BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Holopainen JM, Subramanian M, Kinnunen PK. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998;37:17562-17570. [PMID: 9860872 DOI: 10.1021/bi980915e] [Cited by in Crossref: 212] [Cited by in F6Publishing: 209] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Goñi FM, Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 2006;1758:1902-21. [PMID: 17070498 DOI: 10.1016/j.bbamem.2006.09.011] [Cited by in Crossref: 202] [Cited by in F6Publishing: 190] [Article Influence: 12.6] [Reference Citation Analysis]
2 Ramstedt B, Slotte JP. Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006;1758:1945-56. [DOI: 10.1016/j.bbamem.2006.05.020] [Cited by in Crossref: 144] [Cited by in F6Publishing: 135] [Article Influence: 9.0] [Reference Citation Analysis]
3 Busto JV, Fanani ML, De Tullio L, Sot J, Maggio B, Goñi FM, Alonso A. Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers. Biophys J 2009;97:2717-26. [PMID: 19917225 DOI: 10.1016/j.bpj.2009.08.040] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 4.4] [Reference Citation Analysis]
4 Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir 2019;35:2392-8. [DOI: 10.1021/acs.langmuir.8b03176] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
5 Savić R, Schuchman EH. Use of Acid Sphingomyelinase for Cancer Therapy. The Role of Sphingolipids in Cancer Development and Therapy. Elsevier; 2013. pp. 91-115. [DOI: 10.1016/b978-0-12-394274-6.00004-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
6 Cabral LM, Wengert M, da Ressurreição AA, Feres-Elias PH, Almeida FG, Vieyra A, Caruso-Neves C, Einicker-Lamas M. Ceramide is a potent activator of plasma membrane Ca2+-ATPase from kidney-promixal tubule cells with protein kinase A as an intermediate. J Biol Chem 2007;282:24599-606. [PMID: 17606608 DOI: 10.1074/jbc.M701669200] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
7 Nybond S, Björkqvist YJE, Ramstedt B, Slotte JP. Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains. Biochimica et Biophysica Acta (BBA) - Biomembranes 2005;1718:61-6. [DOI: 10.1016/j.bbamem.2005.10.009] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 3.0] [Reference Citation Analysis]
8 Costello DA, Villareal VA, Yang PL. Desmosterol Increases Lipid Bilayer Fluidity during Hepatitis C Virus Infection. ACS Infect Dis 2016;2:852-62. [PMID: 27933788 DOI: 10.1021/acsinfecdis.6b00086] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
9 Zhang AY, Yi F, Jin S, Xia M, Chen Q, Gulbins E, Li P. Acid Sphingomyelinase and Its Redox Amplification in Formation of Lipid Raft Redox Signaling Platforms in Endothelial Cells. Antioxidants & Redox Signaling 2007;9:817-28. [DOI: 10.1089/ars.2007.1509] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 4.7] [Reference Citation Analysis]
10 García-Pacios M, Collado MI, Busto JV, Sot J, Alonso A, Arrondo JL, Goñi FM. Sphingosine-1-phosphate as an amphipathic metabolite: its properties in aqueous and membrane environments. Biophys J 2009;97:1398-407. [PMID: 19720028 DOI: 10.1016/j.bpj.2009.07.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
11 Li C, Wu Y, Riehle A, Orian-Rousseau V, Zhang Y, Gulbins E, Grassmé H. Regulation of Staphylococcus aureus Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxid Redox Signal 2018;28:916-34. [PMID: 28747072 DOI: 10.1089/ars.2017.6994] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
12 Chao L, Gast AP, Hatton TA, Jensen KF. Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes. Langmuir 2010;26:344-56. [PMID: 19863058 DOI: 10.1021/la902084u] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
13 Maula T, Al Sazzad MA, Slotte JP. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides. Biophys J 2015;109:1639-51. [PMID: 26488655 DOI: 10.1016/j.bpj.2015.08.040] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
14 Chang WH, Cerione RA, Antonyak MA. Extracellular Vesicles and Their Roles in Cancer Progression. Methods Mol Biol 2021;2174:143-70. [PMID: 32813249 DOI: 10.1007/978-1-0716-0759-6_10] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Klapisz E, Masliah J, Béréziat G, Wolf C, Koumanov KS. Sphingolipids and cholesterol modulate membrane susceptibility to cytosolic phospholipase A2. Journal of Lipid Research 2000;41:1680-8. [DOI: 10.1016/s0022-2275(20)32002-2] [Cited by in Crossref: 19] [Article Influence: 0.9] [Reference Citation Analysis]
16 Grassmé H, Riethmüller J, Gulbins E. Biological aspects of ceramide-enriched membrane domains. Progress in Lipid Research 2007;46:161-70. [DOI: 10.1016/j.plipres.2007.03.002] [Cited by in Crossref: 131] [Cited by in F6Publishing: 120] [Article Influence: 8.7] [Reference Citation Analysis]
17 Sot J, Aranda FJ, Collado MI, Goñi FM, Alonso A. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Biophys J 2005;88:3368-80. [PMID: 15695626 DOI: 10.1529/biophysj.104.057851] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 4.9] [Reference Citation Analysis]
18 Koumanov KS, Momchilova AB, Quinn PJ, Wolf C. Ceramides increase the activity of the secretory phospholipase A2 and alter its fatty acid specificity. Biochem J. 2002;363:45-51. [PMID: 11903045 DOI: 10.1042/bj3630045] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
19 Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem. 2001;276:20589-20596. [PMID: 11279185 DOI: 10.1074/jbc.m101207200] [Cited by in Crossref: 444] [Cited by in F6Publishing: 169] [Article Influence: 21.1] [Reference Citation Analysis]
20 Czarny M, Schnitzer JE. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 2004;287:H1344-52. [PMID: 15142848 DOI: 10.1152/ajpheart.00222.2004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 2.6] [Reference Citation Analysis]
21 Owen DM, Magenau A, Williamson D, Gaus K. The lipid raft hypothesis revisited--new insights on raft composition and function from super-resolution fluorescence microscopy. Bioessays 2012;34:739-47. [PMID: 22696155 DOI: 10.1002/bies.201200044] [Cited by in Crossref: 120] [Cited by in F6Publishing: 117] [Article Influence: 12.0] [Reference Citation Analysis]
22 Kuebler WM, Wittenberg C, Lee WL, Reppien E, Goldenberg NM, Lindner K, Gao Y, Winoto-Morbach S, Drab M, Mühlfeld C, Dombrowsky H, Ochs M, Schütze S, Uhlig S. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. Am J Physiol Lung Cell Mol Physiol 2016;310:L720-32. [PMID: 26851257 DOI: 10.1152/ajplung.00157.2015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
23 Grassmé H, Becker KA, Zhang Y, Gulbins E. Ceramide in bacterial infections and cystic fibrosis. Biol Chem 2008;389:1371-9. [PMID: 18783339 DOI: 10.1515/BC.2008.162] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
24 Storm P, Li L, Kinnunen P, Wieslander A. Lateral organization in Acholeplasma laidlawii lipid bilayer models containing endogenous pyrene probes. Eur J Biochem 2003;270:1699-709. [PMID: 12694183 DOI: 10.1046/j.1432-1033.2003.03527.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
25 Mencarelli C, Martinez-Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci. 2013;70:181-203. [PMID: 22729185 DOI: 10.1007/s00018-012-1038-x] [Cited by in Crossref: 121] [Cited by in F6Publishing: 117] [Article Influence: 12.1] [Reference Citation Analysis]
26 Grammatikos G, Teichgräber V, Carpinteiro A, Trarbach T, Weller M, Hengge UR, Gulbins E. Overexpression of Acid Sphingomyelinase Sensitizes Glioma Cells to Chemotherapy. Antioxidants & Redox Signaling 2007;9:1449-56. [DOI: 10.1089/ars.2007.1673] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
