1
|
Malik AA, Nguyen KC, Nardini JT, Krona CC, Flores KB, Nelander S. Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity. NPJ Syst Biol Appl 2025; 11:20. [PMID: 39955270 PMCID: PMC11830081 DOI: 10.1038/s41540-025-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 01/10/2025] [Indexed: 02/17/2025] Open
Abstract
In the study of brain tumors, patient-derived three-dimensional sphere cultures provide an important tool for studying emerging treatments. The growth of such spheroids depends on the combined effects of proliferation and migration of cells, but it is challenging to make accurate distinctions between increase in cell number versus the radial movement of cells. To address this, we formulate a novel model in the form of a system of two partial differential equations (PDEs) incorporating both migration and growth terms, and show that it more accurately fits our data compared to simpler PDE models. We show that traveling-wave speeds are strongly associated with population heterogeneity. Having fitted the model to our dataset we show that a subset of the cell lines are best described by a "Go-or-Grow"-type model, which constitutes a special case of our model. Finally, we investigate whether our fitted model parameters are correlated with patient age and survival.
Collapse
Affiliation(s)
- Adam A Malik
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Kyle C Nguyen
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC, USA
- Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA
| | - John T Nardini
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, USA
| | - Cecilia C Krona
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kevin B Flores
- Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Szymanowska A, Radomska D, Czarnomysy R, Mojzych M, Kotwica-Mojzych K, Bielawski K, Bielawska A. The activity of pyrazolo[4,3- e][1,2,4]triazine and pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine sulphonamide derivatives in monolayer and spheroid breast cancer cell cultures. J Enzyme Inhib Med Chem 2024; 39:2343352. [PMID: 38700244 PMCID: PMC11073428 DOI: 10.1080/14756366.2024.2343352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Barrett L, Coopman K. Cell microencapsulation techniques for cancer modelling and drug discovery. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:345-354. [PMID: 38829715 DOI: 10.1080/21691401.2024.2359996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.
Collapse
Affiliation(s)
- Lisa Barrett
- Department of Chemical Engineering, School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, UK
| | - Karen Coopman
- Department of Chemical Engineering, School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
4
|
Arora S, Singh S, Mittal A, Desai N, Khatri DK, Gugulothu D, Lather V, Pandita D, Vora LK. Spheroids in cancer research: Recent advances and opportunities. J Drug Deliv Sci Technol 2024; 100:106033. [DOI: 10.1016/j.jddst.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
5
|
Yan F, Mutembei B, Valerio T, Gunay G, Ha JH, Zhang Q, Wang C, Selvaraj Mercyshalinie ER, Alhajeri ZA, Zhang F, Dockery LE, Li X, Liu R, Dhanasekaran DN, Acar H, Chen WR, Tang Q. Optical coherence tomography for multicellular tumor spheroid category recognition and drug screening classification via multi-spatial-superficial-parameter and machine learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:2014-2047. [PMID: 38633082 PMCID: PMC11019711 DOI: 10.1364/boe.514079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Optical coherence tomography (OCT) is an ideal imaging technique for noninvasive and longitudinal monitoring of multicellular tumor spheroids (MCTS). However, the internal structure features within MCTS from OCT images are still not fully utilized. In this study, we developed cross-statistical, cross-screening, and composite-hyperparameter feature processing methods in conjunction with 12 machine learning models to assess changes within the MCTS internal structure. Our results indicated that the effective features combined with supervised learning models successfully classify OVCAR-8 MCTS culturing with 5,000 and 50,000 cell numbers, MCTS with pancreatic tumor cells (Panc02-H7) culturing with the ratio of 0%, 33%, 50%, and 67% of fibroblasts, and OVCAR-4 MCTS treated by 2-methoxyestradiol, AZD1208, and R-ketorolac with concentrations of 1, 10, and 25 µM. This approach holds promise for obtaining multi-dimensional physiological and functional evaluations for using OCT and MCTS in anticancer studies.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Bornface Mutembei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Trisha Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ji-Hee Ha
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qinghao Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | | | - Zaid A. Alhajeri
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Fan Zhang
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lauren E. Dockery
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xinwei Li
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ronghao Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250100, China
| | - Danny N. Dhanasekaran
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| |
Collapse
|
6
|
Ju FN, Kim CH, Lee KH, Kim CD, Lim J, Lee T, Park CG, Kim TH. Gold nanostructure-integrated conductive microwell arrays for uniform cancer spheroid formation and electrochemical drug screening. Biosens Bioelectron 2023; 222:115003. [PMID: 36525711 DOI: 10.1016/j.bios.2022.115003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Cancer spheroids, which mimic distinct cell-to-cell and cell-extracellular matrix interactions of solid tumors in vitro, have emerged as a promising tumor model for drug screening. However, owing to the unique characteristics of spheroids composed of three-dimensionally densely-packed cells, the precise characterizations of cell viability and function with conventional colorimetric assays are challenging. Herein, we report gold nanostructure-integrated conductive microwell arrays (GONIMA) that enable both highly efficient uniform cancer spheroid formation and precise electrochemical detection of cell viability. A nanostructured gold on indium tin oxide (ITO) substrate facilitated the initial cell aggregation and further 3D cell growth, while the non-cytophilic polymer microwell arrays restricted the size and shape of the spheroids. As a result, approximately 150 human glioblastoma spheroids were formed on a chip area of 1.13 cm2 with an average diameter of 224 μm and a size variation of only 5% (±11.36 μm). The high uniformity of cancer spheroids contributed to the stability of electrical signals measuring cell viability. Using the fabricated GONIMA, the effects of a representative chemotherapeutic agent, hydroxyurea, on the glioblastoma spheroids were precisely monitored under conditions of varying drug concentrations (0-0.3 mg/mL) and incubation times (24-48 h). Therefore, we conclude that the newly developed platform is highly useful for rapid and precise in vitro drug screening, as well as for the pharmacokinetic analyses of specific drugs using 3D cellular cancer models.
Collapse
Affiliation(s)
- Fu Nan Ju
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwang-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea. https://bestlaboratory.wixsite.com/best
| |
Collapse
|
7
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
8
|
Lee SI, Choi YY, Kang SG, Kim TH, Choi JW, Kim YJ, Kim TH, Kang T, Chung BG. 3D Multicellular Tumor Spheroids in a Microfluidic Droplet System for Investigation of Drug Resistance. Polymers (Basel) 2022; 14:polym14183752. [PMID: 36145898 PMCID: PMC9500872 DOI: 10.3390/polym14183752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
A three-dimensional (3D) tumor spheroid model plays a critical role in mimicking tumor microenvironments in vivo. However, the conventional culture methods lack the ability to manipulate the 3D tumor spheroids in a homogeneous manner. To address this limitation, we developed a microfluidic-based droplet system for drug screening applications. We used a tree-shaped gradient generator to control the cell density and encapsulate the cells within uniform-sized droplets to generate a 3D gradient-sized tumor spheroid. Using this microfluidic-based droplet system, we demonstrated the high-throughput generation of uniform 3D tumor spheroids containing various cellular ratios for the analysis of the anti-cancer drug cytotoxicity. Consequently, this microfluidic-based gradient droplet generator could be a potentially powerful tool for anti-cancer drug screening applications.
Collapse
Affiliation(s)
- Sang Ik Lee
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Seong Goo Kang
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Young Jae Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Correspondence:
| |
Collapse
|
9
|
Almeida A, Castro F, Resende C, Lúcio M, Schwartz S, Sarmento B. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer. J Control Release 2022; 349:731-743. [PMID: 35905784 DOI: 10.1016/j.jconrel.2022.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with high incidence and mortality worldwide. The efficacy of conventional CRC chemotherapy is hampered by poor drug solubility and bioavailability and suboptimal pharmacokinetic profiles. In this work, camptothecin (CPT), a potent anticancer drug, was loaded into an amphiphilic chitosan modified with PEG and oleic acid, to reduce CRC progression after oral administration. While CPT-loaded micelles presented anticancer activity against HCT116, Caco-2 and HT29 CRC cell lines in vitro, empty micelles demonstrated a safe profile when incubated with human blood cells and colorectal cancer cell lines. In a more complex 3D CRC multicellular spheroid model, CPT-loaded micelles also exhibited a significant effect on the spheroid's metabolic activity and size reduction. Remarkably, in vivo studies performed in a HCT116 xenograft model, showed a significant reduction on the tumor growth during and after treatment with CPT-loaded micelles. Moreover, in a more biological relevant in vivo model of chemically-induced CRC, orally administered CPT-loaded micelles demonstrated a significant reduction on tumor incidence and inflammation signs. The findings here reported indicate that CPT-loaded into chitosan-based micelles, by improving drug solubility, alongside its safety profile for normal tissues, may have a promising role CRC chemotherapy.
