BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tyndall JD, Nall T, Fairlie DP. Proteases universally recognize beta strands in their active sites. Chem Rev 2005;105:973-99. [PMID: 15755082 DOI: 10.1021/cr040669e] [Cited by in Crossref: 295] [Cited by in F6Publishing: 268] [Article Influence: 17.4] [Reference Citation Analysis]
Number Citing Articles
1 Fontana A, Polverino de Laureto P, Spolaore B, Frare E, Zambonin M. Detecting Disordered Regions in Proteins by Limited Proteolysis. In: Uversky VN, Longhi S, editors. Instrumental Analysis of Intrinsically Disordered Proteins. Hoboken: John Wiley & Sons, Inc.; 2010. pp. 569-626. [DOI: 10.1002/9780470602614.ch20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
2 Elliott AG, Delay C, Liu H, Phua Z, Rosengren KJ, Benfield AH, Panero JL, Colgrave ML, Jayasena AS, Dunse KM, Anderson MA, Schilling EE, Ortiz-Barrientos D, Craik DJ, Mylne JS. Evolutionary origins of a bioactive peptide buried within Preproalbumin. Plant Cell 2014;26:981-95. [PMID: 24681618 DOI: 10.1105/tpc.114.123620] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
3 Robertson AL, Headey SJ, Ng NM, Wijeyewickrema LC, Scanlon MJ, Pike RN, Bottomley SP. Protein unfolding is essential for cleavage within the α-helix of a model protein substrate by the serine protease, thrombin. Biochimie 2016;122:227-34. [PMID: 26403495 DOI: 10.1016/j.biochi.2015.09.021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
4 Farady CJ, Sun J, Darragh MR, Miller SM, Craik CS. The mechanism of inhibition of antibody-based inhibitors of membrane-type serine protease 1 (MT-SP1). J Mol Biol 2007;369:1041-51. [PMID: 17475279 DOI: 10.1016/j.jmb.2007.03.078] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 3.0] [Reference Citation Analysis]
5 da Silva RR. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications. Appl Biochem Biotechnol 2017;183:1-19. [DOI: 10.1007/s12010-017-2427-2] [Cited by in Crossref: 58] [Cited by in F6Publishing: 37] [Article Influence: 11.6] [Reference Citation Analysis]
6 Hauske P, Ottmann C, Meltzer M, Ehrmann M, Kaiser M. Allosteric regulation of proteases. Chembiochem 2008;9:2920-8. [PMID: 19021141 DOI: 10.1002/cbic.200800528] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 4.5] [Reference Citation Analysis]
7 Cigliano L, De Rosa L, Diana D, Di Stasi R, Spagnuolo MS, Maresca B, Fattorusso R, D'andrea LD. Structure and biological activity of a conformational constrained apolipoprotein A-I-derived helical peptide targeting the protein haptoglobin. RSC Adv 2014;4:51353-61. [DOI: 10.1039/c4ra08507h] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
8 Oesterle S, Roberts TM, Widmer LA, Mustafa H, Panke S, Billerbeck S. Sequence-based prediction of permissive stretches for internal protein tagging and knockdown. BMC Biol 2017;15:100. [PMID: 29084520 DOI: 10.1186/s12915-017-0440-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
9 Potestio R, Aleksiev T, Pontiggia F, Cozzini S, Micheletti C. ALADYN: a web server for aligning proteins by matching their large-scale motion. Nucleic Acids Res 2010;38:W41-5. [PMID: 20444876 DOI: 10.1093/nar/gkq293] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
10 Angelini A, Morales-sanfrutos J, Diderich P, Chen S, Heinis C. Bicyclization and Tethering to Albumin Yields Long-Acting Peptide Antagonists. J Med Chem 2012;55:10187-97. [DOI: 10.1021/jm301276e] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
11 Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun (Camb) 2019;55:10192-213. [PMID: 31411602 DOI: 10.1039/c9cc03346g] [Cited by in Crossref: 38] [Cited by in F6Publishing: 12] [Article Influence: 12.7] [Reference Citation Analysis]
12 Chartier M, Desgagné M, Sousbie M, Côté J, Longpré JM, Marsault E, Sarret P. Design, Structural Optimization, and Characterization of the First Selective Macrocyclic Neurotensin Receptor Type 2 Non-opioid Analgesic. J Med Chem 2021;64:2110-24. [PMID: 33538583 DOI: 10.1021/acs.jmedchem.0c01726] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Damalanka VC, Kim Y, Galasiti Kankanamalage AC, Lushington GH, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Design, synthesis, and evaluation of a novel series of macrocyclic inhibitors of norovirus 3CL protease. Eur J Med Chem 2017;127:41-61. [PMID: 28038326 DOI: 10.1016/j.ejmech.2016.12.033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
14 Muñoz-López A, Sotos-Lomas A, Arribas E, Masia-Perez J, Garcia-Molina F, García-Moreno M, Varon R. Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. I. Kinetic analysis. J Enzyme Inhib Med Chem 2007;22:147-55. [PMID: 17518340 DOI: 10.1080/14756360601114601] [Reference Citation Analysis]
15 Potestio R, Pontiggia F, Micheletti C. Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys J 2009;96:4993-5002. [PMID: 19527659 DOI: 10.1016/j.bpj.2009.03.051] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 4.3] [Reference Citation Analysis]
16 Pethe MA, Rubenstein AB, Khare SD. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design. J Mol Biol 2017;429:220-36. [PMID: 27932294 DOI: 10.1016/j.jmb.2016.11.031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
17 Pham TK, Kim D, Lee B, Kim Y. Truncated and constrained helical analogs of antimicrobial esculentin-2EM. Bioorganic & Medicinal Chemistry Letters 2013;23:6717-20. [DOI: 10.1016/j.bmcl.2013.10.031] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
18 Che Y, Brooks BR, Marshall GR. Development of small molecules designed to modulate protein-protein interactions. J Comput Aided Mol Des 2006;20:109-30. [PMID: 16622794 DOI: 10.1007/s10822-006-9040-8] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 3.5] [Reference Citation Analysis]
19 Chappell KJ, Stoermer MJ, Fairlie DP, Young PR. Insights to Substrate Binding and Processing by West Nile Virus NS3 Protease through Combined Modeling, Protease Mutagenesis, and Kinetic Studies. Journal of Biological Chemistry 2006;281:38448-58. [DOI: 10.1074/jbc.m607641200] [Cited by in Crossref: 74] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
20 Hanessian S. Structure-Based Organic Synthesis of Drug Prototypes: A Personal Odyssey. ChemMedChem 2006;1:1300-30. [DOI: 10.1002/cmdc.200600203] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
21 Huang C, Swanson RV. Peptide-Fc Fusion Therapeutics: Applications and Challenges. In: Schmidt SR, editor. Fusion Protein Technologies for Biopharmaceuticals. Hoboken: John Wiley & Sons, Inc.; 2013. pp. 123-42. [DOI: 10.1002/9781118354599.ch8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
22 Ode H, Yokoyama M, Kanda T, Sato H. Identification of folding preferences of cleavage junctions of HIV-1 precursor proteins for regulation of cleavability. J Mol Model 2011;17:391-9. [PMID: 20480379 DOI: 10.1007/s00894-010-0739-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
23 de Veer SJ, Swedberg JE, Akcan M, Rosengren KJ, Brattsand M, Craik DJ, Harris JM. Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition. Biochem J 2015;469:243-53. [PMID: 25981970 DOI: 10.1042/BJ20150412] [Cited by in Crossref: 47] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
24 Rotstein BH, Rai V, Hili R, Yudin AK. Synthesis of peptide macrocycles using unprotected amino aldehydes. Nat Protoc 2010;5:1813-22. [DOI: 10.1038/nprot.2010.127] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 3.4] [Reference Citation Analysis]
25 Schumann NC, Bruning J, Marshall AC, Abell AD. The role of N-terminal heterocycles in hydrogen bonding to α-chymotrypsin. Bioorg Med Chem Lett 2019;29:396-9. [PMID: 30579793 DOI: 10.1016/j.bmcl.2018.12.032] [Reference Citation Analysis]
26 Turk BE. Exceptionally Selective Substrate Targeting by the Metalloprotease Anthrax Lethal Factor. Adv Exp Med Biol 2019;1111:189-203. [PMID: 30267305 DOI: 10.1007/5584_2018_273] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Micheletti C. Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments. Phys Life Rev 2013;10:1-26. [PMID: 23199577 DOI: 10.1016/j.plrev.2012.10.009] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
28 Preußke N, Lipfert M, Rothemund S, Leippe M, Sönnichsen FD. Designed Trp-Cage Proteins with Antimicrobial Activity and Enhanced Stability. Biochemistry 2021;60:3187-99. [PMID: 34613690 DOI: 10.1021/acs.biochem.1c00567] [Reference Citation Analysis]
29 Dubin G, Stec-Niemczyk J, Kisielewska M, Pustelny K, Popowicz GM, Bista M, Kantyka T, Boulware KT, Stennicke HR, Czarna A, Phopaisarn M, Daugherty PS, Thøgersen IB, Enghild JJ, Thornberry N, Dubin A, Potempa J. Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. J Mol Biol 2008;379:343-56. [PMID: 18448121 DOI: 10.1016/j.jmb.2008.03.059] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
30 Boulware KT, Jabaiah A, Daugherty PS. Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics. Biotechnol Bioeng 2010;106:339-46. [PMID: 20148412 DOI: 10.1002/bit.22693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.1] [Reference Citation Analysis]
31 Cuerrier D, Moldoveanu T, Davies PL. Determination of Peptide Substrate Specificity for μ-Calpain by a Peptide Library-based Approach. Journal of Biological Chemistry 2005;280:40632-41. [DOI: 10.1074/jbc.m506870200] [Cited by in Crossref: 98] [Cited by in F6Publishing: 50] [Article Influence: 5.8] [Reference Citation Analysis]
32 Xue F, Seto CT. Structure–activity studies of cyclic ketone inhibitors of the serine protease plasmin: Design, synthesis, and biological activity. Bioorganic & Medicinal Chemistry 2006;14:8467-87. [DOI: 10.1016/j.bmc.2006.08.040] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
33 Larsen KS, Ostergaard H, Olsen OH, Bjelke JR, Ruf W, Petersen LC. Engineering of substrate selectivity for tissue factor.factor VIIa complex signaling through protease-activated receptor 2. J Biol Chem 2010;285:19959-66. [PMID: 20388709 DOI: 10.1074/jbc.M110.101030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