27 Martinez-outschoorn UE, Sotgia F, Lisanti MP. Caveolae and signalling in cancer. Nat Rev Cancer 2015;15:225-37. [DOI: 10.1038/nrc3915] [Cited by in Crossref: 126] [Cited by in F6Publishing: 121] [Article Influence: 18.0] [Reference Citation Analysis]
28 Murthy AVR, Guyomarc'h F, Lopez C. Palmitoyl ceramide promotes milk sphingomyelin gel phase domains formation and affects the mechanical properties of the fluid phase in milk-SM/DOPC supported membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018;1860:635-44. [DOI: 10.1016/j.bbamem.2017.12.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Corre I, Guillonneau M, Paris F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int J Mol Sci 2013;14:22678-96. [PMID: 24252908 DOI: 10.3390/ijms141122678] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
30 Morita SY, Kawabe M, Sakurai A, Okuhira K, Vertut-Doï A, Nakano M, Handa T. Ceramide in lipid particles enhances heparan sulfate proteoglycan and low density lipoprotein receptor-related protein-mediated uptake by macrophages. J Biol Chem 2004;279:24355-61. [PMID: 15044445 DOI: 10.1074/jbc.M402035200] [Cited by in Crossref: 35] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
31 Managò A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassmé H, Szabò I, Gulbins E. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal 2015;22:1097-110. [PMID: 25686490 DOI: 10.1089/ars.2014.5979] [Cited by in Crossref: 70] [Cited by in F6Publishing: 63] [Article Influence: 10.0] [Reference Citation Analysis]
32 Becker KA, Gellhaus A, Winterhager E, Gulbins E. Ceramide-Enriched Membrane Domains in Infectious Biology and Development. In: Quinn PJ, Wang X, editors. Lipids in Health and Disease. Dordrecht: Springer Netherlands; 2008. pp. 523-38. [DOI: 10.1007/978-1-4020-8831-5_20] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
33 Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiology 2018;13:1301-28. [DOI: 10.2217/fmb-2018-0013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
34 Lee WK, Kolesnick RN. Sphingolipid abnormalities in cancer multidrug resistance: Chicken or egg? Cell Signal 2017;38:134-45. [PMID: 28687494 DOI: 10.1016/j.cellsig.2017.06.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
35 De Tullio L, Fanani ML, Maggio B. Surface mixing of products and substrate of PLA2 in enzyme-free mixed monolayers reproduces enzyme-driven structural topography. Biochimica et Biophysica Acta (BBA) - Biomembranes 2013;1828:2056-63. [DOI: 10.1016/j.bbamem.2013.05.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
36 Simonis A, Schubert-Unkmeir A. The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection. Biol Chem 2018;399:1135-46. [PMID: 29924727 DOI: 10.1515/hsz-2018-0200] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
37 Staneva G, Momchilova A, Wolf C, Quinn PJ, Koumanov K. Membrane microdomains: Role of ceramides in the maintenance of their structure and functions. Biochimica et Biophysica Acta (BBA) - Biomembranes 2009;1788:666-75. [DOI: 10.1016/j.bbamem.2008.10.026] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 2.8] [Reference Citation Analysis]
38 Bionda C, Hadchity E, Alphonse G, Chapet O, Rousson R, Rodriguez-Lafrasse C, Ardail D. Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic Biol Med 2007;43:681-94. [PMID: 17664132 DOI: 10.1016/j.freeradbiomed.2007.04.031] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.2] [Reference Citation Analysis]
39 Artetxe I, Sergelius C, Kurita M, Yamaguchi S, Katsumura S, Slotte JP, Maula T. Effects of sphingomyelin headgroup size on interactions with ceramide. Biophys J. 2013;104:604-612. [PMID: 23442911 DOI: 10.1016/j.bpj.2012.12.026] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
40 Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene 2003;22:7070-7. [PMID: 14557812 DOI: 10.1038/sj.onc.1207146] [Cited by in Crossref: 299] [Cited by in F6Publishing: 277] [Article Influence: 15.7] [Reference Citation Analysis]
41 Tepper AD, de Vries E, van Blitterswijk WJ, Borst J. Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J Clin Invest 1999;103:971-8. [PMID: 10194469 DOI: 10.1172/JCI5457] [Cited by in Crossref: 135] [Cited by in F6Publishing: 32] [Article Influence: 5.9] [Reference Citation Analysis]
42 Massey JB. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2001;1510:167-84. [DOI: 10.1016/s0005-2736(00)00344-8] [Cited by in Crossref: 79] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
43 Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2018;16:258-69. [PMID: 30280668 DOI: 10.2174/1570162X16666181003144740] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
44 Ibarguren M, López DJ, Montes LR, Sot J, Vasil AI, Vasil ML, Goñi FM, Alonso A. Imaging the early stages of phospholipase C/sphingomyelinase activity on vesicles containing coexisting ordered-disordered and gel-fluid domains. J Lipid Res 2011;52:635-45. [PMID: 21252263 DOI: 10.1194/jlr.M012591] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
45 Pandit SA, Chiu SW, Jakobsson E, Grama A, Scott HL. Cholesterol surrogates: a comparison of cholesterol and 16:0 ceramide in POPC bilayers. Biophys J 2007;92:920-7. [PMID: 17071659 DOI: 10.1529/biophysj.106.095034] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 3.8] [Reference Citation Analysis]
46 Matsufuji T, Kinoshita M, Möuts A, Slotte JP, Matsumori N. Preparation and Membrane Properties of Oxidized Ceramide Derivatives. Langmuir 2018;34:465-71. [DOI: 10.1021/acs.langmuir.7b02654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
47 Ventura AE, Mestre B, Silva LC. Ceramide Domains in Health and Disease: A Biophysical Perspective. In: Stiban J, editor. Bioactive Ceramides in Health and Disease. Cham: Springer International Publishing; 2019. pp. 79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
48 Brodesser S, Sawatzki P, Kolter T. Bioorganic Chemistry of Ceramide. Eur J Org Chem 2003;2003:2021-34. [DOI: 10.1002/ejoc.200200518] [Cited by in Crossref: 67] [Cited by in F6Publishing: 49] [Article Influence: 3.5] [Reference Citation Analysis]
49 Robciuc A, Hyötyläinen T, Jauhiainen M, Holopainen JM. Ceramides in the pathophysiology of the anterior segment of the eye. Curr Eye Res 2013;38:1006-16. [PMID: 23885886 DOI: 10.3109/02713683.2013.810273] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
50 Čurdová J, Čapková P, Plášek J, Repáková J, Vattulainen I. Free Pyrene Probes in Gel and Fluid Membranes:  Perspective through Atomistic Simulations. J Phys Chem B 2007;111:3640-50. [DOI: 10.1021/jp065956w] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 3.2] [Reference Citation Analysis]
51 Kolesnick RN, Goñi FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 2000;184:285-300. [PMID: 10911359 DOI: 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3] [Cited by in Crossref: 326] [Cited by in F6Publishing: 118] [Article Influence: 14.8] [Reference Citation Analysis]
52 Dias IH, Mistry J, Fell S, Reis A, Spickett CM, Polidori MC, Lip GY, Griffiths HR. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation. Free Radic Biol Med 2014;75:48-59. [PMID: 25048970 DOI: 10.1016/j.freeradbiomed.2014.07.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
53 Carrer DC, Schreier S, Patrito M, Maggio B. Effects of a short-chain ceramide on bilayer domain formation, thickness, and chain mobililty: DMPC and asymmetric ceramide mixtures. Biophys J 2006;90:2394-403. [PMID: 16428286 DOI: 10.1529/biophysj.105.074252] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 2.2] [Reference Citation Analysis]