Collapse
Affiliation(s)
- Andreia Almeida
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Flávia Castro
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Carlos Resende
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Simó Schwartz
- Banc de Sang i Teixits, Passeig del Taulat, 116, 08005 Barcelona, Spain
| | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central da Gandra, 137, 4585-116 Gandra, Portugal.
| |
Collapse
|
10
|
Rossi M, Blasi P. Multicellular Tumor Spheroids in Nanomedicine Research: A Perspective. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:909943. [PMID: 35782575 PMCID: PMC9240201 DOI: 10.3389/fmedt.2022.909943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Multicellular tumor spheroids are largely exploited in cancer research since they are more predictive than bi-dimensional cell cultures. Nanomedicine would benefit from the integration of this three-dimensional in vitro model in screening protocols. In this brief work, we discuss some of the issues that cancer nanomedicine will need to consider in the switch from bi-dimensional to three-dimensional multicellular tumor spheroid models.
Collapse
|
11
|
Vien LT, Nga NT, Hue PTK, Kha THB, Hoang NH, Hue PT, Thien PN, Huang CYF, Van Kiem P, Thao DT. A New Liposomal Formulation of Hydrogenated Anacardic Acid to Improve Activities Against Cancer Stem Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anacardic acid (AA) is a natural active ingredient that accounts for 65% of the liquid extract from the shell of the cashew nut. Due to the stronger cytotoxic activity of hydrogenated AA (HAA) against NTERA-2 cancer stem cells (CSCs) than AA itself, HAA was co-conjugated with CD133 monoclonal antibody (mAb^CD133) into nanoliposomal particles (AMC). This nanoliposomal complex is expected to improved HAA activities against CSCs based on the targeting capacity of mAb^CD133 toward CD133, a typical CSCs’ surface marker. AMC was manufactured with a mean size of 100.9 nm, a zeta potential of −40.7 mV, and a PDI of 0.283. We report a 100% encapsulation efficiency of HAA into liposomes and a 90.7% conjugation efficiency with mAb^CD133. The penetration of AMC into NTERA-2 CSCs after 2 h was 83.7%. The AMC complex inhibited NTERA-2 growth with an IC50 (inhibition concentration at 50%) value of 75.83 ± 6.70 µM, showing the targeting ability and lower toxicity (IC50 > 100 µM) on healthy cells. The AMC nanoparticles also demonstrated significant potential apoptotic induction by activating caspase 3 activity by up to 2.57 and 2.06 folds compared to that of the negative control at 20 and 4 µM, respectively. This induction was significant improvement in comparison with that of unconjugated HAA ( P < .05). AMC presented a clear effect on the solid structure of NTERA-2 spheroids and significantly suppressed the proliferation of CSCs in the 3D tumorspheres with an IC50 = 64.25 ± 3.15 µM, compared to the free form with an IC50 = 82.22 ± 0.65 µM ( P < .05). Therefore, this nanoliposomal complex exhibits promising capacities as an effective material against NTERA-2 CSCs.
Collapse
Affiliation(s)
- Le Tri Vien
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Health Research and Educational Development in Central Highlands, Pleiku City, Gia Lai, Vietnam
| | - Nguyen Thi Nga
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phung Thi Kim Hue
- Institute of Health Research and Educational Development in Central Highlands, Pleiku City, Gia Lai, Vietnam
| | | | | | - Pham Thi Hue
- Huynh Man Dat High School for the Gifted, Kien Giang, Vietnam
| | - Pham Ngoc Thien
- Huynh Man Dat High School for the Gifted, Kien Giang, Vietnam
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Phan Van Kiem
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Do Thi Thao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
12
|
Lee KH, Kim TH. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. BIOSENSORS 2021; 11:445. [PMID: 34821661 PMCID: PMC8615712 DOI: 10.3390/bios11110445] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/12/2023]
Abstract
Multicellular tumor spheroids (MCTs) have been employed in biomedical fields owing to their advantage in designing a three-dimensional (3D) solid tumor model. For controlling multicellular cancer spheroids, mimicking the tumor extracellular matrix (ECM) microenvironment is important to understand cell-cell and cell-matrix interactions. In drug cytotoxicity assessments, MCTs provide better mimicry of conventional solid tumors that can precisely represent anticancer drug candidates' effects. To generate incubate multicellular spheroids, researchers have developed several 3D multicellular spheroid culture technologies to establish a research background and a platform using tumor modelingvia advanced materials science, and biosensing techniques for drug-screening. In application, drug screening was performed in both invasive and non-invasive manners, according to their impact on the spheroids. Here, we review the trend of 3D spheroid culture technology and culture platforms, and their combination with various biosensing techniques for drug screening in the biomedical field.
Collapse
Affiliation(s)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
13
|
Ha J, Lee S, Park J, Seo J, Kang E, Yoon H, Kim BR, Lee HK, Ryu SE, Cho S. Identification of a novel inhibitor of liver cancer cell invasion and proliferation through regulation of Akt and Twist1. Sci Rep 2021; 11:16765. [PMID: 34408201 PMCID: PMC8373934 DOI: 10.1038/s41598-021-95933-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
When primary cancer faces limited oxygen and nutrient supply, it undergoes an epithelial–mesenchymal transition, which increases cancer cell motility and invasiveness. The migratory and invasive cancer cells often exert aggressive cancer development or even cancer metastasis. In this study, we investigated a novel compound, 3-acetyl-5,8-dichloro-2-((2,4-dichlorophenyl)amino)quinolin-4(1H)-one (ADQ), that showed significant suppression of wound healing and cellular invasion. This compound also inhibited anchorage-independent cell growth, multicellular tumor spheroid survival/invasion, and metalloprotease activities. The anti-proliferative effects of ADQ were mediated by inhibition of the Akt pathway. In addition, ADQ reduced the expression of mesenchymal markers of cancer cells, which was associated with the suppressed expression of Twist1. In conclusion, ADQ successfully suppressed carcinogenic activity by inhibiting the Akt signaling pathway and Twist1, which suggests that ADQ may be an efficient candidate for cancer drug development.
Collapse
Affiliation(s)
- Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jihye Seo
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haelim Yoon
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeon Kyu Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Yuseong, P.O. Box 107, Daejeon, 34114, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
14
|
Abstract
Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion.
Collapse
|
15
|
Abolhasani A, Heidari F, Abolhasani H. Development and characterization of chitosan nanoparticles containing an indanonic tricyclic spiroisoxazoline derivative using ion-gelation method: an in vitro study. Drug Dev Ind Pharm 2020; 46:1604-1612. [PMID: 32812474 DOI: 10.1080/03639045.2020.1811304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biodegradable nanoparticulate carriers are potentially applicable compounds in the administration of therapeutic agents and drug delivery. They have received much attention due to their biological characteristics such as biodegradability, biocompatibility, and bioadhesive. The objectives of this work are first, investigating the impact of two important parameters (i.e. chitosan or sodium tripolyphosphate (TPP) solution concentration and chitosan to TPP mass ratio) on the chitosan nanoparticles (CNPs) formation by ionic-gelation method and then, the synthesis and characterization of chitosan-based, biodegradable drug-loaded nanoparticles in the encapsulation of novel 4'-(4-(methylsulfonyl)phenyl)-3'-(3,4,5-trimethoxyphenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one (MTS) indanonic tricyclic spiroisoxazoline, which is a potent anticancer drug. The particle size, shape, zeta potential, drug loading capacity, in vitro release characteristics, and stability of the formulated drug-loaded nanoparticles of the different drug:carrier ratio has been studied. The results indicated that the particle size increased at the higher chitosan or TPP concentration while the mass ratio did not appear to be a significant parameter during the cross-linking process. The particle diameter and zeta potential of CNPs including MTS were approximately in the range of 256-350 nm and 24.08-38.70 mV, respectively. The entrapment efficiency steadily increased with increasing the concentration of the polymer in formulizations. Throughout 24 h, the in vitro release behavior was provided a sustained release from all the drug-loaded formulizations. The optimal formulization of CNPs based on drug content with a drug:carrier ratio of 1:2 did not change appreciably during 60-day storage at either 4 °C or the ambient temperature.