34 Curcio M, Salazar IL, Mele M, Canzoniero LM, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016;143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 6.8] [Reference Citation Analysis]
35 Wheatley JL, Holyoak T. Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2. Proc Natl Acad Sci U S A 2007;104:6626-31. [PMID: 17426142 DOI: 10.1073/pnas.0701983104] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
36 Bernath-Levin K, Nelson C, Elliott AG, Jayasena AS, Millar AH, Craik DJ, Mylne JS. Peptide macrocyclization by a bifunctional endoprotease. Chem Biol 2015;22:571-82. [PMID: 25960260 DOI: 10.1016/j.chembiol.2015.04.010] [Cited by in Crossref: 61] [Cited by in F6Publishing: 52] [Article Influence: 8.7] [Reference Citation Analysis]
37 Hostetter DR, Loeb CR, Chu F, Craik CS. Hip Is a Pro-survival Substrate of Granzyme B. Journal of Biological Chemistry 2007;282:27865-74. [DOI: 10.1074/jbc.m704312200] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
38 Chen C, Wang S, Su Y, Lin YA, Lin P. Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α 3 β-Tetrapeptide Analogues. Chem Asian J 2017;12:1326-37. [DOI: 10.1002/asia.201700339] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
39 Jones MA, Coxon JM, Mcnabb SB, Mehrtens JM, Alexander NA, Jones S, Chen H, Buisan C, Abell AD. Efficient Large-Scale Synthesis of CAT811, a Potent Calpain Inhibitor of Interest in the Treatment of Cataracts. Aust J Chem 2009;62:671. [DOI: 10.1071/ch09101] [Cited by in Crossref: 7] [Article Influence: 0.5] [Reference Citation Analysis]
40 Prior AM, Hori T, Fishman A, Sun D. Recent Reports of Solid-Phase Cyclohexapeptide Synthesis and Applications. Molecules 2018;23:E1475. [PMID: 29912160 DOI: 10.3390/molecules23061475] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
41 Paetzel M. Bacterial Signal Peptidases. Subcell Biochem 2019;92:187-219. [PMID: 31214988 DOI: 10.1007/978-3-030-18768-2_7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
42 Eghtedari M, Jafari Porzani S, Nowruzi B. Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochemistry Letters 2021;42:87-103. [DOI: 10.1016/j.phytol.2021.02.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
43 Waldner BJ, Kraml J, Kahler U, Spinn A, Schauperl M, Podewitz M, Fuchs JE, Cruciani G, Liedl KR. Electrostatic recognition in substrate binding to serine proteases. J Mol Recognit 2018;31:e2727. [PMID: 29785722 DOI: 10.1002/jmr.2727] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
44 Liu T, Fu G, Luo X, Liu Y, Wang Y, Wang RE, Schultz PG, Wang F. Rational design of antibody protease inhibitors. J Am Chem Soc 2015;137:4042-5. [PMID: 25775396 DOI: 10.1021/ja5130786] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
45 Nielsen DS, Hoang HN, Lohman R, Hill TA, Lucke AJ, Craik DJ, Edmonds DJ, Griffith DA, Rotter CJ, Ruggeri RB, Price DA, Liras S, Fairlie DP. Improving on Nature: Making a Cyclic Heptapeptide Orally Bioavailable. Angew Chem 2014;126:12255-9. [DOI: 10.1002/ange.201405364] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
46 Pogson M, Georgiou G, Iverson BL. Engineering next generation proteases. Curr Opin Biotechnol 2009;20:390-7. [PMID: 19709875 DOI: 10.1016/j.copbio.2009.07.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
47 Hinzman MW, Essex ME, Park C. Salt bridge as a gatekeeper against partial unfolding. Protein Sci 2016;25:999-1009. [PMID: 26916981 DOI: 10.1002/pro.2908] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Bondar A. Biophysical mechanism of rhomboid proteolysis: Setting a foundation for therapeutics. Seminars in Cell & Developmental Biology 2016;60:46-51. [DOI: 10.1016/j.semcdb.2016.09.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
49 Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem . [DOI: 10.1021/acs.jmedchem.1c01456] [Reference Citation Analysis]
50 Aoki K, Maeda M, Nakae T, Okada Y, Ohya K, Chiba K. A disulfide bond replacement strategy enables the efficient design of artificial therapeutic peptides. Tetrahedron 2014;70:7774-9. [DOI: 10.1016/j.tet.2014.05.079] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
51 Strisovsky K, Sharpe HJ, Freeman M. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol Cell 2009;36:1048-59. [PMID: 20064469 DOI: 10.1016/j.molcel.2009.11.006] [Cited by in Crossref: 145] [Cited by in F6Publishing: 136] [Article Influence: 12.1] [Reference Citation Analysis]
52 Koch O. Use of secondary structure element information in drug design: polypharmacology and conserved motifs in protein–ligand binding and protein–protein interfaces. Future Medicinal Chemistry 2011;3:699-708. [DOI: 10.4155/fmc.11.26] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
53 Njoroge FG, Chen KX, Shih NY, Piwinski JJ. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res. 2008;41:50-59. [PMID: 18193821 DOI: 10.1021/ar700109k] [Cited by in Crossref: 176] [Cited by in F6Publishing: 148] [Article Influence: 12.6] [Reference Citation Analysis]
54 Karstad R, Isaksen G, Brandsdal B, Svendsen JS, Svenson J. Unnatural Amino Acid Side Chains as S1, S1′, and S2′ Probes Yield Cationic Antimicrobial Peptides with Stability toward Chymotryptic Degradation. J Med Chem 2010;53:5558-66. [DOI: 10.1021/jm1006337] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
55 Chen QY, Luo D, Seabra GM, Luesch H. Ahp-Cyclodepsipeptides as tunable inhibitors of human neutrophil elastase and kallikrein 7: Total synthesis of tutuilamide A, serine protease selectivity profile and comparison with lyngbyastatin 7. Bioorg Med Chem 2020;28:115756. [PMID: 33002682 DOI: 10.1016/j.bmc.2020.115756] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Syrén P. The solution of nitrogen inversion in amidases. FEBS J 2013;280:3069-83. [DOI: 10.1111/febs.12241] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
57 Chua KCH, Pietsch M, Zhang X, Hautmann S, Chan HY, Bruning JB, Gütschow M, Abell AD. Macrocyclic Protease Inhibitors with Reduced Peptide Character. Angew Chem 2014;126:7962-5. [DOI: 10.1002/ange.201404301] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
58 Maes V, Tourwé D. Aspects of Peptidomimetics. In: Jensen KJ, editor. Peptide and Protein Design for Biopharmaceutical Applications. Chichester: John Wiley & Sons, Ltd; 2009. pp. 49-131. [DOI: 10.1002/9780470749708.ch3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
59 Sisay MT, Hautmann S, Mehner C, König GM, Bajorath J, Gütschow M. Inhibition of human leukocyte elastase by brunsvicamides a-C: cyanobacterial cyclic peptides. ChemMedChem 2009;4:1425-9. [PMID: 19569166 DOI: 10.1002/cmdc.200900139] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
60 Mo CY, Birdwell LD, Kohli RM. Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis. Biochemistry 2014;53:3158-68. [PMID: 24779472 DOI: 10.1021/bi500026e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
61 Guarracino DA, Riordan JA, Barreto GM, Oldfield AL, Kouba CM, Agrinsoni D. Macrocyclic Control in Helix Mimetics. Chem Rev 2019;119:9915-49. [DOI: 10.1021/acs.chemrev.8b00623] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
62 Jia F, Fan J, Zhang B, Yuan Z. Mutagenesis of D80-82 and G83 residues in West Nile Virus NS2B: effects on NS2B-NS3 activity and viral replication. Virol Sin 2013;28:16-23. [PMID: 23325418 DOI: 10.1007/s12250-013-3276-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
63 Ilisz I, Gecse Z, Pataj Z, Fülöp F, Tóth G, Lindner W, Péter A. Direct high-performance liquid chromatographic enantioseparation of secondary amino acids on Cinchona alkaloid-based chiral zwitterionic stationary phases. Unusual temperature behavior. Journal of Chromatography A 2014;1363:169-77. [DOI: 10.1016/j.chroma.2014.06.087] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
64 Al-horani RA, Desai UR. Recent Advances on Plasmin Inhibitors for the Treatment of Fibrinolysis-Related Disorders: RECENT ADVANCES ON PLASMIN INHIBITORS. Med Res Rev 2014;34:1168-216. [DOI: 10.1002/med.21315] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
65 Chung BKW, Hickey JL, Scully CCG, Zaretsky S, Yudin AK. Bicycle synthesis through peptide macrocyclization using aziridine aldehydes followed by late stage disulfide bond installation. Med Chem Commun 2013;4:1124-8. [DOI: 10.1039/c3md00054k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
66 Fontana A, Spolaore B, Mero A, Veronese FM. The site-specific TGase-mediated PEGylation of proteins occurs at flexible sites. In: Veronese FM, editor. PEGylated Protein Drugs: Basic Science and Clinical Applications. Basel: Birkhäuser; 2009. pp. 89-112. [DOI: 10.1007/978-3-7643-8679-5_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
67 Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016;60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
68 Jastaniah A, Gaisina IN, Knopp RC, Thatcher GRJ. Synthesis of α-Ketoamide-Based Stereoselective Calpain-1 Inhibitors as Neuroprotective Agents. ChemMedChem 2020;15:2280-5. [PMID: 32840034 DOI: 10.1002/cmdc.202000385] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Dhillon A, Sharma K, Rajulapati V, Goyal A. Proteolytic Enzymes. Current Developments in Biotechnology and Bioengineering. Elsevier; 2017. pp. 149-73. [DOI: 10.1016/b978-0-444-63662-1.00007-5] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
70 Hilinski GJ, Kim YW, Hong J, Kutchukian PS, Crenshaw CM, Berkovitch SS, Chang A, Ham S, Verdine GL. Stitched α-helical peptides via bis ring-closing metathesis. J Am Chem Soc 2014;136:12314-22. [PMID: 25105213 DOI: 10.1021/ja505141j] [Cited by in Crossref: 96] [Cited by in F6Publishing: 84] [Article Influence: 12.0] [Reference Citation Analysis]
71 Jacobsen Ø, Klaveness J, Rongved P. Structural and pharmacological effects of ring-closing metathesis in peptides. Molecules 2010;15:6638-77. [PMID: 20877250 DOI: 10.3390/molecules15096638] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