54 Peñalva DA, Wilke N, Maggio B, Aveldaño MI, Fanani ML. Surface Behavior of Sphingomyelins with Very Long Chain Polyunsaturated Fatty Acids and Effects of Their Conversion to Ceramides. Langmuir 2014;30:4385-95. [DOI: 10.1021/la500485x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
55 Grassmé H, Schwarz H, Gulbins E. Molecular Mechanisms of Ceramide-Mediated CD95 Clustering. Biochemical and Biophysical Research Communications 2001;284:1016-30. [DOI: 10.1006/bbrc.2001.5045] [Cited by in Crossref: 139] [Cited by in F6Publishing: 131] [Article Influence: 6.6] [Reference Citation Analysis]
56 Rotolo JA, Stancevic B, Lu SX, Zhang J, Suh D, King CG, Kappel LW, Murphy GF, Liu C, Fuks Z, van den Brink MR, Kolesnick R. Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood 2009;114:3693-706. [PMID: 19666872 DOI: 10.1182/blood-2008-11-191148] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
57 Stover T, Kester M. Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J Pharmacol Exp Ther 2003;307:468-75. [PMID: 12975495 DOI: 10.1124/jpet.103.054056] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 4.5] [Reference Citation Analysis]
58 Fekri F, Delos Santos RC, Karshafian R, Antonescu CN. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms. PLoS One 2016;11:e0156754. [PMID: 27275866 DOI: 10.1371/journal.pone.0156754] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
59 López-montero I, Vélez M, Devaux PF. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007;1768:553-61. [DOI: 10.1016/j.bbamem.2007.01.001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 3.3] [Reference Citation Analysis]
60 Maula T, Artetxe I, Grandell PM, Slotte JP. Importance of the sphingoid base length for the membrane properties of ceramides. Biophys J 2012;103:1870-9. [PMID: 23199915 DOI: 10.1016/j.bpj.2012.09.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
61 Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 2000;478:260-266. [PMID: 10930579 DOI: 10.1016/S0014-5793(00)01851-2] [Cited by in Crossref: 80] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
62 Haughey NJ, Tovar-y-Romo LB, Bandaru VV. Roles for biological membranes in regulating human immunodeficiency virus replication and progress in the development of HIV therapeutics that target lipid metabolism. J Neuroimmune Pharmacol 2011;6:284-95. [PMID: 21445582 DOI: 10.1007/s11481-011-9274-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
63 van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 2003;369:199-211. [PMID: 12408751 DOI: 10.1042/BJ20021528] [Cited by in Crossref: 321] [Cited by in F6Publishing: 285] [Article Influence: 16.9] [Reference Citation Analysis]
64 Ira, Johnston LJ. Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta 2008;1778:185-97. [PMID: 17988649 DOI: 10.1016/j.bbamem.2007.09.021] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 5.0] [Reference Citation Analysis]
65 Escribá PV, González-Ros JM, Goñi FM, Kinnunen PK, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 2008;12:829-75. [PMID: 18266954 DOI: 10.1111/j.1582-4934.2008.00281.x] [Cited by in Crossref: 245] [Cited by in F6Publishing: 217] [Article Influence: 17.5] [Reference Citation Analysis]
66 Leung SS, Busto JV, Keyvanloo A, Goñi FM, Thewalt J. Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting. Biophys J 2012;103:2465-74. [PMID: 23260048 DOI: 10.1016/j.bpj.2012.10.041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
67 Pandit SA, Scott HL. Molecular-dynamics simulation of a ceramide bilayer. The Journal of Chemical Physics 2006;124:014708. [DOI: 10.1063/1.2140689] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 2.6] [Reference Citation Analysis]
68 Riethmüller J, Riehle A, Grassmé H, Gulbins E. Ceramide in Pseudomonas aeruginosa infections. Eur J Lipid Sci Technol 2007;109:998-1002. [DOI: 10.1002/ejlt.200700045] [Reference Citation Analysis]
69 Herz J, Pardo J, Kashkar H, Schramm M, Kuzmenkina E, Bos E, Wiegmann K, Wallich R, Peters PJ, Herzig S, Schmelzer E, Krönke M, Simon MM, Utermöhlen O. Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol 2009;10:761-8. [DOI: 10.1038/ni.1757] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 4.9] [Reference Citation Analysis]
70 Öörni K, Pentikäinen MO, Ala-korpela M, Kovanen PT. Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. Journal of Lipid Research 2000;41:1703-14. [DOI: 10.1016/s0022-2275(20)31964-7] [Cited by in Crossref: 95] [Article Influence: 4.3] [Reference Citation Analysis]
71 Morrow MR, Helle A, Perry J, Vattulainen I, Wiedmer SK, Holopainen JM. Ceramide-1-phosphate, in contrast to ceramide, is not segregated into lateral lipid domains in phosphatidylcholine bilayers. Biophys J 2009;96:2216-26. [PMID: 19289048 DOI: 10.1016/j.bpj.2008.11.060] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
72 Takahashi D, Imai H, Kawamura Y, Uemura M. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology 2016;72:123-34. [PMID: 26904981 DOI: 10.1016/j.cryobiol.2016.02.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
73 Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010;102:391-407. [PMID: 20377525 DOI: 10.1042/BC20090138] [Cited by in Crossref: 67] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
74 Fantini J, Yahi N. Lipid Metabolism and Oxidation in Neurons and Glial Cells. Brain Lipids in Synaptic Function and Neurological Disease. Elsevier; 2015. pp. 53-85. [DOI: 10.1016/b978-0-12-800111-0.00003-5] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
75 Dobrowsky RT. Sphingolipid signalling domains Floating on rafts or buried in caves? Cellular Signalling 2000;12:81-90. [DOI: 10.1016/s0898-6568(99)00072-8] [Cited by in Crossref: 91] [Cited by in F6Publishing: 18] [Article Influence: 4.1] [Reference Citation Analysis]
76 Magenau A, Benzing C, Proschogo N, Don AS, Hejazi L, Karunakaran D, Jessup W, Gaus K. Phagocytosis of IgG-coated polystyrene beads by macrophages induces and requires high membrane order. Traffic 2011;12:1730-43. [PMID: 21883764 DOI: 10.1111/j.1600-0854.2011.01272.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
77 Chiantia S, Kahya N, Ries J, Schwille P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 2006;90:4500-8. [PMID: 16565041 DOI: 10.1529/biophysj.106.081026] [Cited by in Crossref: 195] [Cited by in F6Publishing: 174] [Article Influence: 12.2] [Reference Citation Analysis]
78 Jenkins RW, Canals D, Hannun YA. Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal. 2009;21:836-846. [PMID: 19385042 DOI: 10.1016/j.cellsig.2009.01.026] [Cited by in Crossref: 185] [Cited by in F6Publishing: 185] [Article Influence: 14.2] [Reference Citation Analysis]
79 Sot J, Goñi FM, Alonso A. Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochimica et Biophysica Acta (BBA) - Biomembranes 2005;1711:12-9. [DOI: 10.1016/j.bbamem.2005.02.014] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 3.8] [Reference Citation Analysis]
80 Boulgaropoulos B, Amenitsch H, Laggner P, Pabst G. Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase. Biophys J 2010;99:499-506. [PMID: 20643068 DOI: 10.1016/j.bpj.2010.04.028] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
81 Utermöhlen O, Herz J, Schramm M, Krönke M. Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 2008;213:307-14. [PMID: 18406376 DOI: 10.1016/j.imbio.2007.10.016] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 4.4] [Reference Citation Analysis]