Collapse
Affiliation(s)
- Ahmad Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Chemical Engineering, University of Qom, Qom, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Anatomy, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran.,Spiritual Health Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
16
|
Filipczak N, Jaromin A, Piwoni A, Mahmud M, Sarisozen C, Torchilin V, Gubernator J. A Triple Co-Delivery Liposomal Carrier That Enhances Apoptosis via an Intrinsic Pathway in Melanoma Cells. Cancers (Basel) 2019; 11:cancers11121982. [PMID: 31835393 PMCID: PMC6966600 DOI: 10.3390/cancers11121982] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022] Open
Abstract
The effectiveness of existing anti-cancer therapies is based mainly on the stimulation of apoptosis of cancer cells. Most of the existing therapies are somewhat toxic to normal cells. Therefore, the quest for nontoxic, cancer-specific therapies remains. We have demonstrated the ability of liposomes containing anacardic acid, mitoxantrone and ammonium ascorbate to induce the mitochondrial pathway of apoptosis via reactive oxygen species (ROS) production by the killing of cancer cells in monolayer culture and shown its specificity towards melanoma cells. Liposomes were prepared by a lipid hydration, freeze-and-thaw (FAT) procedure and extrusion through polycarbonate filters, a remote loading method was used for dug encapsulation. Following characterization, hemolytic activity, cytotoxicity and apoptosis inducing effects of loaded nanoparticles were investigated. To identify the anticancer activity mechanism of these liposomes, ROS level and caspase 9 activity were measured by fluorescence and by chemiluminescence respectively. We have demonstrated that the developed liposomal formulations produced a high ROS level, enhanced apoptosis and cell death in melanoma cells, but not in normal cells. The proposed mechanism of the cytotoxic action of these liposomes involved specific generation of free radicals by the iron ions mechanism.
Collapse
Affiliation(s)
- Nina Filipczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
- Correspondence: or ; Tel.: +48-713-756-318
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
| | - Adriana Piwoni
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
| | - Mohamed Mahmud
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
- Department of Food Science and Technology, Faculty of Agriculture, University of Misurata, Misurata 2478, Libya
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (C.S.); (V.T.)
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (C.S.); (V.T.)
- Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
| |
Collapse
|
17
|
Bryngelson SH, Guéniat F, Freund JB. Irregular dynamics of cellular blood flow in a model microvessel. Phys Rev E 2019; 100:012203. [PMID: 31499874 DOI: 10.1103/physreve.100.012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 11/07/2022]
Abstract
The flow of red blood cells within cylindrical vessels is complex and irregular, so long as the vessel diameter is somewhat larger than the nominal cell size. Long-time-series simulations, in which cells flow 10^{5} vessel diameters, are used to characterize the chaotic kinematics, particularly to inform reduced-order models. The simulation model used includes full coupling between the elastic red blood cell membranes and surrounding viscous fluid, providing a faithful representation of the cell-scale dynamics. Results show that the flow has neither classifiable recurrent features nor a dominant frequency. Instead, its kinematics are sensitive to the initial flow configuration in a way consistent with chaos and Lagrangian turbulence. Phase-space reconstructions show that a low-dimensional attractor does not exist, so the observed long-time dynamics are effectively stochastic. Based on this, a simple Markov chain model for the dynamics is introduced and shown to reproduce the statistics of the cell positions.
Collapse
Affiliation(s)
- Spencer H Bryngelson
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Florimond Guéniat
- The Center for Exascale Simulation of Plasma-coupled Combustion, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jonathan B Freund
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Department of Aerospace Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Intes X, Corr DT. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater 2019; 95:357-370. [PMID: 30776506 PMCID: PMC7171976 DOI: 10.1016/j.actbio.2019.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/17/2022]
Abstract
3D multicellular aggregates, and more advanced organotypic systems, have become central tools in recent years to study a wide variety of complex biological processes. Most notably, these model systems have become mainstream within oncology (multicellular tumor spheroids) and regenerative medicine (embryoid bodies) research. However, the biological behavior of these in vitro tissue surrogates is extremely sensitive to their aggregate size and geometry. Indeed, both of these geometrical parameters are key in producing pathophysiological gradients responsible for cellular and structural heterogeneity, replicating in vivo observations. Moreover, the fabrication techniques most widely used for producing these models lack the ability to accurately control cellular spatial location, an essential component for regulating homotypic and heterotypic cell signaling. Herein, we report on a 3D bioprinting technique, laser direct-write (LDW), that enables precise control of both spatial patterning and size of cell-encapsulating microbeads. The generated cell-laden beads are further processed into core-shelled structures, allowing for the growth and formation of self-contained, self-aggregating cells (e.g., breast cancer cells, embryonic stem cells). Within these structures we demonstrate our ability to produce multicellular tumor spheroids (MCTSs) and embryoid bodies (EBs) with well-controlled overall size and shape, that can be designed on demand. Furthermore, we investigated the impact of aggregate size on the uptake of a commonly employed ligand for receptor-mediated drug delivery, Transferrin, indicating that larger tumor spheroids exhibit greater spatial heterogeneity in ligand uptake. Taken together, these findings establish LDW as a versatile biomanufacturing platform for bioprinting and patterning core-shelled structures to generate size-controlled 3D multicellular aggregates. STATEMENT OF SIGNIFICANCE: Multicellular 3D aggregates are powerful in vitro models used to study a wide variety of complex biological processes, particularly within oncology and regenerative medicine. These tissue surrogates are fabricated using environments that encourage cellular self-assembly. However, specific applications require control of aggregate size and position to recapitulate key in vivo parameters (e.g., pathophysiological gradients and homotypic/heterotypic cell signaling). Herein, we demonstrate the ability to create and spatially pattern size-controlled embryoid bodies and tumor spheroids, using laser-based 3D bioprinting. Furthermore, we investigated the effect of tumor spheroid size on internalization of Transferrin, a common ligand for targeted therapy, finding greater spatial heterogeneity in our large aggregates. Overall, this technique offers incredible promise and flexibility for fabricating idealized 3D in vitro models.
Collapse
Affiliation(s)
- David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Cassandra L Roberge
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Denzel E Faulkner
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.
| |
Collapse
|
19
|
Sheth DB, Gratzl M. Electrochemical mapping of oxygenation in the three-dimensional multicellular tumour hemi-spheroid. Proc Math Phys Eng Sci 2019; 475:20180647. [PMID: 31236040 PMCID: PMC6545061 DOI: 10.1098/rspa.2018.0647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/29/2019] [Indexed: 01/09/2023] Open
Abstract
Blood capillaries deliver oxygen and nutrients to surrounding micro-regions of tissue and carry away metabolic waste. In normal tissue, capillaries are close enough to keep all the cells viable. In solid tumours, the capillary system is chaotic and typical inter-capillary distances are larger than in normal tissue. Therefore, hypoxic regions develop. Drug molecules may not reach these areas at concentrations above the lethal level. The combined effect of low drug concentrations and local hypoxia, often exacerbated by acidity, leads to therapy failure. To better understand the interplay between hypoxia and poor drug penetration, oxygenation needs to be assessed in different areas of inter-capillary tissue. The multicellular tumour spheroid is a well-established three-dimensional (3D) in vitro model of the capillary microenvironment. It is used to mimic nascent tumours and micro-metastases as well. In this work, we demonstrate for the first time that dynamic intra-spheroidal oxygen maps can be obtained at the 3D multicellular tumour hemi-spheroid (MCH) using a non-invasive microelectrode array. The same oxygen distributions exist inside the equivalent but less accessible full spheroid. The MCH makes high throughput-high content analysis of spheroids feasible and thus can assist studies on basic cancer biology, drug development and personalized medicine.
Collapse
Affiliation(s)
| | - Miklόs Gratzl
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Lee IC. Cancer-on-a-chip for Drug Screening. Curr Pharm Des 2019; 24:5407-5418. [DOI: 10.2174/1381612825666190206235233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 12/24/2022]
Abstract
:
The oncology pharmaceutical research spent a shocking amount of money on target validation and
drug optimization in preclinical models because many oncology drugs fail during clinical trial phase III. One of
the most important reasons for oncology drug failures in clinical trials may due to the poor predictive tool of
existing preclinical models. Therefore, in cancer research and personalized medicine field, it is critical to improve
the effectiveness of preclinical predictions of the drug response of patients to therapies and to reduce costly failures
in clinical trials. Three dimensional (3D) tumor models combine micro-manufacturing technologies mimic
critical physiologic parameters present in vivo, including complex multicellular architecture with multicellular
arrangement and extracellular matrix deposition, packed 3D structures with cell–cell interactions, such as tight
junctions, barriers to mass transport of drugs, nutrients and other factors, which are similar to in vivo tumor tissues.
These systems provide a solution to mimic the physiological environment for improving predictive accuracy
in oncology drug discovery.