72 Fuchs JE, von Grafenstein S, Huber RG, Margreiter MA, Spitzer GM, Wallnoefer HG, Liedl KR. Cleavage entropy as quantitative measure of protease specificity. PLoS Comput Biol 2013;9:e1003007. [PMID: 23637583 DOI: 10.1371/journal.pcbi.1003007] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 4.6] [Reference Citation Analysis]
73 Quesne MG, Ward RA, de Visser SP. Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front Chem 2013;1:39. [PMID: 24790966 DOI: 10.3389/fchem.2013.00039] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
74 Sukuru SC, Nigsch F, Quancard J, Renatus M, Chopra R, Brooijmans N, Mikhailov D, Deng Z, Cornett A, Jenkins JL, Hommel U, Davies JW, Glick M. A lead discovery strategy driven by a comprehensive analysis of proteases in the peptide substrate space. Protein Sci 2010;19:2096-109. [PMID: 20799349 DOI: 10.1002/pro.490] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
75 Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP. Over One Hundred Peptide-Activated G Protein-Coupled Receptors Recognize Ligands with Turn Structure. Chem Rev 2005;105:793-826. [DOI: 10.1021/cr040689g] [Cited by in Crossref: 172] [Cited by in F6Publishing: 158] [Article Influence: 10.1] [Reference Citation Analysis]
76 Luo C, Roussel P, Dreier J, Page MG, Paetzel M. Crystallographic analysis of bacterial signal peptidase in ternary complex with arylomycin A2 and a beta-sultam inhibitor. Biochemistry 2009;48:8976-84. [PMID: 19655811 DOI: 10.1021/bi9009538] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
77 Kumar NV. A DFT study on the role of long range correlation interaction and solvent effects in homochiral and heterochiral cyclic trimerization of imidazole based heterocyclic amino acids. J Mol Model 2016;22:141. [PMID: 27221744 DOI: 10.1007/s00894-016-3003-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
78 Ehmke V, Heindl C, Rottmann M, Freymond C, Schweizer WB, Brun R, Stich A, Schirmeister T, Diederich F. Potent and selective inhibition of cysteine proteases from Plasmodium falciparum and Trypanosoma brucei. ChemMedChem 2011;6:273-8. [PMID: 21275051 DOI: 10.1002/cmdc.201000449] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.2] [Reference Citation Analysis]
79 Sieburth SM. Silicon Mimics of Unstable Carbon. In: Schwarz J, editor. Atypical Elements in Drug Design. Cham: Springer International Publishing; 2016. pp. 61-85. [DOI: 10.1007/7355_2014_80] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
80 Payne CD, Vadlamani G, Fisher MF, Zhang J, Clark RJ, Mylne JS, Rosengren KJ. Defining the Familial Fold of the Vicilin-Buried Peptide Family. J Nat Prod 2020;83:3030-40. [PMID: 32997497 DOI: 10.1021/acs.jnatprod.0c00594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules. [DOI: 10.1021/acs.macromol.2c00291] [Reference Citation Analysis]
82 Vu O, Bender BJ, Pankewitz L, Huster D, Beck-Sickinger AG, Meiler J. The Structural Basis of Peptide Binding at Class A G Protein-Coupled Receptors. Molecules 2021;27:210. [PMID: 35011444 DOI: 10.3390/molecules27010210] [Reference Citation Analysis]
83 White CJ, Yudin AK. Contemporary strategies for peptide macrocyclization. Nat Chem 2011;3:509-24. [PMID: 21697871 DOI: 10.1038/nchem.1062] [Cited by in Crossref: 673] [Cited by in F6Publishing: 576] [Article Influence: 61.2] [Reference Citation Analysis]
84 Collins LJ, Kurland CG, Biggs P, Penny D. The modern RNP world of eukaryotes. J Hered 2009;100:597-604. [PMID: 19643816 DOI: 10.1093/jhered/esp064] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
85 Beher D, Graham SL. Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease. Expert Opinion on Investigational Drugs 2005;14:1385-409. [DOI: 10.1517/13543784.14.11.1385] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 2.7] [Reference Citation Analysis]
86 Smith AB 3rd, Charnley AK, Hirschmann R. Pyrrolinone-based peptidomimetics. "Let the enzyme or receptor be the judge". Acc Chem Res 2011;44:180-93. [PMID: 21175156 DOI: 10.1021/ar1001186] [Cited by in Crossref: 75] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
87 Henchey LK, Jochim AL, Arora PS. Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr Opin Chem Biol 2008;12:692-7. [PMID: 18793750 DOI: 10.1016/j.cbpa.2008.08.019] [Cited by in Crossref: 230] [Cited by in F6Publishing: 213] [Article Influence: 16.4] [Reference Citation Analysis]
88 Jiang Y, Li BQ, Zhang Y, Feng YM, Gao YF, Zhang N, Cai YD. Prediction and Analysis of Post-Translational Pyruvoyl Residue Modification Sites from Internal Serines in Proteins. PLoS One 2013;8:e66678. [PMID: 23805260 DOI: 10.1371/journal.pone.0066678] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
89 Rotstein BH, Mourtada R, Kelley SO, Yudin AK. Solvatochromic reagents for multicomponent reactions and their utility in the development of cell-permeable macrocyclic peptide vectors. Chemistry 2011;17:12257-61. [PMID: 21932287 DOI: 10.1002/chem.201102096] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
90 Syrén PO, Hendil-Forssell P, Aumailley L, Besenmatter W, Gounine F, Svendsen A, Martinelle M, Hult K. Esterases with an introduced amidase-like hydrogen bond in the transition state have increased amidase specificity. Chembiochem 2012;13:645-8. [PMID: 22378481 DOI: 10.1002/cbic.201100779] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
91 Fuchs JE, Schilling O, Liedl KR. Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data. Curr Protein Pept Sci 2017;18:905-13. [PMID: 27455965 DOI: 10.2174/1389203717666160724211231] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
92 Sawyer N, Watkins AM, Arora PS. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Acc Chem Res 2017;50:1313-22. [PMID: 28561588 DOI: 10.1021/acs.accounts.7b00130] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
93 Kim YW, Kutchukian PS, Verdine GL. Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis. Org Lett 2010;12:3046-9. [PMID: 20527740 DOI: 10.1021/ol1010449] [Cited by in Crossref: 94] [Cited by in F6Publishing: 83] [Article Influence: 7.8] [Reference Citation Analysis]
94 Ottersbach PA, Schmitz J, Schnakenburg G, Gütschow M. An access to aza-Freidinger lactams and E-locked analogs. Org Lett 2013;15:448-51. [PMID: 23320486 DOI: 10.1021/ol3030583] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
95 Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021;50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
96 White CJ, Hickey JL, Scully CC, Yudin AK. Site-specific integration of amino acid fragments into cyclic peptides. J Am Chem Soc 2014;136:3728-31. [PMID: 24533886 DOI: 10.1021/ja412256f] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
97 Santos DA, de Souza Costa MG, Alves CR, Caffarena ER. Structural and dynamic insights into the C-terminal extension of cysteine proteinase B from Leishmania amazonensis. Journal of Molecular Graphics and Modelling 2016;70:30-9. [DOI: 10.1016/j.jmgm.2016.08.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
98 Chen C, Yang E, Hsu H, Sun Y, Hsu W, Yang A. Protease substrate site predictors derived from machine learning on multilevel substrate phage display data. Bioinformatics 2008;24:2691-7. [DOI: 10.1093/bioinformatics/btn538] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
99 Dinh TT, Kim D, Luong HX, Lee B, Kim Y. Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorganic & Medicinal Chemistry Letters 2015;25:4016-9. [DOI: 10.1016/j.bmcl.2015.06.053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
100 Spolaore B, Raboni S, Ramos Molina A, Satwekar A, Damiano N, Fontana A. Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry 2012;51:8679-89. [PMID: 23083324 DOI: 10.1021/bi301005z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 4.7] [Reference Citation Analysis]
101 Spolaore B, Damiano N, Raboni S, Fontana A. Site-specific derivatization of avidin using microbial transglutaminase. Bioconjug Chem 2014;25:470-80. [PMID: 24517223 DOI: 10.1021/bc400378h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
102 Wang J, Li X. Complex cyclic peptide synthesis via serine/threonine ligation chemistry. Bioorg Med Chem Lett 2021;54:128430. [PMID: 34757215 DOI: 10.1016/j.bmcl.2021.128430] [Reference Citation Analysis]
103 Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017;78:268-82. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
104 Chappell KJ, Stoermer MJ, Fairlie DP, Young PR. Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3. Protein Expr Purif 2007;53:87-96. [PMID: 17174105 DOI: 10.1016/j.pep.2006.10.022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
105 Svenson J, Stensen W, Brandsdal BO, Haug BE, Monrad J, Svendsen JS. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 2008;47:3777-88. [PMID: 18307313 DOI: 10.1021/bi7019904] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 6.3] [Reference Citation Analysis]
106 Meyer FM, Collins JC, Borin B, Bradow J, Liras S, Limberakis C, Mathiowetz AM, Philippe L, Price D, Song K, James K. Biaryl-bridged macrocyclic peptides: conformational constraint via carbogenic fusion of natural amino acid side chains. J Org Chem 2012;77:3099-114. [PMID: 22352804 DOI: 10.1021/jo202105v] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
107 Bartoli L, Calabrese R, Fariselli P, Mita DG, Casadio R. A computational approach for detecting peptidases and their specific inhibitors at the genome level. BMC Bioinformatics 2007;8 Suppl 1:S3. [PMID: 17430570 DOI: 10.1186/1471-2105-8-S1-S3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
108 Morewood R, Nitsche C. A biocompatible stapling reaction for in situ generation of constrained peptides. Chem Sci 2020;12:669-74. [PMID: 34163798 DOI: 10.1039/d0sc05125j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
109 Chartier M, Desgagné M, Sousbie M, Rumsby C, Chevillard L, Théroux L, Haroune L, Côté J, Longpré JM, Boudreault PL, Marsault É, Sarret P. Pharmacodynamic and pharmacokinetic profiles of a neurotensin receptor type 2 (NTS2) analgesic macrocyclic analog. Biomed Pharmacother 2021;141:111861. [PMID: 34229249 DOI: 10.1016/j.biopha.2021.111861] [Reference Citation Analysis]