82 Wiedmer SK, Robciuc A, Kronholm J, Holopainen JM, Hyötyläinen T. Chromatographic lipid profiling of stress-exposed cells: Liquid Chromatography. J Sep Science 2012;35:1845-53. [DOI: 10.1002/jssc.201200252] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
83 Kulma M, Hereć M, Grudziński W, Anderluh G, Gruszecki WI, Kwiatkowska K, Sobota A. Sphingomyelin-rich domains are sites of lysenin oligomerization: Implications for raft studies. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010;1798:471-81. [DOI: 10.1016/j.bbamem.2009.12.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
84 Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, Kinnunen PK, Nylandsted J, Jäättelä M. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 2010;463:549-53. [PMID: 20111001 DOI: 10.1038/nature08710] [Cited by in Crossref: 316] [Cited by in F6Publishing: 311] [Article Influence: 26.3] [Reference Citation Analysis]
85 Björkqvist YJ, Nyholm TK, Slotte JP, Ramstedt B. Domain formation and stability in complex lipid bilayers as reported by cholestatrienol. Biophys J 2005;88:4054-63. [PMID: 15792981 DOI: 10.1529/biophysj.104.054718] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 4.4] [Reference Citation Analysis]
86 Frank JA, Franquelim HG, Schwille P, Trauner D. Optical Control of Lipid Rafts with Photoswitchable Ceramides. J Am Chem Soc 2016;138:12981-6. [DOI: 10.1021/jacs.6b07278] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 6.5] [Reference Citation Analysis]
87 Abdel Shakor AB, Atia MM, Kwiatkowska K, Sobota A. Cell surface ceramide controls translocation of transferrin receptor to clathrin-coated pits. Cell Signal 2012;24:677-84. [PMID: 22101012 DOI: 10.1016/j.cellsig.2011.10.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
88 Peñalva DA, Oresti GM, Dupuy F, Antollini SS, Maggio B, Aveldaño MI, Fanani ML. Atypical surface behavior of ceramides with nonhydroxy and 2-hydroxy very long-chain (C28–C32) PUFAs. Biochimica et Biophysica Acta (BBA) - Biomembranes 2014;1838:731-8. [DOI: 10.1016/j.bbamem.2013.11.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
89 Abdel Shakor AB, Kwiatkowska K, Sobota A. Cell Surface Ceramide Generation Precedes and Controls FcγRII Clustering and Phosphorylation in Rafts. Journal of Biological Chemistry 2004;279:36778-87. [DOI: 10.1074/jbc.m402170200] [Cited by in Crossref: 88] [Cited by in F6Publishing: 22] [Article Influence: 4.9] [Reference Citation Analysis]
90 Fanani ML, Hartel S, Maggio B, De Tullio L, Jara J, Olmos F, Oliveira RG. The action of sphingomyelinase in lipid monolayers as revealed by microscopic image analysis. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010;1798:1309-23. [DOI: 10.1016/j.bbamem.2010.01.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.4] [Reference Citation Analysis]
91 Burgert A, Schlegel J, Bécam J, Doose S, Bieberich E, Schubert‐unkmeir A, Sauer M. Characterization of Plasma Membrane Ceramides by Super‐Resolution Microscopy. Angew Chem 2017;129:6227-31. [DOI: 10.1002/ange.201700570] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
92 Jin S, Yi F, Li PL. Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 2007;9:1417-26. [PMID: 17638544 DOI: 10.1089/ars.2007.1660] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 1.7] [Reference Citation Analysis]
93 Silva LC, Futerman AH, Prieto M. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations. Biophys J 2009;96:3210-22. [PMID: 19383465 DOI: 10.1016/j.bpj.2008.12.3923] [Cited by in Crossref: 75] [Cited by in F6Publishing: 72] [Article Influence: 5.8] [Reference Citation Analysis]
94 Fanani ML, Härtel S, Oliveira RG, Maggio B. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophys J 2002;83:3416-24. [PMID: 12496108 DOI: 10.1016/S0006-3495(02)75341-1] [Cited by in Crossref: 69] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
95 Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M. Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 2007;92:502-16. [PMID: 17056734 DOI: 10.1529/biophysj.106.091876] [Cited by in Crossref: 143] [Cited by in F6Publishing: 139] [Article Influence: 8.9] [Reference Citation Analysis]
96 López-montero I, Rodriguez N, Cribier S, Pohl A, Vélez M, Devaux PF. Rapid Transbilayer Movement of Ceramides in Phospholipid Vesicles and inHumanErythrocytes. Journal of Biological Chemistry 2005;280:25811-9. [DOI: 10.1074/jbc.m412052200] [Cited by in Crossref: 110] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
97 Holopainen JM, Brockman HL, Brown RE, Kinnunen PK. Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: impact of the N-acyl chain. Biophys J 2001;80:765-75. [PMID: 11159444 DOI: 10.1016/S0006-3495(01)76056-0] [Cited by in Crossref: 84] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
98 Maula T, Kurita M, Yamaguchi S, Yamamoto T, Katsumura S, Slotte JP. Effects of sphingosine 2N- and 3O-methylation on palmitoyl ceramide properties in bilayer membranes. Biophys J 2011;101:2948-56. [PMID: 22208193 DOI: 10.1016/j.bpj.2011.11.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
99 Härtel S, Fanani ML, Maggio B. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys J 2005;88:287-304. [PMID: 15489298 DOI: 10.1529/biophysj.104.048959] [Cited by in Crossref: 77] [Cited by in F6Publishing: 75] [Article Influence: 4.3] [Reference Citation Analysis]
100 Serrano D, Bhowmick T, Chadha R, Garnacho C, Muro S. Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium. Arterioscler Thromb Vasc Biol 2012;32:1178-85. [PMID: 22328778 DOI: 10.1161/ATVBAHA.111.244186] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 4.5] [Reference Citation Analysis]
101 Schenck M, Carpinteiro A, Grassmé H, Lang F, Gulbins E. Ceramide: Physiological and pathophysiological aspects. Archives of Biochemistry and Biophysics 2007;462:171-5. [DOI: 10.1016/j.abb.2007.03.031] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 4.9] [Reference Citation Analysis]
102 Holopainen JM, Lemmich J, Richter F, Mouritsen OG, Rapp G, Kinnunen PK. Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering. Biophys J 2000;78:2459-69. [PMID: 10777742 DOI: 10.1016/S0006-3495(00)76790-7] [Cited by in Crossref: 82] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
103 Sot J, Bagatolli LA, Goñi FM, Alonso A. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 2006;90:903-14. [PMID: 16284266 DOI: 10.1529/biophysj.105.067710] [Cited by in Crossref: 115] [Cited by in F6Publishing: 111] [Article Influence: 6.8] [Reference Citation Analysis]
104 Fanani ML, De Tullio L, Hartel S, Jara J, Maggio B. Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition. Biophys J 2009;96:67-76. [PMID: 18849413 DOI: 10.1529/biophysj.108.141499] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
105 Holopainen JM, Angelova MI, Kinnunen PK. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 2000;78:830-8. [PMID: 10653795 DOI: 10.1016/S0006-3495(00)76640-9] [Cited by in Crossref: 227] [Cited by in F6Publishing: 77] [Article Influence: 10.3] [Reference Citation Analysis]
106 Westerlund B, Grandell P, Isaksson YJE, Slotte JP. Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes. Eur Biophys J 2010;39:1117-28. [DOI: 10.1007/s00249-009-0562-6] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.4] [Reference Citation Analysis]
107 Trusova VM, Gorbenko GP. Electrostatically-controlled protein adsorption onto lipid bilayer: modeling adsorbate aggregation behavior. Biophys Chem 2008;133:90-103. [PMID: 18201814 DOI: 10.1016/j.bpc.2007.12.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
