011-0585-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
331 Zhang J, Fu Y, Li G, Lakowicz JR, Zhao RY. Fluorescent metal nanoshell and CK19 detection on single cell image. Biochem Biophys Res Commun 2011;413:53-7. [PMID: 21867692 DOI: 10.1016/j.bbrc.2011.08.042] [Reference Citation Analysis]
332 Liu H, Chen F, Xi P, Chen B, Huang L, Cheng J, Shao C, Wang J, Bai D, Zeng Z. Biocompatible Fluorescent Hydroxyapatite: Synthesis and Live Cell Imaging Applications. J Phys Chem C 2011;115:18538-44. [DOI: 10.1021/jp206843w] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 4.4] [Reference Citation Analysis]
333 Corsi F, Fiandra L, De Palma C, Colombo M, Mazzucchelli S, Verderio P, Allevi R, Tosoni A, Nebuloni M, Clementi E, Prosperi D. HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 2011;5:6383-93. [PMID: 21790185 DOI: 10.1021/nn201570n] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 4.7] [Reference Citation Analysis]
334 Tahir MN, André R, Sahoo JK, Jochum FD, Theato P, Natalio F, Berger R, Branscheid R, Kolb U, Tremel W. Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO₂ nanorods. Nanoscale 2011;3:3907-14. [PMID: 21845257 DOI: 10.1039/c1nr10587f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
335 Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 2011;166:8-23. [PMID: 21601820 DOI: 10.1016/j.cis.2011.04.003] [Cited by in Crossref: 968] [Cited by in F6Publishing: 997] [Article Influence: 88.0] [Reference Citation Analysis]
336 Liu G, Hong R, Guo L, Liu G, Feng B, Li Y. Exothermic effect of dextran-coated Fe3O4 magnetic fluid and its compatibility with blood. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011;380:327-33. [DOI: 10.1016/j.colsurfa.2011.03.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
337 Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2011;2:118-40. [PMID: 22778862 DOI: 10.1021/cn100100e] [Cited by in Crossref: 112] [Cited by in F6Publishing: 117] [Article Influence: 10.2] [Reference Citation Analysis]
338 Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S. Effect of Nanoparticles on the Cell Life Cycle. Chem Rev 2011;111:3407-32. [DOI: 10.1021/cr1003166] [Cited by in Crossref: 254] [Cited by in F6Publishing: 264] [Article Influence: 23.1] [Reference Citation Analysis]
339 Pan J, Xi B, Li J, Yan Y, Li Q, Qian Y. Cadmium sulfide rod-bundle structures decorated with nanoparticles from an inorganic/organic composite. J Nanopart Res 2011;13:3535-43. [DOI: 10.1007/s11051-011-0277-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
340 Wu X, He X, Zhong L, Lin S, Wang D, Zhu X, Yan D. Water-soluble dendritic-linear triblock copolymer-modified magnetic nanoparticles: preparation, characterization and drug release properties. J Mater Chem 2011;21:13611. [DOI: 10.1039/c1jm11613d] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
341 Mahmoudi M, Amiri H, Shokrgozar MA, Sasanpour P, Rashidian B, Laurent S, Casula MF, Lascialfari A. Raman active jagged-shaped gold-coated magnetic particles as a novel multimodal nanoprobe. Chem Commun 2011;47:10404. [DOI: 10.1039/c1cc13413b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
342 Amiri H, Mahmoudi M, Lascialfari A. Superparamagnetic colloidal nanocrystalclusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale 2011;3:1022-30. [DOI: 10.1039/c0nr00603c] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
343 Mahmoudi M, Serpooshan V, Laurent S. Engineered nanoparticles for biomolecular imaging. Nanoscale 2011;3:3007. [DOI: 10.1039/c1nr10326a] [Cited by in Crossref: 219] [Cited by in F6Publishing: 227] [Article Influence: 19.9] [Reference Citation Analysis]