110 Law AM, Lai SW, Tavares J, Kimber MS. The Structural Basis of β-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase. Journal of Molecular Biology 2009;392:393-404. [DOI: 10.1016/j.jmb.2009.07.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
111 Robin G, Chappell K, Stoermer MJ, Hu S, Young PR, Fairlie DP, Martin JL. Structure of West Nile Virus NS3 Protease: Ligand Stabilization of the Catalytic Conformation. Journal of Molecular Biology 2009;385:1568-77. [DOI: 10.1016/j.jmb.2008.11.026] [Cited by in Crossref: 108] [Cited by in F6Publishing: 99] [Article Influence: 8.3] [Reference Citation Analysis]
112 Londregan AT, Farley KA, Limberakis C, Mullins PB, Piotrowski DW. A new and useful method for the macrocyclization of linear peptides. Org Lett 2012;14:2890-3. [PMID: 22612479 DOI: 10.1021/ol301173m] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
113 Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Comput Struct Biotechnol J 2019;17:263-81. [PMID: 30867891 DOI: 10.1016/j.csbj.2019.01.012] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 19.3] [Reference Citation Analysis]
114 Syrén P, Hult K. Amidases Have a Hydrogen Bond that Facilitates Nitrogen Inversion, but Esterases Have Not. ChemCatChem 2011;3:853-60. [DOI: 10.1002/cctc.201000448] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
115 Li Y, Liu B, Liu Z, Meng X, Wang D. Synthesis of a novel chitosan-based Ce(IV) complex with proteolytic activity in vitro toward edible biological proteins. Carbohydr Polym 2016;140:154-62. [PMID: 26876839 DOI: 10.1016/j.carbpol.2015.12.035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
116 Méndez-Ardoy A, Insua I, Granja JR, Montenegro J. Cyclization and Self-Assembly of Cyclic Peptides. Methods Mol Biol 2022;2371:449-66. [PMID: 34596863 DOI: 10.1007/978-1-0716-1689-5_24] [Reference Citation Analysis]
117 Biron É, Vézina-dawod S, Bédard F. Synthetic Strategies for Macrocyclic Peptides. In: Marsault E, Peterson ML, editors. Practical Medicinal Chemistry with Macrocycles. Hoboken: John Wiley & Sons, Inc.; 2017. pp. 205-41. [DOI: 10.1002/9781119092599.ch9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
118 Zhang X, Glunz PW, Jiang W, Schmitt A, Newman M, Barbera FA, Bozarth JM, Rendina AR, Wei A, Wen X, Rossi KA, Luettgen JM, Wong PC, Knabb RM, Wexler RR, Scott Priestley E. Design and synthesis of bicyclic pyrazinone and pyrimidinone amides as potent TF–FVIIa inhibitors. Bioorganic & Medicinal Chemistry Letters 2013;23:1604-7. [DOI: 10.1016/j.bmcl.2013.01.094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
119 Stoermer MJ, Chappell KJ, Liebscher S, Jensen CM, Gan CH, Gupta PK, Xu W, Young PR, Fairlie DP. Potent Cationic Inhibitors of West Nile Virus NS2B/NS3 Protease With Serum Stability, Cell Permeability and Antiviral Activity. J Med Chem 2008;51:5714-21. [DOI: 10.1021/jm800503y] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 4.6] [Reference Citation Analysis]
120 Singam ERA, Balamurugan K, Gopalakrishnan R, Subramanian SR, Subramanian V, Ramasami T. Molecular dynamic simulation studies on the effect of one residue chain staggering on the structure and stability of heterotrimeric collagen-like peptides with interruption. Biopolymers 2012;97:847-63. [DOI: 10.1002/bip.22085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
121 Hines CS, Ray K, Schmidt JJ, Xiong F, Feenstra RW, Pras-Raves M, de Moes JP, Lange JH, Melikishvili M, Fried MG, Mortenson P, Charlton M, Patel Y, Courtney SM, Kruse CG, Rodgers DW. Allosteric inhibition of the neuropeptidase neurolysin. J Biol Chem 2014;289:35605-19. [PMID: 25378390 DOI: 10.1074/jbc.M114.620930] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
122 Abell AD, Alexander NA, Aitken SG, Chen H, Coxon JM, Jones MA, Mcnabb SB, Muscroft-taylor A. Synthesis of Macrocyclic β-Strand Templates by Ring Closing Metathesis. J Org Chem 2009;74:4354-6. [DOI: 10.1021/jo802723w] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
123 Mashima A, Kurahashi M, Sasahara K, Yoshida T, Chuman H. Connecting Classical QSAR and LERE Analyses Using Modern Molecular Calculations, LERE-QSAR (VI): Hydrolysis of Substituted Hippuric Acid Phenyl Esters by Trypsin. Mol Inform 2014;33:802-14. [PMID: 27485426 DOI: 10.1002/minf.201400099] [Reference Citation Analysis]
124 Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, Kuhne K, Bergmann R, Haase-Kohn C, Urbanová M, Steinbach J, Pietzsch J. Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. Amino Acids 2019;51:219-44. [PMID: 30264172 DOI: 10.1007/s00726-018-2657-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
125 Hanessian S, Ritson DJ. Structure-Based Organic Synthesis of a Tricyclic N -Malayamycin Analogue. J Org Chem 2006;71:9807-17. [DOI: 10.1021/jo061904r] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
126 Johnson AM, Anslyn EV. Reversible Macrocyclization of Peptides with a Conjugate Acceptor. Org Lett 2017;19:1654-7. [DOI: 10.1021/acs.orglett.7b00451] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
127 Agrigento P, Albericio F, Chamoin S, Dacquignies I, Koc H, Eberle M. Facile and Mild Synthesis of Linear and Cyclic Peptides via Thioesters. Org Lett 2014;16:3922-5. [DOI: 10.1021/ol501669n] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
128 Ishchenko A, Liu Z, Lindblom P, Wu G, Jim K, Gregg RD, Claremon DA, Singh SB. Structure-Based Design Technology Contour and Its Application to the Design of Renin Inhibitors. J Chem Inf Model 2012;52:2089-97. [DOI: 10.1021/ci200605k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
129 Löser R, Gütschow M. Dipeptide-derived nitriles containing additional electrophilic sites: potentially irreversible inhibitors of cysteine proteases. J Enzyme Inhib Med Chem 2009;24:1245-52. [PMID: 19912058 DOI: 10.3109/14756360902797328] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
130 Ng NM, Pierce JD, Webb GI, Ratnikov BI, Wijeyewickrema LC, Duncan RC, Robertson AL, Bottomley SP, Boyd SE, Pike RN. Discovery of Amino Acid Motifs for Thrombin Cleavage and Validation Using a Model Substrate. Biochemistry 2011;50:10499-507. [DOI: 10.1021/bi201333g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
131 Lemberg MK, Freeman M. Cutting proteins within lipid bilayers: rhomboid structure and mechanism. Mol Cell. 2007;28:930-940. [PMID: 18158892 DOI: 10.1016/j.molcel.2007.12.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 3.2] [Reference Citation Analysis]
132 Reguera L, Rivera DG. Multicomponent Reaction Toolbox for Peptide Macrocyclization and Stapling. Chem Rev 2019;119:9836-60. [PMID: 30990310 DOI: 10.1021/acs.chemrev.8b00744] [Cited by in Crossref: 87] [Cited by in F6Publishing: 60] [Article Influence: 29.0] [Reference Citation Analysis]
133 Le GT, Abbenante G, Fairlie DP. Profiling the enzymatic properties and inhibition of human complement factor B. J Biol Chem 2007;282:34809-16. [PMID: 17921140 DOI: 10.1074/jbc.M705646200] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
134 Fontana A, de Laureto PP, Spolaore B, Frare E. Identifying Disordered Regions in Proteins by Limited Proteolysis. In: Uversky VN, Dunker AK, editors. Intrinsically Disordered Protein Analysis. New York: Springer; 2012. pp. 297-318. [DOI: 10.1007/978-1-4614-3704-8_20] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
135 Langosch D, Steiner H. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics. Biol Chem 2017;398:441-53. [PMID: 27845877 DOI: 10.1515/hsz-2016-0269] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
136 Mavridis K, Avgeris M, Scorilas A. Targeting kallikrein-related peptidases in prostate cancer. Expert Opinion on Therapeutic Targets 2014;18:365-83. [DOI: 10.1517/14728222.2014.880693] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
137 Theron LW, Divol B. Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 2014;98:8853-68. [PMID: 25269600 DOI: 10.1007/s00253-014-6035-6] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 6.5] [Reference Citation Analysis]
138 Varón R, García-Moreno M, Valera-Ruipérez D, García-Molina F, García-Cánovas F, Ladrón-de Guevara RG, Masiá-Pérez J, Havsteen BH. Kinetic analysis of a general model of activation of aspartic proteinase zymogens. J Theor Biol 2006;242:743-54. [PMID: 16762372 DOI: 10.1016/j.jtbi.2006.04.013] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
139 Bernal F, Katz SG. Synthesis of stabilized alpha-helical peptides. Methods Mol Biol 2014;1176:107-14. [PMID: 25030922 DOI: 10.1007/978-1-4939-0992-6_9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
140 Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M. AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 2011;68:2845-57. [PMID: 21590312 DOI: 10.1007/s00018-011-0724-4] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 4.8] [Reference Citation Analysis]
141 Seebach D, Lukaszuk A, Patora-komisarska K, Podwysocka D, Gardiner J, Ebert M, Reubi JC, Cescato R, Waser B, Gmeiner P, Hübner H, Rougeot C. On the Terminal Homologation of Physiologically Active Peptides as a Means of Increasing Stability in Human Serum - Neurotensin, Opiorphin, B27-KK10 Epitope, NPY. Chemistry & Biodiversity 2011;8:711-39. [DOI: 10.1002/cbdv.201100093] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
142 Taguchi Y, Hohsfield LA, Hollister JR, Baron GS. Effects of FlAsH/tetracysteine (TC) Tag on PrP proteolysis and PrPres formation by TC-scanning. Chembiochem 2013;14:1597-610, 1510. [PMID: 23943295 DOI: 10.1002/cbic.201300255] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
143 Zhang J, Mulumba M, Ong H, Lubell WD. Diversity-Oriented Synthesis of Cyclic Azapeptides by A 3 -Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics. Angew Chem 2017;129:6381-5. [DOI: 10.1002/ange.201611685] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