108 Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 2005;88:348-59. [PMID: 15465865 DOI: 10.1529/biophysj.104.050690] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 4.7] [Reference Citation Analysis]
109 Goñi FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett 2002;531:38-46. [PMID: 12401200 DOI: 10.1016/s0014-5793(02)03482-8] [Cited by in Crossref: 253] [Cited by in F6Publishing: 93] [Article Influence: 12.7] [Reference Citation Analysis]
110 Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med. 2003;9:322-330. [PMID: 12563314 DOI: 10.1038/nm823] [Cited by in Crossref: 386] [Cited by in F6Publishing: 370] [Article Influence: 20.3] [Reference Citation Analysis]
111 Kuksis A, Pruzanski W. Phase composition of lipoprotein SM/cholesterol/PtdCho affects FA specificity of sPLA2s. Journal of Lipid Research 2008;49:2161-8. [DOI: 10.1194/jlr.m800167-jlr200] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
112 García-Arribas AB, Axpe E, Mujika JI, Mérida D, Busto JV, Sot J, Alonso A, Lopez X, García JÁ, Ugalde JM, Plazaola F, Goñi FM. Cholesterol-Ceramide Interactions in Phospholipid and Sphingolipid Bilayers As Observed by Positron Annihilation Lifetime Spectroscopy and Molecular Dynamics Simulations. Langmuir 2016;32:5434-44. [PMID: 27158737 DOI: 10.1021/acs.langmuir.6b00927] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
113 Bollinger CR, Teichgräber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta. 2005;1746:284-294. [PMID: 16226325 DOI: 10.1016/j.bbamcr.2005.09.001] [Cited by in Crossref: 229] [Cited by in F6Publishing: 225] [Article Influence: 13.5] [Reference Citation Analysis]
114 Heneweer C, Peñate Medina T, Tower R, Kalthoff H, Kolesnick R, Larson S, Peñate Medina O. Acid-Sphingomyelinase Triggered Fluorescently Labeled Sphingomyelin Containing Liposomes in Tumor Diagnosis after Radiation-Induced Stress. Int J Mol Sci 2021;22:3864. [PMID: 33917976 DOI: 10.3390/ijms22083864] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
115 Montes LR, Ruiz-Argüello MB, Goñi FM, Alonso A. Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem. 2002;277:11788-11794. [PMID: 11796726 DOI: 10.1074/jbc.M111568200] [Cited by in Crossref: 106] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
116 Sadarangani M, Pollard AJ, Gray-Owen SD. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 2011;35:498-514. [PMID: 21204865 DOI: 10.1111/j.1574-6976.2010.00260.x] [Cited by in Crossref: 96] [Cited by in F6Publishing: 83] [Article Influence: 8.7] [Reference Citation Analysis]
117 Peters S, Schlegel J, Becam J, Avota E, Sauer M, Schubert-Unkmeir A. Neisseria meningitidis Type IV Pili Trigger Ca2+-Dependent Lysosomal Trafficking of the Acid Sphingomyelinase To Enhance Surface Ceramide Levels. Infect Immun 2019;87:e00410-19. [PMID: 31160362 DOI: 10.1128/IAI.00410-19] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
118 Axpe E, García-arribas AB, Mujika JI, Mérida D, Alonso A, Lopez X, García JA, Ugalde JM, Goñi FM, Plazaola F. Ceramide increases free volume voids in DPPC membranes. RSC Adv 2015;5:44282-90. [DOI: 10.1039/c5ra05142h] [Cited by in Crossref: 9] [Article Influence: 1.3] [Reference Citation Analysis]
119 Henry B, Möller C, Dimanche-Boitrel MT, Gulbins E, Becker KA. Targeting the ceramide system in cancer. Cancer Lett. 2013;332:286-294. [PMID: 21862212 DOI: 10.1016/j.canlet.2011.07.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 4.3] [Reference Citation Analysis]
120 Peñalva DA, Antollini SS, Ambroggio EE, Aveldaño MI, Fanani ML. Membrane Restructuring Events during the Enzymatic Generation of Ceramides with Very Long-Chain Polyunsaturated Fatty Acids. Langmuir 2018;34:4398-407. [DOI: 10.1021/acs.langmuir.7b04374] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
121 Sommer A, Düppe M, Baumecker L, Kordowski F, Büch J, Chico JF, Fritsch J, Schütze S, Adam D, Sperrhacke M, Bhakdi S, Reiss K. Extracellular sphingomyelinase activity impairs TNF-α-induced endothelial cell death via ADAM17 activation and TNF receptor 1 shedding. Oncotarget 2017;8:72584-96. [PMID: 29069811 DOI: 10.18632/oncotarget.19983] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
122 Dutagaci B, Becker-Baldus J, Faraldo-Gómez JD, Glaubitz C. Ceramide-lipid interactions studied by MD simulations and solid-state NMR. Biochim Biophys Acta 2014;1838:2511-9. [PMID: 24882733 DOI: 10.1016/j.bbamem.2014.05.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
123 Won J, Singh AK, Singh I. Lactosylceramide: a lipid second messenger in neuroinflammatory disease. J Neurochem 2007;103:180-91. [DOI: 10.1111/j.1471-4159.2007.04822.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 1.9] [Reference Citation Analysis]
124 Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res. 2014;54:53-67. [PMID: 24513486 DOI: 10.1016/j.plipres.2014.01.004] [Cited by in Crossref: 170] [Cited by in F6Publishing: 169] [Article Influence: 21.3] [Reference Citation Analysis]
125 Holopainen JM, Medina OP, Metso AJ, Kinnunen PK. Sphingomyelinase Activity Associated with Human Plasma Low Density Lipoprotein. Journal of Biological Chemistry 2000;275:16484-9. [DOI: 10.1074/jbc.275.22.16484] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 1.9] [Reference Citation Analysis]
126 Lopes Pinheiro MA, Kroon J, Hoogenboezem M, Geerts D, van Het Hof B, van der Pol SM, van Buul JD, de Vries HE. Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells. J Immunol 2016;196:72-9. [PMID: 26597010 DOI: 10.4049/jimmunol.1500702] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
127 Fanani ML, Maggio B. Kinetic steps for the hydrolysis of sphingomyelin by Bacillus cereus sphingomyelinase in lipid monolayers. Journal of Lipid Research 2000;41:1832-40. [DOI: 10.1016/s0022-2275(20)31977-5] [Cited by in Crossref: 21] [Article Influence: 1.0] [Reference Citation Analysis]
128 Lee HR, Choi SQ. Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes. Adv Sci (Weinh) 2021;8:e2101766. [PMID: 34473415 DOI: 10.1002/advs.202101766] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
129 Lokajová J, Pukkila J, Holopainen JM, Wiedmer SK. In vitro capturing of various lipophilic illicit drugs by lipid dispersions. An electrokinetic capillary chromatography and fluorescence polarization study. European Journal of Pharmaceutical Sciences 2010;41:515-22. [DOI: 10.1016/j.ejps.2010.08.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
130 Hurjui I, Neamtu A, Dorohoi DO. The interaction of fluorescent DPH probes with unsaturated phospholipid membranes: A molecular dynamics study. Journal of Molecular Structure 2013;1044:134-9. [DOI: 10.1016/j.molstruc.2012.12.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
131 Wilke N, Maggio B. Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin. Biophysical Chemistry 2006;122:36-42. [DOI: 10.1016/j.bpc.2006.02.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
132 Bock J, Gulbins E. The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Letters 2003;534:169-74. [DOI: 10.1016/s0014-5793(02)03784-5] [Cited by in Crossref: 45] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
133 Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA. Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 2010;25:102-15. [PMID: 20430954 DOI: 10.1152/physiol.00041.2009] [Cited by in Crossref: 114] [Cited by in F6Publishing: 106] [Article Influence: 9.5] [Reference Citation Analysis]
134 Goñi FM, Montes L, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Progress in Lipid Research 2012;51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