:
his review gives an overview of the innovations, development and limitations of different types of tumor-like
construction techniques such as self-assemble spheroid formation, spheroids formation by micro-manufacturing
technologies, micro-dissected tumor tissues and tumor organoid. Combination of 3D tumor-like construction and
microfluidic techniques to achieve tumor on a chip for in vitro tumor environment modeling and drug screening
were all included. Eventually, developmental directions and technical challenges in the research field are also
discussed. We believe tumor on chip models have provided better sufficient clinical predictive power and will
bridge the gap between proof-of-concept studies and a wider implementation within the oncology drug development
for pathophysiological applications.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Wang C, Zhao S, Zhao X, Chen L, Tian Z, Chen X, Qin S. A novel wide-range microfluidic dilution device for drug screening. BIOMICROFLUIDICS 2019; 13:024105. [PMID: 30931077 PMCID: PMC6430636 DOI: 10.1063/1.5085865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/09/2019] [Indexed: 05/13/2023]
Abstract
Microfluidic dilution chip is a crucial approach to perform gradient dilution of experimental samples in many biological investigations. In this study, we developed two serial wide-range dilution chips with dilution rates of 1:1 and 1:4 on the basis of the microfluidic oscillator by designing a series chamber, which was similar to a series circuit. The size of this chamber was adjusted and mixed with the neighboring air chamber to form dilution rates by oscillatory methods. We applied this microfluidic oscillator to estimate cellular kinetics and perform an acute oxidative stress test on Caenorhabditis elegans (C. elegans) in order to further validate their effectiveness. We estimated the kinetic parameters of β-galactosidase, the biocatalyst responsible for the hydrolysis of lactose, and found out that K m was 602 ± 73 μM and k cat was 72 ± 12/s. In addition, our result of the study on acute oxidative stress of C. elegans using this novel chip was consistent with the result using 96-well plates. Overall, we believe that this novel chip can be applied to enzymatic reaction kinetics to evaluate accurately drug screening in bio-nematode models such as C. elegans. In summary, we have provided a novel microfluidic dilution chip that can form a wide range of sample concentration gradients. Our chip may facilitate drug screening, drug toxicology, and environmental toxicology.
Collapse
Affiliation(s)
| | | | - Xianglong Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Zhengan Tian
- Shanghai International Travel Medical Center, Shanghai 200335, People’s Republic of China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- Authors to whom correspondence should be addressed: and
| | - Shengying Qin
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
22
|
The Combined Effects of Co-Culture and Substrate Mechanics on 3D Tumor Spheroid Formation within Microgels Prepared via Flow-Focusing Microfluidic Fabrication. Pharmaceutics 2018; 10:pharmaceutics10040229. [PMID: 30428559 PMCID: PMC6321249 DOI: 10.3390/pharmaceutics10040229] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
Tumor spheroids are considered a valuable three dimensional (3D) tissue model to study various aspects of tumor physiology for biomedical applications such as tissue engineering and drug screening as well as basic scientific endeavors, as several cell types can efficiently form spheroids by themselves in both suspension and adherent cell cultures. However, it is more desirable to utilize a 3D scaffold with tunable properties to create more physiologically relevant tumor spheroids as well as optimize their formation. In this study, bioactive spherical microgels supporting 3D cell culture are fabricated by a flow-focusing microfluidic device. Uniform-sized aqueous droplets of gel precursor solution dispersed with cells generated by the microfluidic device are photocrosslinked to fabricate cell-laden microgels. Their mechanical properties are controlled by the concentration of gel-forming polymer. Using breast adenocarcinoma cells, MCF-7, the effect of mechanical properties of microgels on their proliferation and the eventual spheroid formation was explored. Furthermore, the tumor cells are co-cultured with macrophages of fibroblasts, which are known to play a prominent role in tumor physiology, within the microgels to explore their role in spheroid formation. Taken together, the results from this study provide the design strategy for creating tumor spheroids utilizing mechanically-tunable microgels as 3D cell culture platform.
Collapse
|
23
|
Xie H, Jiao Y, Fan Q, Hai M, Yang J, Hu Z, Yang Y, Shuai J, Chen G, Liu R, Liu L. Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. PLoS One 2018; 13:e0206292. [PMID: 30365511 PMCID: PMC6203364 DOI: 10.1371/journal.pone.0206292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
A systematic understanding of the evolution and growth dynamics of invasive solid tumors in response to different chemotherapy strategies is crucial for the development of individually optimized oncotherapy. Here, we develop a hybrid three-dimensional (3D) computational model that integrates pharmacokinetic model, continuum diffusion-reaction model and discrete cell automaton model to investigate 3D invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. Specifically, we consider the effects of heterogeneous environment on drug diffusion, tumor growth, invasion and the drug-tumor interaction on individual cell level. We employ the hybrid model to investigate the evolution and growth dynamics of avascular invasive solid tumors under different chemotherapy strategies. Our simulations indicate that constant dosing is generally more effective in suppressing primary tumor growth than periodic dosing, due to the resulting continuous high drug concentration. In highly heterogeneous microenvironment, the malignancy of the tumor is significantly enhanced, leading to inefficiency of chemotherapies. The effects of geometrically-confined microenvironment and non-uniform drug dosing are also investigated. Our computational model, when supplemented with sufficient clinical data, could eventually lead to the development of efficient in silico tools for prognosis and treatment strategy optimization.
Collapse
Affiliation(s)
- Hang Xie
- College of Physics, Chongqing University, Chongqing, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Qihui Fan
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, China
| | - Miaomiao Hai
- College of Physics, Chongqing University, Chongqing, China
| | - Jiaen Yang
- College of Physics, Chongqing University, Chongqing, China
| | - Zhijian Hu
- College of Physics, Chongqing University, Chongqing, China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, China
| | - Guo Chen
- College of Physics, Chongqing University, Chongqing, China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
Ding Y, Liu W, Yu W, Lu S, Liu M, Kaplan DL, Wang X. Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance. J Tissue Eng Regen Med 2018; 12:1959-1971. [PMID: 30055109 DOI: 10.1002/term.2729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles to improving outcomes of chemotherapy in tumour patients. However, progress has been slow to overcome this phenomenon due to the limitations of current cell/tissue models in recapitulating MDR behaviour of tumour cells in vitro. To address this issue, a more pathologically relevant, three-dimensional (3D) culture of human breast cancer cells was developed by seeding the adriamycin-resistant cells MCF-7R in silk-collagen scaffolds. The cultures of the parental cell line MCF-7 served as controls. Distinct growth profiles of MCF-7R and MCF-7 cells were observed when they were cultured in the scaffolds in comparison with those in the monolayer culture, including cell proliferation, cellular aggregate formation, and expression of drug resistance-related genes/proteins. Moreover, the 3D cultures of these cell lines especially the cultures of MCF-7R exhibited a significantly enhanced drug resistance evidenced by their increased IC50 values to the anticancer drugs and improved drug efflux capability. An altered cell cycle distribution and improved percentage of breast cancer stem cell (BCSC)-like cells was also found in the present study. This might play an important role in promoting the drug-resistance production in those 3D cultures. Thus, we established improved 3D cultures of MDR human breast cancer. It would provide a robust tissue model for use to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR, and enrich BCSCs in vitro.
Collapse
Affiliation(s)
- Yanfang Ding
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wei Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weiting Yu
- Dalian Zhongshan Hospital Affiliated Dalian University, Dalian, China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Ming Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Niu Y, Qi L, Zhang F, Zhao Y. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes. Biosens Bioelectron 2018; 112:162-169. [PMID: 29704784 DOI: 10.1016/j.bios.2018.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States; Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Lin Qi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Fen Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
26
|
Ferreira LP, Gaspar VM, Mano JF. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomater 2018; 75:11-34. [PMID: 29803007 PMCID: PMC7617007 DOI: 10.1016/j.actbio.2018.05.034] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Three-dimensional multicellular tumor models are receiving an ever-growing focus as preclinical drug-screening platforms due to their potential to recapitulate major physiological features of human tumors in vitro. In line with this momentum, the technologies for assembly of 3D microtumors are rapidly evolving towards a comprehensive inclusion of tumor microenvironment elements. Customized spherically structured platforms, including microparticles and microcapsules, provide a robust and scalable technology to imprint unique biomolecular tumor microenvironment hallmarks into 3D in vitro models. Herein, a comprehensive overview of novel advances on the integration of tumor-ECM components and biomechanical cues into 3D in vitro models assembled in spherical shaped platforms is provided. Future improvements regarding spatiotemporal/mechanical adaptability, and degradability, during microtumors in vitro 3D culture are also critically discussed considering the realistic potential of these platforms to mimic the dynamic tumor microenvironment. From a global perspective, the production of 3D multicellular spheroids with tumor ECM components included in spherical models will unlock their potential to be used in high-throughput screening of therapeutic compounds. It is envisioned, in a near future, that a combination of spherically structured 3D microtumor models with other advanced microfluidic technologies will properly recapitulate the flow dynamics of human tumors in vitro. STATEMENT OF SIGNIFICANCE The ability to correctly mimic the complexity of the tumor microenvironment in vitro is a key aspect for the development of evermore realistic in vitro models for drug-screening and fundamental cancer biology studies. In this regard, conventional spheroid-based 3D tumor models, combined with spherically structured biomaterials, opens the opportunity to precisely recapitulate complex cell-extracellular matrix interactions and tumor compartmentalization. This review provides an in-depth focus on current developments regarding spherically structured scaffolds engineered into in vitro 3D tumor models, and discusses future advances toward all-encompassing platforms that may provide an improved in vitro/in vivo correlation in a foreseeable future.