144 Nielsen DS, Hoang HN, Lohman RJ, Hill TA, Lucke AJ, Craik DJ, Edmonds DJ, Griffith DA, Rotter CJ, Ruggeri RB, Price DA, Liras S, Fairlie DP. Improving on nature: making a cyclic heptapeptide orally bioavailable. Angew Chem Int Ed Engl 2014;53:12059-63. [PMID: 25219505 DOI: 10.1002/anie.201405364] [Cited by in Crossref: 106] [Cited by in F6Publishing: 99] [Article Influence: 13.3] [Reference Citation Analysis]
145 Fisher JF, Mobashery S. Recent advances in MMP inhibitor design. Cancer Metastasis Rev 2006;25:115-36. [DOI: 10.1007/s10555-006-7894-9] [Cited by in Crossref: 186] [Cited by in F6Publishing: 178] [Article Influence: 11.6] [Reference Citation Analysis]
146 Oliveira LC, Silva VO, Okamoto DN, Kondo MY, Santos SM, Hirata IY, Vallim MA, Pascon RC, Gouvea IE, Juliano MA, Juliano L. Internally quenched fluorescent peptide libraries with randomized sequences designed to detect endopeptidases. Anal Biochem 2012;421:299-307. [PMID: 22067978 DOI: 10.1016/j.ab.2011.10.025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
147 Merritt HI, Sawyer N, Arora PS. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Pept Sci (Hoboken) 2020;112:e24145. [PMID: 33575525 DOI: 10.1002/pep2.24145] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
148 Popovic S, Wijsman L, Landman IR, Sangster MF, Pastoors D, Veldhorst BB, Hiemstra H, van Maarseveen JH. Fine-Tuning the Balance between Peptide Thioester Cyclization and Racemization. Eur J Org Chem 2016;2016:443-6. [DOI: 10.1002/ejoc.201501366] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
149 Kurland CG. The RNA dreamtime: modern cells feature proteins that might have supported a prebiotic polypeptide world but nothing indicates that RNA world ever was. Bioessays 2010;32:866-71. [PMID: 20806270 DOI: 10.1002/bies.201000058] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
150 Hsu HJ, Tsai KC, Sun YK, Chang HJ, Huang YJ, Yu HM, Lin CH, Mao SS, Yang AS. Factor Xa active site substrate specificity with substrate phage display and computational molecular modeling. J Biol Chem 2008;283:12343-53. [PMID: 18296445 DOI: 10.1074/jbc.M708843200] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
151 Luong HX, Kim D, Lee B, Kim Y. Antimicrobial activity and stability of stapled helices of polybia-MP1. Arch Pharm Res 2017;40:1414-9. [DOI: 10.1007/s12272-017-0963-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
152 Kore AR, Shanmugasundaram M. Design, synthesis and inhibitory effect of pentapeptidyl chloromethyl ketones on proteinase K. Bioorganic & Medicinal Chemistry 2010;18:8383-7. [DOI: 10.1016/j.bmc.2010.09.048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
153 Elliott AG, Franke B, Armstrong DA, Craik DJ, Mylne JS, Rosengren KJ. Natural structural diversity within a conserved cyclic peptide scaffold. Amino Acids 2017;49:103-16. [PMID: 27695949 DOI: 10.1007/s00726-016-2333-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
154 Barazza A, Götz M, Cadamuro SA, Goettig P, Willem M, Steuber H, Kohler T, Jestel A, Reinemer P, Renner C, Bode W, Moroder L. Macrocyclic Statine-Based Inhibitors of BACE-1. ChemBioChem 2007;8:2078-91. [DOI: 10.1002/cbic.200700383] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
155 Gros G, Martinez L, Gimenez AS, Adler P, Maurin P, Wolkowicz R, Falson P, Hasserodt J. Modular construction of quaternary hemiaminal-based inhibitor candidates and their in cellulo assessment with HIV-1 protease. Bioorg Med Chem 2013;21:5407-13. [PMID: 23911197 DOI: 10.1016/j.bmc.2013.06.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
156 Li BQ, Cai YD, Feng KY, Zhao GJ. Prediction of protein cleavage site with feature selection by random forest. PLoS One 2012;7:e45854. [PMID: 23029276 DOI: 10.1371/journal.pone.0045854] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
157 Harrison RS, Sharpe PC, Singh Y, Fairlie DP. Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 2007;159:1-77. [PMID: 17846922 DOI: 10.1007/112_2007_0701] [Cited by in Crossref: 42] [Cited by in F6Publishing: 70] [Article Influence: 2.8] [Reference Citation Analysis]
158 Chua KCH, Pietsch M, Zhang X, Hautmann S, Chan HY, Bruning JB, Gütschow M, Abell AD. Macrocyclic Protease Inhibitors with Reduced Peptide Character. Angew Chem Int Ed 2014;53:7828-31. [DOI: 10.1002/anie.201404301] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
159 James AM, Haywood J, Mylne JS. Macrocyclization by asparaginyl endopeptidases. New Phytol 2018;218:923-8. [PMID: 28322452 DOI: 10.1111/nph.14511] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
160 Skowron KJ, Speltz TE, Moore TW. Recent structural advances in constrained helical peptides. Med Res Rev 2019;39:749-70. [PMID: 30307621 DOI: 10.1002/med.21540] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
161 Fields GB. Interstitial collagen catabolism. J Biol Chem 2013;288:8785-93. [PMID: 23430258 DOI: 10.1074/jbc.R113.451211] [Cited by in Crossref: 108] [Cited by in F6Publishing: 58] [Article Influence: 12.0] [Reference Citation Analysis]
162 Milroy L, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014;114:4695-748. [DOI: 10.1021/cr400698c] [Cited by in Crossref: 306] [Cited by in F6Publishing: 268] [Article Influence: 38.3] [Reference Citation Analysis]
163 Xi L, Du J, Li S, Li J, Liu H, Yao X. A combined molecular modeling study on gelatinases and their potent inhibitors. J Comput Chem 2010;31:24-42. [DOI: 10.1002/jcc.21279] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
164 Fontana A, Spolaore B, Mero A, Veronese FM. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Advanced Drug Delivery Reviews 2008;60:13-28. [DOI: 10.1016/j.addr.2007.06.015] [Cited by in Crossref: 184] [Cited by in F6Publishing: 163] [Article Influence: 13.1] [Reference Citation Analysis]
165 Johnson TA, Qiu J, Plaut AG, Holyoak T. Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of haemophilus influenzae immunoglobulin A1 protease. J Mol Biol 2009;389:559-74. [PMID: 19393662 DOI: 10.1016/j.jmb.2009.04.041] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 4.0] [Reference Citation Analysis]
166 Nishimiya D, Kawaguchi Y, Kodama S, Nasu H, Yano H, Yamaguchi A, Tamura M, Hashimoto R. A protein scaffold, engineered SPINK2, for generation of inhibitors with high affinity and specificity against target proteases. Sci Rep 2019;9:11436. [PMID: 31391482 DOI: 10.1038/s41598-019-47615-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
167 Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020;157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 20.0] [Reference Citation Analysis]
168 Galasiti Kankanamalage AC, Weerawarna PM, Rathnayake AD, Kim Y, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Putative structural rearrangements associated with the interaction of macrocyclic inhibitors with norovirus 3CL protease. Proteins 2019;87:579-87. [PMID: 30883881 DOI: 10.1002/prot.25682] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
169 Gillner DM, Becker DP, Holz RC. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. J Biol Inorg Chem 2013;18:155-63. [PMID: 23223968 DOI: 10.1007/s00775-012-0965-1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
170 Salaün A, Mocquet C, Perochon R, Lecorgne A, Le Grel B, Potel M, Le Grel P. Aza-β 3 -cyclotetrapeptides. J Org Chem 2008;73:8579-82. [DOI: 10.1021/jo8013963] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
171 Zhai L, Otani Y, Hori Y, Tomita T, Ohwada T. Peptide-based short single β-strand mimics without hydrogen bonding or aggregation. Chem Commun (Camb) 2020;56:1573-6. [PMID: 31930273 DOI: 10.1039/c9cc08378b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
172 Alonso M, Chicharro R, Miranda C, Arán VJ, Maestro MA, Herradón B. X-ray Diffraction, Solution Structure, and Computational Studies on Derivatives of (3- sec -Butyl-2,3-dihydro-1 H -isoquinolin-4-ylidene)acetic Acid: Compounds with Activity as Calpain Inhibitors. J Org Chem 2010;75:342-52. [DOI: 10.1021/jo902091u] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
173 Silva RN, Oliveira LCG, Parise CB, Oliveira JR, Severino B, Corvino A, di Vaio P, Temussi PA, Caliendo G, Santagada V, Juliano L, Juliano MA. Activity of human kallikrein-related peptidase 6 (KLK6) on substrates containing sequences of basic amino acids. Is it a processing protease? Biochim Biophys Acta Proteins Proteom 2017;1865:558-64. [PMID: 28254587 DOI: 10.1016/j.bbapap.2017.02.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
174 Zhang L, Navaratna T, Thurber GM. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity. Bioconjug Chem 2016;27:1663-72. [PMID: 27327034 DOI: 10.1021/acs.bioconjchem.6b00209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
175 Park C, Zhou S, Gilmore J, Marqusee S. Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. J Mol Biol 2007;368:1426-37. [PMID: 17400245 DOI: 10.1016/j.jmb.2007.02.091] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 3.9] [Reference Citation Analysis]
176 Liang X, Vézina-Dawod S, Bédard F, Porte K, Biron E. One-Pot Photochemical Ring-Opening/Cleavage Approach for the Synthesis and Decoding of Cyclic Peptide Libraries. Org Lett 2016;18:1174-7. [PMID: 26914725 DOI: 10.1021/acs.orglett.6b00296] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
177 Jones SA, Neilsen PM, Siew L, Callen DF, Goldfarb NE, Dunn BM, Abell AD. A template-based approach to inhibitors of calpain 2, 20S proteasome, and HIV-1 protease. ChemMedChem 2013;8:1918-21. [PMID: 24130198 DOI: 10.1002/cmdc.201300387] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
178 Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014;53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Cited by in Crossref: 260] [Cited by in F6Publishing: 215] [Article Influence: 32.5] [Reference Citation Analysis]
179 Patgiri A, Jochim AL, Arora PS. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 2008;41:1289-300. [PMID: 18630933 DOI: 10.1021/ar700264k] [Cited by in Crossref: 188] [Cited by in F6Publishing: 164] [Article Influence: 13.4] [Reference Citation Analysis]