135 Wolf C, Quinn PJ. Membrane Lipid Homeostasis. In: Quinn PJ, editor. Membrane Dynamics and Domains. Boston: Springer US; 2004. pp. 317-57. [DOI: 10.1007/978-1-4757-5806-1_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
136 Bechara C, Pallerla M, Burlina F, Illien F, Cribier S, Sagan S. Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion. Cell Mol Life Sci 2015;72:809-20. [PMID: 25112713 DOI: 10.1007/s00018-014-1696-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
137 Morita S, Nakano M, Sakurai A, Deharu Y, Vertut-doï A, Handa T. Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Letters 2005;579:1759-64. [DOI: 10.1016/j.febslet.2005.02.018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.2] [Reference Citation Analysis]
138 Lamberti Y, Hayes JA, Perez Vidakovics ML, Rodriguez ME. Cholesterol-dependent attachment of human respiratory cells by Bordetella pertussis. FEMS Immunol Med Microbiol 2009;56:143-50. [DOI: 10.1111/j.1574-695x.2009.00557.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
139 Repáková J, Holopainen JM, Morrow MR, McDonald MC, Capková P, Vattulainen I. Influence of DPH on the structure and dynamics of a DPPC bilayer. Biophys J 2005;88:3398-410. [PMID: 15722435 DOI: 10.1529/biophysj.104.055533] [Cited by in Crossref: 92] [Cited by in F6Publishing: 87] [Article Influence: 5.4] [Reference Citation Analysis]
140 Stancevic B, Kolesnick R. Ceramide-rich platforms in transmembrane signaling. FEBS Lett 2010;584:1728-40. [PMID: 20178791 DOI: 10.1016/j.febslet.2010.02.026] [Cited by in Crossref: 188] [Cited by in F6Publishing: 178] [Article Influence: 15.7] [Reference Citation Analysis]
141 Catapano ER, Natale P, Monroy F, López-Montero I. The enzymatic sphingomyelin to ceramide conversion increases the shear membrane viscosity at the air-water interface. Adv Colloid Interface Sci 2017;247:555-60. [PMID: 28743366 DOI: 10.1016/j.cis.2017.07.014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
142 Majumder S, Dey R, Bhattacharjee S, Rub A, Gupta G, Bhattacharyya Majumdar S, Saha B, Majumdar S. Leishmania-Induced Biphasic Ceramide Generation in Macrophages Is Crucial for Uptake and Survival of the Parasite. The Journal of Infectious Diseases 2012;205:1607-16. [DOI: 10.1093/infdis/jis229] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
143 Bock J, Liebisch G, Schweimer J, Schmitz G, Rogler G. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function. World J Gastroenterol 2007; 13(39): 5217-5225 [PMID: 17876892 DOI: 10.3748/wjg.v13.i39.5217] [Cited by in CrossRef: 22] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
144 Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 2000;1488:189-210. [PMID: 11082530 DOI: 10.1016/s1388-1981(00)00123-2] [Cited by in Crossref: 264] [Cited by in F6Publishing: 73] [Article Influence: 12.6] [Reference Citation Analysis]
145 Palau VE, Chakraborty K, Wann D, Lightner J, Hilton K, Brannon M, Stone W, Krishnan K. γ-Tocotrienol induces apoptosis in pancreatic cancer cells by upregulation of ceramide synthesis and modulation of sphingolipid transport. BMC Cancer 2018;18:564. [PMID: 29769046 DOI: 10.1186/s12885-018-4462-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
146 Harvald EB, Olsen AS, Færgeman NJ. Autophagy in the light of sphingolipid metabolism. Apoptosis 2015;20:658-70. [PMID: 25682163 DOI: 10.1007/s10495-015-1108-2] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 6.6] [Reference Citation Analysis]
147 Xiong X, Lee CF, Li W, Yu J, Zhu L, Kim Y, Zhang H, Sun H. Acid Sphingomyelinase regulates the localization and trafficking of palmitoylated proteins. Biol Open 2019;8:bio040311. [PMID: 31142470 DOI: 10.1242/bio.040311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
148 Somerharju P. Pyrene-labeled lipids as tools in membrane biophysics and cell biology. Chem Phys Lipids 2002;116:57-74. [PMID: 12093535 DOI: 10.1016/s0009-3084(02)00020-8] [Cited by in Crossref: 134] [Cited by in F6Publishing: 30] [Article Influence: 7.1] [Reference Citation Analysis]
149 Roy S, Mohanty A, Dey J. Microviscosity of bilayer membranes of some N-acylamino acid surfactants determined by fluorescence probe method. Chemical Physics Letters 2005;414:23-7. [DOI: 10.1016/j.cplett.2005.07.046] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 3.3] [Reference Citation Analysis]
150 Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2009;1788:184-93. [DOI: 10.1016/j.bbamem.2008.09.001] [Cited by in Crossref: 102] [Cited by in F6Publishing: 97] [Article Influence: 7.8] [Reference Citation Analysis]
151 Zitzer A, Bittman R, Verbicky CA, Erukulla RK, Bhakdi S, Weis S, Valeva A, Palmer M. Coupling of Cholesterol and Cone-shaped Lipids in Bilayers Augments Membrane Permeabilization by the Cholesterol-specific Toxins Streptolysin O and Vibrio cholerae Cytolysin. Journal of Biological Chemistry 2001;276:14628-33. [DOI: 10.1074/jbc.m100241200] [Cited by in Crossref: 64] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
152 Silva L, de Almeida RF, Fedorov A, Matos AP, Prieto M. Ceramide-platform formation and -induced biophysical changes in a fluid phospholipid membrane. Mol Membr Biol 2006;23:137-48. [PMID: 16754357 DOI: 10.1080/09687860500439474] [Cited by in Crossref: 104] [Cited by in F6Publishing: 99] [Article Influence: 6.5] [Reference Citation Analysis]
153 Bryndina IG, Shalagina MN, Sekunov AV, Zefirov AL, Petrov AM. Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse. Neurosci Lett 2018;664:1-6. [PMID: 29126773 DOI: 10.1016/j.neulet.2017.11.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
154 Ferlinz K, Kopal G, Bernardo K, Linke T, Bar J, Breiden B, Neumann U, Lang F, Schuchman EH, Sandhoff K. Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem. 2001;276:35352-35360. [PMID: 11451951 DOI: 10.1074/jbc.M103066200] [Cited by in Crossref: 78] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
155 Beckmann N, Sharma D, Gulbins E, Becker KA, Edelmann B. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front Physiol 2014;5:331. [PMID: 25228885 DOI: 10.3389/fphys.2014.00331] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 8.3] [Reference Citation Analysis]
156 Gulbins E, Li PL. Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol. 2006;290:R11-R26. [PMID: 16352856 DOI: 10.1152/ajpregu.00416.2005] [Cited by in Crossref: 150] [Cited by in F6Publishing: 144] [Article Influence: 9.4] [Reference Citation Analysis]
157 Venkataraman K, Futerman AH. Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol 2000;10:408-12. [PMID: 10998592 DOI: 10.1016/s0962-8924(00)01830-4] [Cited by in Crossref: 112] [Cited by in F6Publishing: 25] [Article Influence: 5.1] [Reference Citation Analysis]
158 Grassmé H, Jendrossek V, Bock J, Riehle A, Gulbins E. Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol. 2002;168:298-307. [PMID: 11751974 DOI: 10.4049/jimmunol.168.1.298] [Cited by in Crossref: 181] [Cited by in F6Publishing: 182] [Article Influence: 9.1] [Reference Citation Analysis]
159 Burek C, Roth J, Koch HG, Harzer K, Los M, Schulze-Osthoff K. The role of ceramide in receptor- and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells. Oncogene 2001;20:6493-502. [PMID: 11641773 DOI: 10.1038/sj.onc.1204841] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 1.6] [Reference Citation Analysis]
160 Goldkorn T, Ravid T, Khan EM. Life and death decisions: ceramide generation and EGF receptor trafficking are modulated by oxidative stress. Antioxid Redox Signal 2005;7:119-28. [PMID: 15650401 DOI: 10.1089/ars.2005.7.119] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 2.4] [Reference Citation Analysis]