Collapse
Affiliation(s)
- L P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - V M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - J F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Acta Biomater 2018; 75:200-212. [PMID: 29864516 DOI: 10.1016/j.actbio.2018.05.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022]
Abstract
The use of 3D cancer models will have both ethical and economic impact in drug screening and development, to promote the reduction of the animals employed in preclinical studies. Nevertheless, to be effective, such cancer surrogates must preserve the physiological relevance of the in vivo models in order to provide realistic information on drugs' efficacy. To figure out the role of the architecture and composition of 3D cancer models on their tumor-mimicking capability, here we studied the efficacy of doxorubicin (DOX), a well-known anticancer molecule in two different 3D cancer models: our 3D breast cancer microtissue (3D-μTP) versus the golden standard represented by spheroid model (sph). Both models were obtained by using cancer associated fibroblast (CAF) and breast cancer cells (MCF-7) as cellular component. Unlike spheroid model, 3D-μTP was engineered in order to induce the production of endogenous extracellular matrix by CAF. 3D-μTP have been compared to spheroid in mono- (MCF-7 alone) and co-culture (MCF-7/CAF), after the treatment with DOX in order to study cytotoxicity effect, diffusional transport and expression of proteins related to cancer progression. Compared to the spheroid model, 3D-μTP showed higher diffusion coefficient of DOX and lower cell viability. Also, the expression of some tumoral biomarkers related to cell junctions were different in the two models. STATEMENTS OF SIGNIFICANCE Cancer biology has made progress in unraveling the mechanism of cancer progression, anyway the most of the results are still obtained by 2D cell cultures or animal models, that do not faithfully copycat the tumor microenvironment. The lack of correlation between preclinical models and in vivo organisms negatively influences the clinical efficacy of chemotherapeutic drugs. Consequently, even if a huge amount of new drugs has been developed in the last decades, still people are dying because of cancer. Pharmaceutical companies are interested in 3D tumor model as valid alternative in drug screening in preclinical studies. However, a 3D tumor model that completely mimics tumor heterogeneity is still far to achieve. In our work we compare 3D human breast cancer microtissues and spheroids in terms of response to doxorubicin and drug diffusion. We believe that our results are interesting because they highlight the potential role of the proposed tumor model in the attempts to improve efficacy tests.
Collapse
|
28
|
Establishment of a Model of Microencapsulated SGC7901 Human Gastric Carcinoma Cells Cocultured with Tumor-Associated Macrophages. Can J Gastroenterol Hepatol 2018; 2018:3767482. [PMID: 29808160 PMCID: PMC5902114 DOI: 10.1155/2018/3767482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
The important factors of poor survival of gastric cancer (GC) are relapse and metastasis. For further elucidation of the mechanism, a culture system mimicking the microenvironment of the tumor in humans was needed. We established a model of microencapsulated SGC7901 human GC cells and evaluated the effects of coculturing spheres with tumor-associated macrophages (TAMs). SGC7901 cells were encapsulated in alginate-polylysine-sodium alginate (APA) microcapsules using an electrostatic droplet generator. MTT assays showed that the numbers of microencapsulated cells were the highest after culturing for 14 days. Metabolic curves showed consumption of glucose and production of lactic acid by day 20. Immunocytochemistry confirmed that Proliferating Cell Nuclear Antigen (PCNA) and Vascular Endothelial Growth Factor (VEGF) were expressed in microencapsulated SGC7901 cells on days 7 and 14. The expression of PCNA was observed outside spheroids; however, VEGF was found in the entire spheroids. PCNA and VEGF were increased after being cocultured with TAMs. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) expressions were detected in the supernatant of microencapsulated cells cocultured with TAMs but not in microencapsulated cells. Our study confirms the successful establishment of the microencapsulated GC cells. TAMs can promote PCNA, VEGF, MMP-2, and MMP-9 expressions of the GC cells.
Collapse
|
29
|
Chen S, Boda SK, Batra SK, Li X, Xie J. Emerging Roles of Electrospun Nanofibers in Cancer Research. Adv Healthc Mater 2018; 7:e1701024. [PMID: 29210522 PMCID: PMC5867260 DOI: 10.1002/adhm.201701024] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Indexed: 02/01/2023]
Abstract
This article reviews the recent progress of electrospun nanofibers in cancer research. It begins with a brief introduction to the emerging potential of electrospun nanofibers in cancer research. Next, a number of recent advances on the important features of electrospun nanofibers critical for cancer research are discussed including the incorporation of drugs, control of release kinetics, orientation and alignment of nanofibers, and the fabrication of 3D nanofiber scaffolds. This article further highlights the applications of electrospun nanofibers in several areas of cancer research including local chemotherapy, combinatorial therapy, cancer detection, cancer cell capture, regulation of cancer cell behavior, construction of in vitro 3D cancer model, and engineering of bone microenvironment for cancer metastasis. This progress report concludes with remarks on the challenges and future directions for design, fabrication, and application of electrospun nanofibers in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
30
|
Lee GH, Suh Y, Park JY. A Paired Bead and Magnet Array for Molding Microwells with Variable Concave Geometries. J Vis Exp 2018. [PMID: 29443026 DOI: 10.3791/55548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A spheroid culture is a useful tool for understanding cellular behavior in that it provides an in vivo-like three-dimensional environment. Various spheroid production methods such as non-adhesive surfaces, spinner flasks, hanging drops, and microwells have been used in studies of cell-to-cell interaction, immune-activation, drug screening, stem cell differentiation, and organoid generation. Among these methods, microwells with a three-dimensional concave geometry have gained the attention of scientists and engineers, given their advantages of uniform-sized spheroid generation and the ease with which the responses of individual spheroids can be monitored. Even though cost-effective methods such as the use of flexible membranes and ice lithography have been proposed, these techniques incur serious drawbacks such as difficulty in controlling the pattern sizes, achievement of high aspect ratios, and production of larger areas of microwells. To overcome these problems, we propose a robust method for fabricating concave microwells without the need for complex high-cost facilities. This method utilizes a 30 x 30 through-hole array, several hundred micrometer-order steel beads, and magnetic force to fabricate 900 microwells in a 3 cm x 3 cm polydimethylsiloxane (PDMS) substrate. To demonstrate the applicability of our method to cell biological applications, we cultured adipose stem cells for 3 days and successfully produced spheroids using our microwell platform. In addition, we performed a magnetostatic simulation to investigate the mechanism, whereby magnetic force was used to trap the steel beads in the through-holes. We believe that the proposed microwell fabrication method could be applied to many spheroid-based cellular studies such as drug screening, tissue regeneration, stem cell differentiation, and cancer metastasis.
Collapse
Affiliation(s)
- Gi-Hun Lee
- School of Mechanical Engineering, College of Engineering, Chung-Ang University
| | - Youngjoon Suh
- School of Mechanical Engineering, College of Engineering, Chung-Ang University
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University;
| |
Collapse
|
31
|
Bertlein S, Hikimoto D, Hochleitner G, Hümmer J, Jungst T, Matsusaki M, Akashi M, Groll J. Development of Endothelial Cell Networks in 3D Tissues by Combination of Melt Electrospinning Writing with Cell-Accumulation Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1701521. [PMID: 29131497 DOI: 10.1002/smll.201701521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/23/2017] [Indexed: 06/07/2023]
Abstract
A remaining challenge in tissue engineering approaches is the in vitro vascularization of engineered constructs or tissues. Current approaches in engineered vascularized constructs are often limited in the control of initial vascular network geometry, which is crucial to ensure full functionality of these constructs with regard to cell survival, metabolic activity, and potential differentiation ability. Herein, the combination of 3D-printed poly-ε-caprolactone scaffolds via melt electrospinning writing with the cell-accumulation technique to enable the formation and control of capillary-like network structures is reported. The cell-accumulation technique is already proven itself to be a powerful tool in obtaining thick (50 µm) tissues and its main advantage is the rapid production of tissues and its ease of performance. However, the applied combination yields tissue thicknesses that are doubled, which is of outstanding importance for an improved handling of the scaffolds and the generation of clinically relevant sample volumes. Moreover, a correlation of increasing vascular endothelial growth factor secretion to hypoxic conditions with increasing pore sizes and an assessment of the formation of neovascular like structures are included.