180 Carnevale V, Pontiggia F, Micheletti C. Structural and dynamical alignment of enzymes with partial structural similarity. J Phys : Condens Matter 2007;19:285206. [DOI: 10.1088/0953-8984/19/28/285206] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
181 Boyd SE, Kerr FK, Albrecht DW, de la Banda MG, Ng N, Pike RN. Cooperative effects in the substrate specificity of the complement protease C1s. Biological Chemistry 2009;390:503-7. [DOI: 10.1515/bc.2009.064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
182 Cerminara I, Chiummiento L, Funicello M, Guarnaccio A, Lupattelli P. Heterocycles in peptidomimetics and pseudopeptides: design and synthesis. Pharmaceuticals (Basel) 2012;5:297-316. [PMID: 24281380 DOI: 10.3390/ph5030297] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
183 Luong HX, Kim DH, Mai NT, Lee BJ, Kim YW. Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Arch Pharm Res 2017;40:713-9. [PMID: 28547390 DOI: 10.1007/s12272-017-0922-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
184 Donkor IO. An update on the therapeutic potential of calpain inhibitors: a patent review. Expert Opin Ther Pat 2020;30:659-75. [PMID: 32700591 DOI: 10.1080/13543776.2020.1797678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
185 Donkor IO. Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opinion on Therapeutic Patents 2011;21:601-36. [DOI: 10.1517/13543776.2011.568480] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 5.5] [Reference Citation Analysis]
186 Mandadapu SR, Weerawarna PM, Prior AM, Uy RA, Aravapalli S, Alliston KR, Lushington GH, Kim Y, Hua DH, Chang KO, Groutas WC. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg Med Chem Lett 2013;23:3709-12. [PMID: 23727045 DOI: 10.1016/j.bmcl.2013.05.021] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
187 Lulla A, Lulla V, Merits A. Macromolecular assembly-driven processing of the 2/3 cleavage site in the alphavirus replicase polyprotein. J Virol 2012;86:553-65. [PMID: 22031949 DOI: 10.1128/JVI.05195-11] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
188 Kurland CG, Harish A. The phylogenomics of protein structures: The backstory. Biochimie 2015;119:284-302. [DOI: 10.1016/j.biochi.2015.07.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
189 Okamoto T, Zobel K, Fedorova A, Quan C, Yang H, Fairbrother WJ, Huang DC, Smith BJ, Deshayes K, Czabotar PE. Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol 2013;8:297-302. [PMID: 23151250 DOI: 10.1021/cb3005403] [Cited by in Crossref: 103] [Cited by in F6Publishing: 94] [Article Influence: 10.3] [Reference Citation Analysis]
190 Zhang J, Mulumba M, Ong H, Lubell WD. Diversity-Oriented Synthesis of Cyclic Azapeptides by A3 -Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics. Angew Chem Int Ed Engl 2017;56:6284-8. [PMID: 28090719 DOI: 10.1002/anie.201611685] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
191 Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019;119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Cited by in Crossref: 59] [Cited by in F6Publishing: 41] [Article Influence: 19.7] [Reference Citation Analysis]
192 Oliveras-González C, Linares M, Amabilino DB, Avarvari N. Large Synthetic Molecule that either Folds or Aggregates through Weak Supramolecular Interactions Determined by Solvent. ACS Omega 2019;4:10108-20. [PMID: 31460103 DOI: 10.1021/acsomega.9b01050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
193 Chai HH, Lim D, Jung E, Choi BH, Cho YM. Understanding the interaction determinants of CAPN1 inhibition by CAST4 from bovines using molecular modeling techniques. Molecules 2014;19:14316-51. [PMID: 25215589 DOI: 10.3390/molecules190914316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
194 Damalanka VC, Kim Y, Alliston KR, Weerawarna PM, Galasiti Kankanamalage AC, Lushington GH, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Oxadiazole-Based Cell Permeable Macrocyclic Transition State Inhibitors of Norovirus 3CL Protease. J Med Chem 2016;59:1899-913. [PMID: 26823007 DOI: 10.1021/acs.jmedchem.5b01464] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
195 Waldner BJ, Fuchs JE, Schauperl M, Kramer C, Liedl KR. Protease Inhibitors in View of Peptide Substrate Databases. J Chem Inf Model 2016;56:1228-35. [PMID: 27247997 DOI: 10.1021/acs.jcim.6b00064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
196 Vinothkumar KR, Strisovsky K, Andreeva A, Christova Y, Verhelst S, Freeman M. The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO J 2010;29:3797-809. [PMID: 20890268 DOI: 10.1038/emboj.2010.243] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 7.3] [Reference Citation Analysis]
197 Jafary F, Jafari S, Ganjalikhany MR. In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Sci Rep 2021;11:6927. [PMID: 33767306 DOI: 10.1038/s41598-021-86380-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
198 Löser R, Abbenante G, Madala PK, Halili M, Le GT, Fairlie DP. Noncovalent Tripeptidyl Benzyl- and Cyclohexyl-Amine Inhibitors of the Cysteine Protease Caspase-1. J Med Chem 2010;53:2651-5. [DOI: 10.1021/jm901790w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
199 Weide T, Modlinger A, Kessler H. Spatial Screening for the Identification of the Bioactive Conformation of Integrin Ligands. In: Peters T, editor. Bioactive Conformation I. Springer Berlin Heidelberg; 2007. pp. 1-50. [DOI: 10.1007/128_052] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Reference Citation Analysis]
200 De Marco R, Di Gioia ML, Leggio A, Liguori A, Perri F, Siciliano C, Viscomi MC. A new non-natural arginine-like amino acid derivative with a sulfamoyl group in the side-chain. Amino Acids 2010;38:691-700. [DOI: 10.1007/s00726-009-0267-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
201 Cavalli A, Carloni P, Recanatini M. Target-Related Applications of First Principles Quantum Chemical Methods in Drug Design. Chem Rev 2006;106:3497-519. [DOI: 10.1021/cr050579p] [Cited by in Crossref: 91] [Cited by in F6Publishing: 80] [Article Influence: 5.7] [Reference Citation Analysis]
202 Pearson D, Abell AD. Photoswitch inhibitors of α-chymotrypsin—increased substitution and peptidic character in peptidomimetic boronate esters. Org Biomol Chem 2006;4:3618-25. [DOI: 10.1039/b609320p] [Cited by in Crossref: 28] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
203 Lee CL, Lam HY, Li X. Serine/threonine ligation for natural cyclic peptide syntheses. Nat Prod Rep 2015;32:1274-9. [DOI: 10.1039/c5np00001g] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 2.6] [Reference Citation Analysis]
204 Mcdonnell LA, Heeren RMA, de Lange RPJ, Fletcher IW. Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging. J Am Soc Mass Spectrom 2006;17:1195-202. [DOI: 10.1016/j.jasms.2006.05.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
205 Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019;119:9861-914. [DOI: 10.1021/acs.chemrev.8b00807] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
206 Watkins AM, Arora PS. Anatomy of β-strands at protein-protein interfaces. ACS Chem Biol 2014;9:1747-54. [PMID: 24870802 DOI: 10.1021/cb500241y] [Cited by in Crossref: 76] [Cited by in F6Publishing: 63] [Article Influence: 9.5] [Reference Citation Analysis]
207 Schauperl M, Fuchs JE, Waldner BJ, Huber RG, Kramer C, Liedl KR. Characterizing Protease Specificity: How Many Substrates Do We Need? PLoS One 2015;10:e0142658. [PMID: 26559682 DOI: 10.1371/journal.pone.0142658] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
208 Tyndall JDA, Pattenden LK, Reid RC, Hu S, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL. Crystal Structures of Highly Constrained Substrate and Hydrolysis Products Bound to HIV-1 Protease. Implications for the Catalytic Mechanism. Biochemistry 2008;47:3736-44. [DOI: 10.1021/bi7023157] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
209 Low KE, Ler S, Chen KJ, Campbell RL, Hickey JL, Tan J, Scully CCG, Davies PL, Yudin AK, Zaretsky S. Rational Design of Calpain Inhibitors Based on Calpastatin Peptidomimetics. J Med Chem 2016;59:5403-15. [DOI: 10.1021/acs.jmedchem.6b00267] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
210 Oddo A, Thomsen TT, Britt HM, Løbner-Olesen A, Thulstrup PW, Sanderson JM, Hansen PR. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides. ACS Med Chem Lett 2016;7:741-5. [PMID: 27563396 DOI: 10.1021/acsmedchemlett.5b00400] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
211 Weerawarna PM, Kim Y, Galasiti Kankanamalage AC, Damalanka VC, Lushington GH, Alliston KR, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies. Eur J Med Chem 2016;119:300-18. [PMID: 27235842 DOI: 10.1016/j.ejmech.2016.04.013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
212 Vu QN, Young R, Sudhakar HK, Gao T, Huang T, Tan YS, Lau YH. Cyclisation strategies for stabilising peptides with irregular conformations. RSC Med Chem 2021;12:887-901. [PMID: 34263169 DOI: 10.1039/d1md00098e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Tice CM, Singh SB. Evolution of Diverse Classes of Renin Inhibitors through the Years. In: Ghosh AK, editor. Aspartic Acid Proteases as Therapeutic Targets. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. pp. 297-324. [DOI: 10.1002/9783527630943.ch11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
214 Lohman RJ, Harrison RS, Ruiz-Gómez G, Hoang HN, Shepherd NE, Chow S, Hill TA, Madala PK, Fairlie DP. Helix-constrained nociceptin peptides are potent agonists and antagonists of ORL-1 and nociception. Vitam Horm 2015;97:1-55. [PMID: 25677767 DOI: 10.1016/bs.vh.2014.10.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
215 Wang D, Liao W, Arora PS. Enhanced metabolic stability and protein-binding properties of artificial alpha helices derived from a hydrogen-bond surrogate: application to Bcl-xL. Angew Chem Int Ed Engl 2005;44:6525-9. [PMID: 16172999 DOI: 10.1002/anie.200501603] [Cited by in Crossref: 127] [Cited by in F6Publishing: 123] [Article Influence: 7.9] [Reference Citation Analysis]