161 Ouarch M, Benhamou M, Chahid M, Kaidi H. Critical dynamics of lateral and transversal phase separations in bilayer biomembranes and surfactants. Eur Phys J E Soft Matter 2009;29:319-27. [PMID: 19551420 DOI: 10.1140/epje/i2009-10479-5] [Cited by in Crossref: 5] [Article Influence: 0.4] [Reference Citation Analysis]
162 Dias IH, Chapple IL, Milward M, Grant MM, Hill E, Brown J, Griffiths HR. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro. PLoS One 2013;8:e66407. [PMID: 23826097 DOI: 10.1371/journal.pone.0066407] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 5.3] [Reference Citation Analysis]
163 Veerapathiran S, Wohland T. The imaging FCS diffusion law in the presence of multiple diffusive modes. Methods 2018;140-141:140-50. [PMID: 29203404 DOI: 10.1016/j.ymeth.2017.11.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
164 Ratnayake S, Dias IH, Lattman E, Griffiths HR. Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis. Journal of Proteomics 2013;92:160-70. [DOI: 10.1016/j.jprot.2013.06.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
165 Schneider M, Levant B, Reichel M, Gulbins E, Kornhuber J, Müller CP. Lipids in psychiatric disorders and preventive medicine. Neuroscience & Biobehavioral Reviews 2017;76:336-62. [DOI: 10.1016/j.neubiorev.2016.06.002] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 13.4] [Reference Citation Analysis]
166 Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018;118:11259-97. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Cited by in Crossref: 70] [Cited by in F6Publishing: 58] [Article Influence: 17.5] [Reference Citation Analysis]
167 Castro BM, de Almeida RF, Silva LC, Fedorov A, Prieto M. Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach. Biophys J 2007;93:1639-50. [PMID: 17496019 DOI: 10.1529/biophysj.107.107714] [Cited by in Crossref: 105] [Cited by in F6Publishing: 104] [Article Influence: 7.0] [Reference Citation Analysis]
168 Becker KA, Riethmüller J, Zhang Y, Gulbins E. The role of sphingolipids and ceramide in pulmonary inflammation in cystic fibrosis. Open Respir Med J. 2010;4:39-47. [PMID: 20556203 DOI: 10.2174/1874306401004020039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 0.3] [Reference Citation Analysis]
169 Morales A, Lee H, Goñi FM, Kolesnick R, Fernandez-Checa JC. Sphingolipids and cell death. Apoptosis 2007;12:923-39. [PMID: 17294080 DOI: 10.1007/s10495-007-0721-0] [Cited by in Crossref: 157] [Cited by in F6Publishing: 149] [Article Influence: 11.2] [Reference Citation Analysis]
170 Riethmüller J, Riehle A, Grassmé H, Gulbins E. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 2006;1758:2139-47. [PMID: 17094939 DOI: 10.1016/j.bbamem.2006.07.017] [Cited by in Crossref: 117] [Cited by in F6Publishing: 110] [Article Influence: 7.3] [Reference Citation Analysis]
171 Burgert A, Schlegel J, Bécam J, Doose S, Bieberich E, Schubert-Unkmeir A, Sauer M. Characterization of Plasma Membrane Ceramides by Super-Resolution Microscopy. Angew Chem Int Ed Engl 2017;56:6131-5. [PMID: 28379629 DOI: 10.1002/anie.201700570] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
172 Subbaiah PV, Horvath P, Achar SB. Regulation of the activity and fatty acid specificity of lecithin-cholesterol acyltransferase by sphingomyelin and its metabolites, ceramide and ceramide phosphate. Biochemistry 2006;45:5029-38. [PMID: 16605271 DOI: 10.1021/bi0600704] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
173 Veldman RJ, Zerp S, van Blitterswijk WJ, Verheij M. N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx. Br J Cancer 2004;90:917-25. [PMID: 14970874 DOI: 10.1038/sj.bjc.6601581] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
174 Janmey P, Kinnunen P. Biophysical properties of lipids and dynamic membranes. Trends in Cell Biology 2006;16:538-46. [DOI: 10.1016/j.tcb.2006.08.009] [Cited by in Crossref: 267] [Cited by in F6Publishing: 243] [Article Influence: 16.7] [Reference Citation Analysis]
175 Babenko N. Brain, Fish Oil-Enriched Diet, and Sphingolipids. Fish and Fish Oil in Health and Disease Prevention. Elsevier; 2016. pp. 263-72. [DOI: 10.1016/b978-0-12-802844-5.00024-5] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
176 Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta. 2008;1785:182-206. [PMID: 18166162 DOI: 10.1016/j.bbcan.2007.11.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 134] [Article Influence: 3.0] [Reference Citation Analysis]
177 Fraňová M, Repáková J, Čapková P, Holopainen JM, Vattulainen I. Effects of DPH on DPPC−Cholesterol Membranes with Varying Concentrations of Cholesterol: From Local Perturbations to Limitations in Fluorescence Anisotropy Experiments. J Phys Chem B 2010;114:2704-11. [DOI: 10.1021/jp908533x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.9] [Reference Citation Analysis]
178 Lindblom G, Orädd G, Filippov A. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. Chemistry and Physics of Lipids 2006;141:179-84. [DOI: 10.1016/j.chemphyslip.2006.02.011] [Cited by in Crossref: 86] [Cited by in F6Publishing: 69] [Article Influence: 5.4] [Reference Citation Analysis]
179 Grassmé H, Bock J, Kun J, Gulbins E. Clustering of CD40 Ligand Is Required to Form a Functional Contact with CD40. Journal of Biological Chemistry 2002;277:30289-99. [DOI: 10.1074/jbc.m200494200] [Cited by in Crossref: 66] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
180 Repáková J, Čapková P, Holopainen JM, Vattulainen I. Distribution, Orientation, and Dynamics of DPH Probes in DPPC Bilayer. J Phys Chem B 2004;108:13438-48. [DOI: 10.1021/jp048381g] [Cited by in Crossref: 79] [Cited by in F6Publishing: 55] [Article Influence: 4.4] [Reference Citation Analysis]
181 Ale EC, Maggio B, Fanani ML. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase. Biochimica et Biophysica Acta (BBA) - Biomembranes 2012;1818:2767-76. [DOI: 10.1016/j.bbamem.2012.06.017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
182 Grassmé H, Riehle A, Wilker B, Gulbins E. Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem. 2005;280:26256-26262. [PMID: 15888438 DOI: 10.1074/jbc.M500835200] [Cited by in Crossref: 144] [Cited by in F6Publishing: 81] [Article Influence: 8.5] [Reference Citation Analysis]
183 Masserini M, Ravasi D. Role of sphingolipids in the biogenesis of membrane domains. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2001;1532:149-61. [DOI: 10.1016/s1388-1981(01)00128-7] [Cited by in Crossref: 63] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
184 Morris R, Cox H, Mombelli E, Quinn PJ. Rafts, little caves and large potholes: how lipid structure interacts with membrane proteins to create functionally diverse membrane environments. Subcell Biochem 2004;37:35-118. [PMID: 15376618 DOI: 10.1007/978-1-4757-5806-1_2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.1] [Reference Citation Analysis]
185 Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R. Caspase-dependent and -independent Activation of Acid Sphingomyelinase Signaling. Journal of Biological Chemistry 2005;280:26425-34. [DOI: 10.1074/jbc.m414569200] [Cited by in Crossref: 124] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
186 Hsueh YW, Giles R, Kitson N, Thewalt J. The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study. Biophys J 2002;82:3089-95. [PMID: 12023232 DOI: 10.1016/S0006-3495(02)75650-6] [Cited by in Crossref: 86] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