Collapse
Affiliation(s)
- Sarah Bertlein
- Department of Functional Materials for Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Pleicherwall 2, 97070, Wuerzburg, Germany
| | - Daichi Hikimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gernot Hochleitner
- Department of Functional Materials for Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Pleicherwall 2, 97070, Wuerzburg, Germany
| | - Julia Hümmer
- Department of Functional Materials for Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Pleicherwall 2, 97070, Wuerzburg, Germany
| | - Tomasz Jungst
- Department of Functional Materials for Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Pleicherwall 2, 97070, Wuerzburg, Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsuru Akashi
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jürgen Groll
- Department of Functional Materials for Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Pleicherwall 2, 97070, Wuerzburg, Germany
| |
Collapse
|
32
|
Niu Y, Zhang X, Si T, Zhang Y, Qi L, Zhao G, Xu RX, He X, Zhao Y. Simultaneous Measurements of Geometric and Viscoelastic Properties of Hydrogel Microbeads Using Continuous-Flow Microfluidics with Embedded Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702821. [PMID: 29140604 DOI: 10.1002/smll.201702821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Geometric and mechanical characterizations of hydrogel materials at the microscale are attracting increasing attention due to their importance in tissue engineering, regenerative medicine, and drug delivery applications. Contemporary approaches for measuring the these properties of hydrogel microbeads suffer from low-throughput, complex system configuration, and measurement inaccuracy. In this work, a continuous-flow device is developed to measure geometric and viscoelastic properties of hydrogel microbeads by flowing the microbeads through a tapered microchannel with an array of interdigitated microelectrodes patterned underneath the channel. The viscoelastic properties are derived from the trajectories of microbeads using a quasi-linear viscoelastic model. The measurement is independent of the applied volumetric flow rate. The results show that the geometric and viscoelastic properties of Ca-alginate hydrogel microbeads can be determined independently and simultaneously. The bulky high-speed optical systems are eliminated, simplifying the system configuration and making it a truly miniaturized device. A throughput of up to 394 microbeads min-1 is achieved. This study may provide a powerful tool for mechanical profiling of hydrogel microbeads to support their wide applications.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, the Ohio State University, Columbus, OH, 43210, USA
| | - Xu Zhang
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
| | - Ting Si
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
- Department of Engineering Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| | - Yuntian Zhang
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
- Department of Electronic Science and Technology, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| | - Lin Qi
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| | - Ronald X Xu
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
- Department of Engineering Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| | - Xiaoming He
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
| | - Yi Zhao
- Department of Biomedical Engineering, the Ohio State University, 1080 Carmack Road, Columbus, OH, 43210, USA
| |
Collapse
|
33
|
Lv D, Hu Z, Lu L, Lu H, Xu X. Three-dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncol Lett 2017; 14:6999-7010. [PMID: 29344128 DOI: 10.3892/ol.2017.7134] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
In previous years, three-dimensional (3D) cell culture technology has become a focus of research in tumor cell biology, using a variety of methods and materials to mimic the in vivo microenvironment of cultured tumor cells ex vivo. These 3D tumor cells have demonstrated numerous different characteristics compared with traditional two-dimensional (2D) culture. 3D cell culture provides a useful platform for further identifying the biological characteristics of tumor cells, particularly in the drug sensitivity area of the key points of translational medicine. It promises to be a bridge between traditional 2D culture and animal experiments, and is of great importance for further research in the field of tumor biology. In the present review, previous 3D cell culture applications, focusing on anti-tumor drug susceptibility testing, are summarized.
Collapse
Affiliation(s)
- Donglai Lv
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Zongtao Hu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Lin Lu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Husheng Lu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xiuli Xu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
34
|
Kessel S, Cribbes S, Bonasu S, Qiu J, Chan LLY. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. SLAS DISCOVERY 2017; 23:202-210. [PMID: 28915356 DOI: 10.1177/2472555217731076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional tumor spheroid models have been increasingly used to investigate and characterize cancer drug compounds. Previously, the Celigo image cytometer has demonstrated its utility in a high-throughput screening manner for evaluating potential drug candidates in a 3D multicellular tumor spheroid (MCTS) primary screen. In addition, we have developed real-time kinetic caspase 3/7 apoptosis and propidium iodide viability 3D MCTS assays, both of which can be used in a secondary screen to better characterize the hit compounds. In this work, we monitored the kinetic apoptotic and cytotoxic effects of 14 compounds in 3D MCTS produced from the glioblastoma cell line U87MG in 384-well plates for 9 days. The kinetic results allowed the categorization of the effects from 14 drug compounds into early and late cytotoxic, apoptotic, cytostatic, and no effects. The real-time apoptosis and viability screening method can serve as an improved secondary screen to better understand the mechanism of action of these potential drug candidates identified from the primary screen, allowing one to identify a more qualified drug candidate and streamline the drug discovery process of research and development.
Collapse
Affiliation(s)
- Sarah Kessel
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Scott Cribbes
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Surekha Bonasu
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Jean Qiu
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Leo Li-Ying Chan
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
35
|
Nishikawa T, Tanaka Y, Kusamori K, Mizuno N, Mizukami Y, Ogino Y, Shimizu K, Konishi S, Takahashi Y, Takakura Y, Nishikawa M. Using size-controlled multicellular spheroids of murine adenocarcinoma cells to efficiently establish pulmonary tumors in mice. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Tomoko Nishikawa
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
| | - Yutaro Tanaka
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
| | - Kosuke Kusamori
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
- Laboratory of Biopharmaceutics; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Noda Japan
| | - Narumi Mizuno
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
| | - Yuya Mizukami
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
| | - Yuka Ogino
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
| | - Kazunori Shimizu
- Institute for Innovative NanoBio Drug Discovery and Development; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
- Department of Biotechnology; Graduate School of Engineering; Nagoya University; Nagoya Furo-cho, Chikusa-ku Japan
- Department of Mechanical Engineering; Ritsumeikan University; Kusatsu Japan
| | - Satoshi Konishi
- Institute for Innovative NanoBio Drug Discovery and Development; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
- Department of Mechanical Engineering; Ritsumeikan University; Kusatsu Japan
- Ritsumeikan-Global Innovation Research Organization; Ritsumeikan University; Kusatsu Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
- Laboratory of Biopharmaceutics; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Noda Japan
| |
Collapse
|
36
|
Gencoglu MF, Barney LE, Hall CL, Brooks EA, Schwartz AD, Corbett DC, Stevens KR, Peyton SR. Comparative Study of Multicellular Tumor Spheroid Formation Methods and Implications for Drug Screening. ACS Biomater Sci Eng 2017. [PMID: 29527571 DOI: 10.1021/acsbiomaterials.7b00069] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Improved in vitro models are needed to better understand cancer progression and bridge the gap between in vitro proof-of-concept studies, in vivo validation, and clinical application. Multicellular tumor spheroids (MCTS) are a popular method for three-dimensional (3D) cell culture, because they capture some aspects of the dimensionality, cell-cell contact, and cell-matrix interactions seen in vivo. Many approaches exist to create MCTS from cell lines, and they have been used to study tumor cell invasion, growth, and how cells respond to drugs in physiologically relevant 3D microenvironments. However, there are several discrepancies in the observations made of cell behaviors when comparing between MCTS formation methods. To resolve these inconsistencies, we created and compared the behavior of breast, prostate, and ovarian cancer cells across three MCTS formation methods: in polyNIPAAM gels, in microwells, or in suspension culture. These methods formed MCTS via proliferation from single cells or passive aggregation, and therefore showed differential reliance on genes important for cell-cell or cell-matrix interactions. We also found that the MCTS formation method dictated drug sensitivity, where MCTS formed over longer periods of time via clonal growth were more resistant to treatment. Toward clinical application, we compared an ovarian cancer cell line MCTS formed in polyNIPAAM with cells from patient-derived malignant ascites. The method that relied on clonal growth (PolyNIPAAM gel) was more time and cost intensive, but yielded MCTS that were uniformly spherical, and exhibited the most reproducible drug responses. Conversely, MCTS methods that relied on aggregation were faster, but yielded MCTS with grapelike, lobular structures. These three MCTS formation methods differed in culture time requirements and complexity, and had distinct drug response profiles, suggesting the choice of MCTS formation method should be carefully chosen based on the application required.
Collapse
Affiliation(s)
- Maria F Gencoglu
- Department of Chemical Engineering, University of Massachusetts Amherst, N540 Life Sciences Laboratories, 240 Thatcher Road, Amherst, Massachusetts 01003-9364, United States
| | - Lauren E Barney
- Department of Chemical Engineering, University of Massachusetts Amherst, N540 Life Sciences Laboratories, 240 Thatcher Road, Amherst, Massachusetts 01003-9364, United States
| | - Christopher L Hall
- Department of Chemical Engineering, University of Massachusetts Amherst, N540 Life Sciences Laboratories, 240 Thatcher Road, Amherst, Massachusetts 01003-9364, United States
| | - Elizabeth A Brooks
- Department of Chemical Engineering, University of Massachusetts Amherst, N540 Life Sciences Laboratories, 240 Thatcher Road, Amherst, Massachusetts 01003-9364, United States
| | - Alyssa D Schwartz
- Department of Chemical Engineering, University of Massachusetts Amherst, N540 Life Sciences Laboratories, 240 Thatcher Road, Amherst, Massachusetts 01003-9364, United States
| | - Daniel C Corbett
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, N540 Life Sciences Laboratories, 240 Thatcher Road, Amherst, Massachusetts 01003-9364, United States
| |
Collapse
|
37
|
Cribbes S, Kessel S, McMenemy S, Qiu J, Chan LLY. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. SLAS DISCOVERY 2017; 22:547-557. [PMID: 28346096 DOI: 10.1177/2472555217689884] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) tumor models have been increasingly used to investigate and characterize cancer drug compounds. The ability to perform high-throughput screening of 3D multicellular tumor spheroids (MCTS) can highly improve the efficiency and cost-effectiveness of discovering potential cancer drug candidates. Previously, the Celigo Image Cytometer has demonstrated a novel method for high-throughput screening of 3D multicellular tumor spheroids. In this work, we employed the Celigo Image Cytometer to examine the effects of 14 cancer drug compounds on 3D MCTS of the glioblastoma cell line U87MG in 384-well plates. Using parameters such as MCTS diameter and invasion area, growth and invasion were monitored for 9 and 3 d, respectively. Furthermore, fluorescent staining with calcein AM, propidium iodide, Hoechst 33342, and caspase 3/7 was performed at day 9 posttreatment to measure viability and apoptosis. Using the kinetic and endpoint data generated, we created a novel multiparametric drug-scoring system for 3D MCTS that can be used to identify and classify potential drug candidates earlier in the drug discovery process. Furthermore, the combination of quantitative and qualitative image data can be used to delineate differences between drugs that induce cytotoxic and cytostatic effects. The 3D MCTS-based multiparametric scoring method described here can provide an alternative screening method to better qualify tested drug compounds.