216 Lee TK, Ahn JM. Solid-phase synthesis of tris-benzamides as α-helix mimetics. ACS Comb Sci 2011;13:107-11. [PMID: 21395339 DOI: 10.1021/co100056c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
217 Zhang X, Heng S, Abell AD. Photoregulation of α-Chymotrypsin Activity by Spiropyran-Based Inhibitors in Solution and Attached to an Optical Fiber. Chemistry 2015;21:10703-13. [PMID: 26100654 DOI: 10.1002/chem.201501488] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
218 Wang D, Lu M, Arora P. Inhibition of HIV-1 Fusion by Hydrogen-Bond-Surrogate-Based α Helices. Angew Chem Int Ed 2008;47:1879-82. [DOI: 10.1002/anie.200704227] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 5.0] [Reference Citation Analysis]
219 Gouvea I, Izidoro M, Judice W, Cezari M, Caliendo G, Santagada V, dos Santos C, Queiroz M, Juliano M, Young P, Fairlie D, Juliano L. Substrate specificity of recombinant dengue 2 virus NS2B-NS3 protease: Influence of natural and unnatural basic amino acids on hydrolysis of synthetic fluorescent substrates. Archives of Biochemistry and Biophysics 2007;457:187-96. [DOI: 10.1016/j.abb.2006.11.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
220 Kim Y, Galasiti Kankanamalage AC, Chang KO, Groutas WC. Recent Advances in the Discovery of Norovirus Therapeutics. J Med Chem 2015;58:9438-50. [PMID: 26258852 DOI: 10.1021/acs.jmedchem.5b00762] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
221 Patil NA, Quek JP, Schroeder B, Morewood R, Rademann J, Luo D, Nitsche C. 2-Cyanoisonicotinamide Conjugation: A Facile Approach to Generate Potent Peptide Inhibitors of the Zika Virus Protease. ACS Med Chem Lett 2021;12:732-7. [PMID: 34055219 DOI: 10.1021/acsmedchemlett.0c00657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
222 Ghilarov D, Serebryakova M, Stevenson CEM, Hearnshaw SJ, Volkov DS, Maxwell A, Lawson DM, Severinov K. The Origins of Specificity in the Microcin-Processing Protease TldD/E. Structure 2017;25:1549-1561.e5. [PMID: 28943336 DOI: 10.1016/j.str.2017.08.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
223 Reid VJ, Theron LW, du Toit M, Divol B. Identification and partial characterization of extracellular aspartic protease genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384. Appl Environ Microbiol 2012;78:6838-49. [PMID: 22820332 DOI: 10.1128/AEM.00505-12] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
224 Mallorquí-Fernández N, Manandhar SP, Mallorquí-Fernández G, Usón I, Wawrzonek K, Kantyka T, Solà M, Thøgersen IB, Enghild JJ, Potempa J, Gomis-Rüth FX. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A. J Biol Chem 2008;283:2871-82. [PMID: 17993455 DOI: 10.1074/jbc.M708481200] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
225 Rao T, Ruiz-Gómez G, Hill TA, Hoang HN, Fairlie DP, Mason JM. Truncated and helix-constrained peptides with high affinity and specificity for the cFos coiled-coil of AP-1. PLoS One 2013;8:e59415. [PMID: 23544065 DOI: 10.1371/journal.pone.0059415] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.2] [Reference Citation Analysis]
226 Culyba MJ, Mo CY, Kohli RM. Targets for Combating the Evolution of Acquired Antibiotic Resistance. Biochemistry 2015;54:3573-82. [PMID: 26016604 DOI: 10.1021/acs.biochem.5b00109] [Cited by in Crossref: 69] [Cited by in F6Publishing: 48] [Article Influence: 9.9] [Reference Citation Analysis]
227 Bueno AB, Agejas J, Broughton H, Dally R, Durham TB, Espinosa JF, González R, Hahn PJ, Marcos A, Rodríguez R, Sanz G, Soriano JF, Timm D, Vidal P, Yang HC, McCarthy JR. Optimization of Hydroxyethylamine Transition State Isosteres as Aspartic Protease Inhibitors by Exploiting Conformational Preferences. J Med Chem 2017;60:9807-20. [PMID: 29088532 DOI: 10.1021/acs.jmedchem.7b01304] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
228 Eckhard U, Schönauer E, Brandstetter H. Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. J Biol Chem 2013;288:20184-94. [PMID: 23703618 DOI: 10.1074/jbc.M112.448548] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 3.9] [Reference Citation Analysis]
229 Wang D, Lu M, Arora P. Inhibition of HIV-1 Fusion by Hydrogen-Bond-Surrogate-Based α Helices. Angew Chem 2008;120:1905-8. [DOI: 10.1002/ange.200704227] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
230 Abell A, Jones M, Coxon J, Morton J, Aitken S, Mcnabb S, Lee H, Mehrtens J, Alexander N, Stuart B, Neffe A, Bickerstaffe R. Molecular Modeling, Synthesis, and Biological Evaluation of Macrocyclic Calpain Inhibitors. Angewandte Chemie 2009;121:1483-6. [DOI: 10.1002/ange.200805014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
231 Savile CK, Kazlauskas RJ. How Substrate Solvation Contributes to the Enantioselectivity of Subtilisin toward Secondary Alcohols. J Am Chem Soc 2005;127:12228-9. [DOI: 10.1021/ja0528937] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
232 Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics: Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017;78:245-67. [DOI: 10.1002/ddr.21406] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
233 Van Damme P, Vandekerckhove J, Gevaert K. Disentanglement of protease substrate repertoires. Biol Chem 2008;389:371-81. [PMID: 18208357 DOI: 10.1515/BC.2008.043] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
234 Alama-Bermejo G, Meyer E, Atkinson SD, Holzer AS, Wiśniewska MM, Kolísko M, Bartholomew JL. Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids. Genome Biol Evol 2020;12:1258-76. [PMID: 32467979 DOI: 10.1093/gbe/evaa109] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
235 Jones SA, Duncan J, Aitken SG, Coxon JM, Abell AD. The Preparation of Macrocyclic Calpain Inhibitors by Ring Closing Metathesis and Cross Metathesis. Aust J Chem 2014;67:1257. [DOI: 10.1071/ch14121] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
236 Gorrão SS, Hemerly JP, Lima AR, Melo RL, Szeltner Z, Polgár L, Juliano MA, Juliano L. Fluorescence resonance energy transfer (FRET) peptides and cycloretro-inverso peptides derived from bradykinin as substrates and inhibitors of prolyl oligopeptidase. Peptides 2007;28:2146-54. [PMID: 17904692 DOI: 10.1016/j.peptides.2007.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
237 Nogami K, Takahama K, Okushima A, Oyoshi T, Fujimoto K, Inouye M. Tailor-made designer helical peptides that induce mitochondrion-mediated cell death without necrosis. Chembiochem 2014;15:2571-6. [PMID: 25234153 DOI: 10.1002/cbic.201402437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
238 Fujita Y, Fujita S, Okada Y, Chiba K. Soluble Tag-Assisted Peptide Head-to-Tail Cyclization: Total Synthesis of Mahafacyclin B. Org Lett 2013;15:1155-7. [DOI: 10.1021/ol4003477] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
239 Ahn J, Kassees K, Lee T, Manandhar B, Yousif A. Strategy and Tactics for Designing Analogs: Biochemical Characterization of the Large Molecules ☆. Comprehensive Medicinal Chemistry III. Elsevier; 2017. pp. 66-115. [DOI: 10.1016/b978-0-12-409547-2.12413-8] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
240 Abell AD, Jones MA, Coxon JM, Morton JD, Aitken SG, McNabb SB, Lee HY, Mehrtens JM, Alexander NA, Stuart BG, Neffe AT, Bickerstaffe R. Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. Angew Chem Int Ed Engl 2009;48:1455-8. [PMID: 19145612 DOI: 10.1002/anie.200805014] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 4.5] [Reference Citation Analysis]
241 Franke B, Jayasena AS, Fisher MF, Swedberg JE, Taylor NL, Mylne JS, Rosengren KJ. Diverse cyclic seed peptides in the Mexican zinnia (Zinnia haageana). Biopolymers 2016;106:806-17. [PMID: 27352920 DOI: 10.1002/bip.22901] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
242 Ghobadi Z, Mahnam K, Shakhsi-Niaei M. In-silico design of peptides for inhibition of HLA-A*03-KLIETYFSK complex as a new drug design for treatment of multiples sclerosis disease. J Mol Graph Model 2021;111:108079. [PMID: 34837787 DOI: 10.1016/j.jmgm.2021.108079] [Reference Citation Analysis]
243 Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013;81:136-47. [PMID: 23253135 DOI: 10.1111/cbdd.12055] [Cited by in Crossref: 1062] [Cited by in F6Publishing: 939] [Article Influence: 118.0] [Reference Citation Analysis]
244 Pethe MA, Rubenstein AB, Khare SD. Data-driven supervised learning of a viral protease specificity landscape from deep sequencing and molecular simulations. Proc Natl Acad Sci USA. 2019;116:168-176. [PMID: 30587591 DOI: 10.1073/pnas.1805256116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
245 Yoo DY, Hauser AD, Joy ST, Bar-Sagi D, Arora PS. Covalent Targeting of Ras G12C by Rationally Designed Peptidomimetics. ACS Chem Biol 2020;15:1604-12. [PMID: 32378881 DOI: 10.1021/acschembio.0c00204] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
246 Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem 2014;126:13234-57. [DOI: 10.1002/ange.201401058] [Cited by in Crossref: 66] [Cited by in F6Publishing: 48] [Article Influence: 8.3] [Reference Citation Analysis]
247 Dong H, Limberakis C, Liras S, Price D, James K. Peptidic macrocyclization via palladium-catalyzed chemoselective indole C-2 arylation. Chem Commun 2012;48:11644. [DOI: 10.1039/c2cc36962a] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 6.9] [Reference Citation Analysis]
248 Park C, Marqusee S. Quantitative determination of protein stability and ligand binding by pulse proteolysis. Curr Protoc Protein Sci 2006;Chapter 20:Unit 20.11. [PMID: 18429306 DOI: 10.1002/0471140864.ps2011s46] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 1.3] [Reference Citation Analysis]
249 Jochim AL, Miller SE, Angelo NG, Arora PS. Evaluation of triazolamers as active site inhibitors of HIV-1 protease. Bioorg Med Chem Lett 2009;19:6023-6. [PMID: 19800230 DOI: 10.1016/j.bmcl.2009.09.049] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