187 Serrano D, Manthe RL, Paul E, Chadha R, Muro S. How Carrier Size and Valency Modulate Receptor-Mediated Signaling: Understanding the Link between Binding and Endocytosis of ICAM-1-Targeted Carriers. Biomacromolecules 2016;17:3127-37. [PMID: 27585187 DOI: 10.1021/acs.biomac.6b00493] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
188 Ansar M, Serrano D, Papademetriou I, Bhowmick TK, Muro S. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting. ACS Nano 2013;7:10597-611. [PMID: 24237309 DOI: 10.1021/nn404719c] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
189 Koumanov KS, Momchilova AB, Quinn PJ, Wolf C. Ceramides increase the activity of the secretory phospholipase A2 and alter its fatty acid specificity. Biochem J 2002;363:45-51. [PMID: 11903045 DOI: 10.1042/0264-6021:3630045] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 0.8] [Reference Citation Analysis]
190 Gulbins E, Kolesnick R. Acid sphingomyelinase-derived ceramide signaling in apoptosis. Subcell Biochem 2002;36:229-44. [PMID: 12037984 DOI: 10.1007/0-306-47931-1_12] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 2.3] [Reference Citation Analysis]
191 Babiychuk EB, Monastyrskaya K, Draeger A. Fluorescent annexin A1 reveals dynamics of ceramide platforms in living cells. Traffic 2008;9:1757-75. [PMID: 18694456 DOI: 10.1111/j.1600-0854.2008.00800.x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 4.0] [Reference Citation Analysis]
192 Szabò I, Adams C, Gulbins E. Ion channels and membrane rafts in apoptosis. Pflugers Arch 2004;448:304-12. [PMID: 15071744 DOI: 10.1007/s00424-004-1259-4] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 2.9] [Reference Citation Analysis]
193 Cabral LM, Wengert M, Almeida FG, Caruso-Neves C, Vieyra A, Einicker-Lamas M. Ceramide-activated protein kinases A and C zeta inhibit kidney proximal tubule cell Na(+)-ATPase. Arch Biochem Biophys 2010;498:57-61. [PMID: 20388485 DOI: 10.1016/j.abb.2010.04.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
194 Ng CG, Coppens I, Govindarajan D, Pisciotta J, Shulaev V, Griffin DE. Effect of host cell lipid metabolism on alphavirus replication, virion morphogenesis, and infectivity. Proc Natl Acad Sci U S A 2008;105:16326-31. [PMID: 18845681 DOI: 10.1073/pnas.0808720105] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 1.9] [Reference Citation Analysis]
195 Maggio B, Borioli GA, Del Boca M, De Tullio L, Fanani ML, Oliveira RG, Rosetti CM, Wilke N. Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 2008;50:79-109. [PMID: 17968678 DOI: 10.1007/s12013-007-9004-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
196 Veldman RJ, Maestre N, Aduib OM, Medin JA, Salvayre R, Levade T. A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem J 2001;355:859-68. [PMID: 11311151 DOI: 10.1042/bj3550859] [Cited by in Crossref: 85] [Cited by in F6Publishing: 78] [Article Influence: 4.0] [Reference Citation Analysis]
197 Goñi FM, Alonso A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 2009;1788:169-77. [PMID: 18848519 DOI: 10.1016/j.bbamem.2008.09.002] [Cited by in Crossref: 146] [Cited by in F6Publishing: 142] [Article Influence: 10.4] [Reference Citation Analysis]
198 Won JS, Singh I. Sphingolipid signaling and redox regulation. Free Radic Biol Med 2006;40:1875-88. [PMID: 16716889 DOI: 10.1016/j.freeradbiomed.2006.01.035] [Cited by in Crossref: 105] [Cited by in F6Publishing: 94] [Article Influence: 6.6] [Reference Citation Analysis]
199 Brachtendorf S, El-hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Progress in Lipid Research 2019;74:160-85. [DOI: 10.1016/j.plipres.2019.04.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
200 Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta. 2000;1485:63-99. [PMID: 10832090 DOI: 10.1016/s1388-1981(00)00042-1] [Cited by in Crossref: 310] [Cited by in F6Publishing: 96] [Article Influence: 14.1] [Reference Citation Analysis]
201 Taniguchi Y, Ohba T, Miyata H, Ohki K. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006;1758:145-53. [DOI: 10.1016/j.bbamem.2006.02.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 2.5] [Reference Citation Analysis]
202 Patty PJ, Frisken BJ. The pressure-dependence of the size of extruded vesicles. Biophys J 2003;85:996-1004. [PMID: 12885646 DOI: 10.1016/S0006-3495(03)74538-X] [Cited by in Crossref: 91] [Cited by in F6Publishing: 22] [Article Influence: 5.1] [Reference Citation Analysis]
203 Xu P, Tan G, Zhou J, He J, Lawson LB, McPherson GL, John VT. Undulating tubular liposomes through incorporation of a synthetic skin ceramide into phospholipid bilayers. Langmuir 2009;25:10422-5. [PMID: 19694462 DOI: 10.1021/la9010899] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
204 Simonis A, Schubert-Unkmeir A. Interactions of meningococcal virulence factors with endothelial cells at the human blood-cerebrospinal fluid barrier and their role in pathogenicity. FEBS Lett 2016;590:3854-67. [PMID: 27498906 DOI: 10.1002/1873-3468.12344] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
205 Egea-Jimenez AL, Zimmermann P. Lipids in Exosome Biology. Handb Exp Pharmacol 2020;259:309-36. [PMID: 31087193 DOI: 10.1007/164_2019_220] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
206 Ganapathi SB, Fox TE, Kester M, Elmslie KS. Ceramide modulates HERG potassium channel gating by translocation into lipid rafts. Am J Physiol Cell Physiol 2010;299:C74-86. [PMID: 20375276 DOI: 10.1152/ajpcell.00462.2009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.7] [Reference Citation Analysis]
207 Miyaji M, Jin ZX, Yamaoka S, Amakawa R, Fukuhara S, Sato SB, Kobayashi T, Domae N, Mimori T, Bloom ET, Okazaki T, Umehara H. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 2005;202:249-59. [PMID: 16009715 DOI: 10.1084/jem.20041685] [Cited by in Crossref: 118] [Cited by in F6Publishing: 104] [Article Influence: 6.9] [Reference Citation Analysis]
208 Doroudgar M, Lafleur M. Ceramide-C16 Is a Versatile Modulator of Phosphatidylethanolamine Polymorphism. Biophys J 2017;112:2357-66. [PMID: 28591608 DOI: 10.1016/j.bpj.2017.04.047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
209 Murate T, Suzuki M, Hattori M, Takagi A, Kojima T, Tanizawa T, Asano H, Hotta T, Saito H, Yoshida S, Tamiya-koizumi K. Up-regulation of Acid Sphingomyelinase during Retinoic Acid-induced Myeloid Differentiation of NB4, a Human Acute Promyelocytic Leukemia Cell Line. Journal of Biological Chemistry 2002;277:9936-43. [DOI: 10.1074/jbc.m111594200] [Cited by in Crossref: 36] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
210 Stauffer BB, Cui G, Cottrill KA, Infield DT, McCarty NA. Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Sci Rep 2017;7:2931. [PMID: 28592822 DOI: 10.1038/s41598-017-03103-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
211 Opreanu M, Lydic TA, Reid GE, McSorley KM, Esselman WJ, Busik JV. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Invest Ophthalmol Vis Sci 2010;51:3253-63. [PMID: 20071681 DOI: 10.1167/iovs.09-4731] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 3.8] [Reference Citation Analysis]
212 Peñate Medina TA, Korhonen JT, Lahesmaa R, Puolakkainen M, Peñate Medina O, Kinnunen PK. Identification of Sphingomyelinase on the Surface of Chlamydia pneumoniae: Possible Role in the Entry into Its Host Cells. Interdiscip Perspect Infect Dis 2014;2014:412827. [PMID: 24757444 DOI: 10.1155/2014/412827] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]