Collapse
Affiliation(s)
- Scott Cribbes
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Sarah Kessel
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Scott McMenemy
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Jean Qiu
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Leo Li-Ying Chan
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
38
|
Zhang X, Lu J, He B, Tang L, Liu X, Zhu D, Cao H, Wang Y, Li L. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro. Int J Mol Med 2017; 39:101-112. [PMID: 27959388 PMCID: PMC5179183 DOI: 10.3892/ijmm.2016.2825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotra-nsformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two‑dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310003, P.R. China
| | - Lingling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Yingjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| |
Collapse
|
39
|
Kingsley DM, Dias AD, Corr DT. Microcapsules and 3D customizable shelled microenvironments from laser direct-written microbeads. Biotechnol Bioeng 2016; 113:2264-74. [PMID: 27070458 PMCID: PMC9202818 DOI: 10.1002/bit.25987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 01/05/2023]
Abstract
Microcapsules are shelled 3D microenvironments, with a liquid core. These core-shelled structures enable cell-cell contact, cellular proliferation and aggregation within the capsule, and can be utilized for controlled release of encapsulated contents. Traditional microcapsule fabrication methods provide limited control of capsule size, and are unable to control capsule placement. To overcome these limitations, we demonstrate size and spatial control of poly-l-lysine and chitosan microcapsules, using laser direct-write (LDW) printing, and subsequent processing, of alginate microbeads. Additionally, microbeads were used as volume pixels (voxels) to form continuous 3D hydrogel structures, which were processed like capsules, to form custom shelled aqueous-core 3D structures of prescribed geometry; such as strands, rings, and bifurcations. Heterogeneous structures were also created with controlled initial locations of different cell types, to demonstrate the ability to prescribe cell signaling (heterotypic and homotypic) in co-culture conditions. Herein, we demonstrate LDW's ability to fabricate intricate 3D structures, essentially with "printed macroporosity," and to precisely control structural composition by bottom-up fabrication in a bead-by-bead manner. The structural and compositional control afforded by this process enables the creation of a wide range of new constructs, with many potential applications in tissue engineering and regenerative medicine. Biotechnol. Bioeng. 2016;113: 2264-2274. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180
| | - Andrew D Dias
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, New York 12180.
| |
Collapse
|
40
|
Pradhan S, Hassani I, Clary JM, Lipke EA. Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:470-484. [PMID: 27302080 DOI: 10.1089/ten.teb.2015.0567] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic polymers and materials have been widely used in tissue engineering for regeneration and replication of diverse types of both normal and diseased tissues. Cancer, being a prevalent disease throughout the world, has initiated substantial interest in the creation of tissue-engineered models for anticancer drug testing. The development of these in vitro three-dimensional (3D) culture models using novel biomaterials has facilitated the investigation of tumorigenic and associated biological phenomena with a higher degree of complexity and physiological context than that provided by established two-dimensional culture models. In this review, an overview of a wide range of natural, synthetic, and hybrid biomaterials used for 3D cancer cell culture and investigation of cancer cell behavior is presented. The role of these materials in modulating cell-matrix interactions and replicating specific tumorigenic characteristics is evaluated. In addition, recent advances in biomaterial design, synthesis, and fabrication are also assessed. Finally, the advantages of incorporating polymeric biomaterials in 3D cancer models for obtaining efficacy data in anticancer drug testing applications are highlighted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Iman Hassani
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Jacob M Clary
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| |
Collapse
|
41
|
Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 2016; 8:014103. [DOI: 10.1088/1758-5090/8/1/014103] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep 2016; 6:21061. [PMID: 26877244 PMCID: PMC4753452 DOI: 10.1038/srep21061] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.
Collapse
|
43
|
Sabhachandani P, Motwani V, Cohen N, Sarkar S, Torchilin V, Konry T. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. LAB ON A CHIP 2016; 16:497-505. [PMID: 26686985 PMCID: PMC4834071 DOI: 10.1039/c5lc01139f] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here we describe a robust, microfluidic technique to generate and analyze 3D tumor spheroids, which resembles tumor microenvironment and can be used as a more effective preclinical drug testing and screening model. Monodisperse cell-laden alginate droplets were generated in polydimethylsiloxane (PDMS) microfluidic devices that combine T-junction droplet generation and external gelation for spheroid formation. The proposed approach has the capability to incorporate multiple cell types. For the purposes of our study, we generated spheroids with breast cancer cell lines (MCF-7 drug sensitive and resistant) and co-culture spheroids of MCF-7 together with a fibroblast cell line (HS-5). The device has the capability to house 1000 spheroids on chip for drug screening and other functional analysis. Cellular viability of spheroids in the array part of the device was maintained for two weeks by continuous perfusion of complete media into the device. The functional performance of our 3D tumor models and a dose dependent response of standard chemotherapeutic drug, doxorubicin (Dox) and standard drug combination Dox and paclitaxel (PCT) was analyzed on our chip-based platform. Altogether, our work provides a simple and novel, in vitro platform to generate, image and analyze uniform, 3D monodisperse alginate hydrogel tumors for various omic studies and therapeutic efficiency screening, an important translational step before in vivo studies.
Collapse
Affiliation(s)
- P Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA.
| | - V Motwani
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA.
| | - N Cohen
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA.
| | - S Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA.
| | - V Torchilin
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA. and Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA
| | - T Konry
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Ham SL, Thakuri PS, Tavana H. Robotic printing and drug testing of 384-well tumor spheroids. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:2183-6. [PMID: 26736723 DOI: 10.1109/embc.2015.7318823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A major impediment to anti-cancer drug development is the lack of a reliable and inexpensive tumor model to test the efficacy of candidate compounds. This need has emerged due to the insufficiency of widely-used monolayer cultures to predict drug efficacy in vivo. Spheroids, 3D compact clusters of cancer cells, mimic important characteristics of tumors and provide a tissue analog for drug testing. Here we present a novel spheroid formation microtechnology that is simple to use and allows high throughput drug screening in 384-microwell plates. This approach is based on a polymeric aqueous two-phase system. The denser aqueous phase is mixed with cancer cells at a desired density. Using a robotic liquid handler, a drop of this cell suspension is dispensed into each well of a 384-microwell plate containing the second, immersion aqueous phase. Cancer cells remain contained in the drop, which rests on the well bottom, and form a spheroid during incubation. The use of liquid handling robotics ensures precise dispensing of a single drop, resulting in a single spheroid per well and homogenously sized spheroids within each plate. We confirmed the consistency of production of spheroids and demonstrated their biological relevance to tumors. A proof of concept study with spheroids of triple negative breast cancer cells treated with a standard chemotherapeutic compound, doxorubicin, showed the potential of this method for drug testing. This spheroid culture microtechnology presents key advantages over existing methods such as the ease of drug and viability reagent addition, ability to analyze spheroids without transferring them to a new plate, and the elimination of the need for specialized plates or devices to form spheroids. Incorporating this technology in anti-cancer drug development pipeline will help examine the efficacy of drug candidates more effectively and expedite discovery of novel drugs.
Collapse
|
45
|
Lee GH, Lee JS, Wang X, Hoon Lee S. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications. Adv Healthc Mater 2016; 5:56-74. [PMID: 25880830 DOI: 10.1002/adhm.201500107] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/17/2015] [Indexed: 12/26/2022]
Abstract
During the last decades, the engineering of well-defined 3D tissues has attracted great attention because it provides in vivo mimicking environment and can be a building block for the engineering of bioartificial organs. In this Review, diverse engineering methods of 3D tissues using microscale devices are introduced. Recent progress of microtechnologies has enabled the development of microplatforms for bottom-up assembly of diverse shaped 3D tissues consisting of various cells. Micro hanging-drop plates, microfluidic chips, and arrayed microwells are the typical examples. The encapsulation of cells in hydrogel microspheres and microfibers allows the engineering of 3D microtissues with diverse shapes. Applications of 3D microtissues in biomedical fields are described, and the future direction of microplatform-based engineering of 3D micro-tissues is discussed.