250 Waibel M, Pitrat D, Hasserodt J. On the inhibition of HIV-1 protease by hydrazino-ureas displaying the N→CO interaction. Bioorganic & Medicinal Chemistry 2009;17:3671-9. [DOI: 10.1016/j.bmc.2009.03.059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
251 Yoo TH, Pogson M, Iverson BL, Georgiou G. Directed evolution of highly selective proteases by using a novel FACS-based screen that capitalizes on the p53 regulator MDM2. Chembiochem 2012;13:649-53. [PMID: 22334509 DOI: 10.1002/cbic.201100718] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
252 Siles R, Chen SE, Zhou M, Pinney KG, Trawick ML. Design, synthesis, and biochemical evaluation of novel cruzain inhibitors with potential application in the treatment of Chagas' disease. Bioorg Med Chem Lett 2006;16:4405-9. [PMID: 16781147 DOI: 10.1016/j.bmcl.2006.05.041] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 3.3] [Reference Citation Analysis]
253 Marsault E, Peterson ML. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J Med Chem 2011;54:1961-2004. [DOI: 10.1021/jm1012374] [Cited by in Crossref: 522] [Cited by in F6Publishing: 439] [Article Influence: 47.5] [Reference Citation Analysis]
254 Joshi M, Ebalunode JO, Briggs JM. Computational insights into the interaction of the anthrax lethal factor with the N-terminal region of its substrates. Proteins 2009;75:323-35. [DOI: 10.1002/prot.22241] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
255 Yang Y, Mao H, Chen L, Li L. Targeting signal pathways triggered by cyclic peptides in cancer: Current trends and future challenges. Arch Biochem Biophys 2021;701:108776. [PMID: 33515532 DOI: 10.1016/j.abb.2021.108776] [Reference Citation Analysis]
256 Panda SS, Jones RA, Hall CD, Katritzky AR. Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer. Top Curr Chem 2015;362:229-65. [PMID: 25805142 DOI: 10.1007/128_2014_608] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
257 Kushal S, Lao BB, Henchey LK, Dubey R, Mesallati H, Traaseth NJ, Olenyuk BZ, Arora PS. Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc Natl Acad Sci U S A 2013;110:15602-7. [PMID: 24019500 DOI: 10.1073/pnas.1312473110] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 7.3] [Reference Citation Analysis]
258 Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J 2013;280:1579-603. [PMID: 23432912 DOI: 10.1111/febs.12199] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
259 Ting YT, Harris PW, Batot G, Brimble MA, Baker EN, Young PG. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ 2016;3:10-9. [PMID: 26870377 DOI: 10.1107/S2052252515019971] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
260 Pérez de Vega MJ, García-aranda MI, González-muñiz R. A role for ring-closing metathesis in medicinal chemistry: Mimicking secondary architectures in bioactive peptides: RING-CLOSING METATHESIS IN MEDICINAL CHEMISTRY. Med Res Rev 2011;31:677-715. [DOI: 10.1002/med.20199] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
261 Strisovsky K. Mechanism and Inhibition of Rhomboid Proteases. Methods Enzymol 2017;584:279-93. [PMID: 28065267 DOI: 10.1016/bs.mie.2016.10.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
262 Chen T, Lee TR, Liang WG, Chang WS, Lyu PC. Identification of trypsin-inhibitory site and structure determination of human SPINK2 serine proteinase inhibitor. Proteins 2009;77:209-19. [PMID: 19422058 DOI: 10.1002/prot.22432] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
263 Ruiz-Gómez G, Lim J, Halili MA, Le GT, Madala PK, Abbenante G, Fairlie DP. Structure-activity relationships for substrate-based inhibitors of human complement factor B. J Med Chem 2009;52:6042-52. [PMID: 19743866 DOI: 10.1021/jm900781m] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
264 Paetzel M. Structure and mechanism of Escherichia coli type I signal peptidase. Biochim Biophys Acta 2014;1843:1497-508. [PMID: 24333859 DOI: 10.1016/j.bbamcr.2013.12.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
265 Armoush N, Syal P, Becker DP. Synthesis of Substituted 2‐Amino‐cyclobutanones. Synthetic Communications 2008;38:1679-87. [DOI: 10.1080/00397910801981110] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
266 Ullrich A, Junk L, Kazmaier U. Three Methods for the Solution Phase Synthesis of Cyclic Peptides. Methods Mol Biol 2022;2371:43-61. [PMID: 34596843 DOI: 10.1007/978-1-0716-1689-5_4] [Reference Citation Analysis]
267 Cao Z, Hutchison JM, Sanders CR, Bowie JU. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. J Am Chem Soc 2017;139:10742-9. [PMID: 28692798 DOI: 10.1021/jacs.7b04819] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
268 Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019;19:1571-98. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
269 Kagawa TF, O'connell MR, Mouat P, Paoli M, O'toole PW, Cooney JC. Model for Substrate Interactions in C5a Peptidase from Streptococcus pyogenes: A 1.9 Å Crystal Structure of the Active Form of ScpA. Journal of Molecular Biology 2009;386:754-72. [DOI: 10.1016/j.jmb.2008.12.074] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 1.9] [Reference Citation Analysis]
270 Gebreslasie HG, Jacobsen Ø, Görbitz CH. N-(tert-butoxycarbonyl)-α-aminoisobutyryl-α-aminoisobutyric acid methyl ester: two polymorphic forms in the space group P2(1)/n. Acta Crystallogr C 2011;67:o283-7. [PMID: 21817793 DOI: 10.1107/S0108270111024322] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
271 Larsen KS, Østergaard H, Bjelke JR, Olsen OH, Rasmussen HB, Christensen L, Kragelund BB, Stennicke HR. Engineering the substrate and inhibitor specificities of human coagulation Factor VIIa. Biochem J 2007;405:429-38. [PMID: 17456045 DOI: 10.1042/BJ20061901] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
272 Cebrián R, Maqueda M, Neira JL, Valdivia E, Martínez-Bueno M, Montalbán-López M. Insights into the functionality of the putative residues involved in enterocin AS-48 maturation. Appl Environ Microbiol 2010;76:7268-76. [PMID: 20833793 DOI: 10.1128/AEM.01154-10] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
273 Dawson A, Gibellini F, Sienkiewicz N, Tulloch LB, Fyfe PK, McLuskey K, Fairlamb AH, Hunter WN. Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate. Mol Microbiol 2006;61:1457-68. [PMID: 16968221 DOI: 10.1111/j.1365-2958.2006.05332.x] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 2.9] [Reference Citation Analysis]
274 Windsor IW, Gold B, Raines RT. An nπ* Interaction in the Bound Substrate of Aspartic Proteases Replicates the Oxyanion Hole. ACS Catal 2019;9:1464-71. [PMID: 31093467 DOI: 10.1021/acscatal.8b04142] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
275 Guerra Y, Valiente PA, Pons T, Berry C, Rudiño-Piñera E. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop? J Struct Biol 2016;195:259-71. [PMID: 27329566 DOI: 10.1016/j.jsb.2016.06.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
276 Jayasena AS, Fisher MF, Panero JL, Secco D, Bernath-Levin K, Berkowitz O, Taylor NL, Schilling EE, Whelan J, Mylne JS. Stepwise Evolution of a Buried Inhibitor Peptide over 45 My. Mol Biol Evol 2017;34:1505-16. [PMID: 28333296 DOI: 10.1093/molbev/msx104] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
277 Liaci AM, Steigenberger B, Telles de Souza PC, Tamara S, Gröllers-Mulderij M, Ogrissek P, Marrink SJ, Scheltema RA, Förster F. Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. Mol Cell 2021:S1097-2765(21)00600-6. [PMID: 34388369 DOI: 10.1016/j.molcel.2021.07.031] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
278 Hanessian S, Maji DK, Govindan S, Matera R, Tintelnot-Blomley M. Substrate-controlled and organocatalytic asymmetric synthesis of carbocyclic amino acid dipeptide mimetics. J Org Chem 2010;75:2861-76. [PMID: 20392053 DOI: 10.1021/jo100017t] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
279 Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2018;38:1295-331. [PMID: 29149530 DOI: 10.1002/med.21475] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 10.6] [Reference Citation Analysis]
280 Wang D, Liao W, Arora PS. Enhanced Metabolic Stability and Protein-Binding Properties of Artificial α Helices Derived from a Hydrogen-Bond Surrogate: Application to Bcl-xL. Angew Chem 2005;117:6683-7. [DOI: 10.1002/ange.200501603] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
281 Mateo JJ, Maicas S, Thieβen C. Biotechnological characterisation of exocellular proteases produced by enological Hanseniaspora isolates. Int J Food Sci Technol 2015;50:218-25. [DOI: 10.1111/ijfs.12654] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
282 Cummings MD, Sekharan S. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands. J Med Chem 2019;62:6843-53. [DOI: 10.1021/acs.jmedchem.8b01985] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]
283 Langosch D, Scharnagl C, Steiner H, Lemberg MK. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem Sci 2015;40:318-27. [PMID: 25941170 DOI: 10.1016/j.tibs.2015.04.001] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 11.0] [Reference Citation Analysis]
284 Mahon AB, Miller SE, Joy ST, Arora PS. Rational Design Strategies for Developing Synthetic Inhibitors of Helical Protein Interfaces. In: Wendt MD, editor. Protein-Protein Interactions. Berlin: Springer Berlin Heidelberg; 2012. pp. 197-230. [DOI: 10.1007/978-3-642-28965-1_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
285 Carvalho HF, Roque AC, Iranzo O, Branco RJ. Comparison of the Internal Dynamics of Metalloproteases Provides New Insights on Their Function and Evolution. PLoS One 2015;10:e0138118. [PMID: 26397984 DOI: 10.1371/journal.pone.0138118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
286 Łepek T, Kwiatkowska A, Couture F, Ly K, Desjardins R, Dory Y, Prahl A, Day R. Macrocyclization of a potent PACE4 inhibitor: Benefits and limitations. European Journal of Cell Biology 2017;96:476-85. [DOI: 10.1016/j.ejcb.2017.04.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]