Collapse
Affiliation(s)
- Geon Hui Lee
- KU-KIST Graduate School of Converging, Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Jae Seo Lee
- KU-KIST Graduate School of Converging, Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Xiaohong Wang
- Center of Organ Manufacturing; Department of Mechanical Engineering; Tsinghua University; Beijing 100084 P. R. China
| | - Sang Hoon Lee
- School of Biomedical Engineering; College of Health Science; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
46
|
Wang DD, Liu W, Chang JJ, Cheng X, Zhang XZ, Xu H, Feng D, Yu LJ, Wang XL. Bioengineering three-dimensional culture model of human lung cancer cells: an improved tool for screening EGFR targeted inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra00229c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioengineering a three-dimensional culture model of human lung cancer cells for screening EGFR targeted inhibitors.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Wei Liu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Jing-Jie Chang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xu Cheng
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xiu-Zhen Zhang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Hong Xu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Di Feng
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Li-Jun Yu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xiu-Li Wang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| |
Collapse
|
47
|
Ulusoy M, Lavrentieva A, Walter JG, Sambale F, Green M, Stahl F, Scheper T. Evaluation of CdTe/CdS/ZnS core/shell/shell quantum dot toxicity on three-dimensional spheroid cultures. Toxicol Res (Camb) 2016; 5:126-135. [PMID: 30090332 PMCID: PMC6060716 DOI: 10.1039/c5tx00236b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 11/21/2022] Open
Abstract
In this work, three-dimensional (3D) spheroid cultures of human adipose-derived mesenchymal stem cells (hAD-MSCs), with tissue-mimetic morphology through well developed cell-cell and cell-matrix interactions and distinct diffusion/transport characteristics, were assessed for dose-dependent toxic effects of red-emitting CdTe/CdS/ZnS quantum dots (Qdots). Morphological investigations and time-resolved microscopy analysis in addition to cell metabolic activity studies revealed that 3D spheroid cultures are more resistant to Qdot-induced cytotoxicity in comparison to conventional 2D cultures. The obtained results suggest the presence of two distinct cell populations in 2D cultures with different sensitivity to Qdots, however that effect wasn't observed in 3D spheroids. Our investigations were aimed to improve the prediction of nanotoxicity of Qdot on tissue-level and provide the essential screening steps prior to any in vivo application. Moreover, penetration ability of highly fluorescent Qdots to densely-packed spheroids will fortify the biological application of developed Qdots in tissue-like structures.
Collapse
Affiliation(s)
- Mehriban Ulusoy
- Gottfried Wilhelm Leibniz University of Hannover , Institute of Technical Chemistry , 30167 Hanover , Germany . ; Tel: +49 (0)511 762-2968
| | - Antonina Lavrentieva
- Gottfried Wilhelm Leibniz University of Hannover , Institute of Technical Chemistry , 30167 Hanover , Germany . ; Tel: +49 (0)511 762-2968
| | - Johanna-Gabriela Walter
- Gottfried Wilhelm Leibniz University of Hannover , Institute of Technical Chemistry , 30167 Hanover , Germany . ; Tel: +49 (0)511 762-2968
| | - Franziska Sambale
- Gottfried Wilhelm Leibniz University of Hannover , Institute of Technical Chemistry , 30167 Hanover , Germany . ; Tel: +49 (0)511 762-2968
| | - Mark Green
- King's College London , Department of Physics , The Strand , WC2R LS London , UK . ; Tel: +44 (0)2078 48212
| | - Frank Stahl
- Gottfried Wilhelm Leibniz University of Hannover , Institute of Technical Chemistry , 30167 Hanover , Germany . ; Tel: +49 (0)511 762-2968
| | - Thomas Scheper
- Gottfried Wilhelm Leibniz University of Hannover , Institute of Technical Chemistry , 30167 Hanover , Germany . ; Tel: +49 (0)511 762-2968
| |
Collapse
|
48
|
Bijukumar D, Girish CM, Sasidharan A, Nair S, Koyakutty M. Transferrin-Conjugated Biodegradable Graphene for Targeted Radiofrequency Ablation of Hepatocellular Carcinoma. ACS Biomater Sci Eng 2015; 1:1211-1219. [PMID: 33429667 DOI: 10.1021/acsbiomaterials.5b00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Radiofrequency ablation (RFA) is a clinically established therapy for hepatocellular carcinoma (HCC). However, because of poor radio-thermal conductivity of liver tissues, RFA is less efficient against relatively larger (>5 cm) liver tumors. Recently, nanoparticle-enabled RFA has emerged as a better strategy. On the basis of our recent understanding on biodegradability and novel electrothermal properties of graphene, herein, we report development of transferrin conjugated, biodegradable graphene (TfG) for RFA therapy. Cellular uptake studies using confocal microscopy and Raman imaging revealed significantly higher TfG uptake by HCC cells compared to bare graphene. TfG-treated cancer cells upon 5 min exposure to 100 W, 13.5 MHz RF showed >85% cell death, which was 4 times greater than bare graphene. Further evaluation in 3D (3 Dimensional) HCC culture system as well as in vivo rat models demonstrated uniform destruction of tumor cells throughout the 3D microenvironment. This study reveals the potential of molecularly targeted graphene for augmented RFA therapy of liver tumor.
Collapse
Affiliation(s)
- Divya Bijukumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Cochin 682041, India
| | - C M Girish
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Cochin 682041, India
| | - Abhilash Sasidharan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Cochin 682041, India
| | - Shantikumar Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Cochin 682041, India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Cochin 682041, India
| |
Collapse
|
49
|
Lee J, Galloway R, Grandjean G, Jacob J, Humphries J, Bartholomeusz C, Goodstal S, Lim B, Bartholomeusz G, Ueno NT, Rao A. Comprehensive Two- and Three-Dimensional RNAi Screening Identifies PI3K Inhibition as a Complement to MEK Inhibitor AS703026 for Combination Treatment of Triple-Negative Breast Cancer. J Cancer 2015; 6:1306-19. [PMID: 26640591 PMCID: PMC4643087 DOI: 10.7150/jca.13266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/08/2015] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a major cause of death among breast cancer patients that results from intrinsic and acquired resistance to systemic chemotherapies. To identify novel targets for effective treatment of TNBC through combination strategies with MEK inhibitor (AS703026), we used a novel method of combining high-throughput two- and three-dimensional (2D and 3D) RNAi screening. TNBC cells were transfected with a kinome siRNA library comprising siRNA targeting 790 kinases under both 2D and 3D culture conditions with or without AS703026. Molecule activity predictor analysis revealed the PI3K pathway as the major target pathway in our RNAi combination studies in TNBC. We found that PI3K inhibitor SAR245409 (also called XL765) combined with AS703026 synergistically inhibited proliferation compared with either drug alone (P < 0.001). Reduced in vitro colony formation (P < 0.001) and migration and invasion ability were also observed with the combination treatment (P<0.01). Our data suggest that SAR245409 combined with AS703026 may be effective in patients with TNBC. We conclude that a novel powerful high-throughput RNAi assays were able to identify anti-cancer drugs as single or combinational agents. Integrated and multi-system RNAi screening methods can complement difference between in vitro and in vivo culture conditions, and enriches targets that are close to the in vivo condition.
Collapse
Affiliation(s)
- Jangsoon Lee
- 1. Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology - Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Rachael Galloway
- 2. Department of Bioinformatics and Computational Biology - Unit 1410, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Geoff Grandjean
- 3. Department of Experimental Therapeutics - Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Justin Jacob
- 3. Department of Experimental Therapeutics - Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Juliane Humphries
- 1. Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology - Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Chandra Bartholomeusz
- 1. Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology - Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Samantha Goodstal
- 4. EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Bora Lim
- 1. Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology - Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Geoffrey Bartholomeusz
- 3. Department of Experimental Therapeutics - Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Naoto T Ueno
- 1. Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology - Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Arvind Rao
- 2. Department of Bioinformatics and Computational Biology - Unit 1410, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
50
|
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015; 17:1-15. [PMID: 25622895 PMCID: PMC4309685 DOI: 10.1016/j.neo.2014.12.004] [Citation(s) in RCA: 815] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Collapse
Affiliation(s)
- Louis-Bastien Weiswald
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France.
| | - Dominique Bellet
- Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, UMR 8151 CNRS-U1022 Inserm, Sorbonne Paris Cité, Paris, France
| | - Virginie Dangles-Marie
- Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France; Département de Recherche Translationnelle, Research Center, Institut Curie, Paris, France.
| |
Collapse
|