BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Longmire MR, Ogawa M, Choyke PL, Kobayashi H. Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem 2011;22:993-1000. [PMID: 21513351 DOI: 10.1021/bc200111p] [Cited by in Crossref: 123] [Cited by in F6Publishing: 105] [Article Influence: 11.2] [Reference Citation Analysis]
Number Citing Articles
1 Yeo J, Lee J, Yoon S, Kim WJ. Tannic acid-based nanogel as an efficient anti-inflammatory agent. Biomater Sci 2020;8:1148-59. [PMID: 31663542 DOI: 10.1039/c9bm01384a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 10.3] [Reference Citation Analysis]
2 Pippa N, Dokoumetzidis A, Demetzos C, Macheras P. On the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences: A review. International Journal of Pharmaceutics 2013;456:340-52. [DOI: 10.1016/j.ijpharm.2013.08.087] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
3 Kim K, Lee Y, Lee T, Kim B, Kim S, Ahn D. Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials 2013;34:5226-35. [DOI: 10.1016/j.biomaterials.2013.03.074] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 5.7] [Reference Citation Analysis]
4 Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2019;119:6459-506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Cited by in Crossref: 123] [Cited by in F6Publishing: 158] [Article Influence: 30.8] [Reference Citation Analysis]
5 Chuffa LGA, Seiva FRF, Novais AA, Simão VA, Martín Giménez VM, Manucha W, Zuccari DAPC, Reiter RJ. Melatonin-Loaded Nanocarriers: New Horizons for Therapeutic Applications. Molecules 2021;26:3562. [PMID: 34200947 DOI: 10.3390/molecules26123562] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Mérian J, Boisgard R, Decleves X, Thezé B, Texier I, Tavitian B. Synthetic lipid nanoparticles targeting steroid organs. J Nucl Med 2013;54:1996-2003. [PMID: 24071507 DOI: 10.2967/jnumed.113.121657] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
7 Janib SM, Liu S, Park R, Pastuszka MK, Shi P, Moses AS, Orosco MM, Lin YA, Cui H, Conti PS, Li Z, MacKay JA. Kinetic quantification of protein polymer nanoparticles using non-invasive imaging. Integr Biol (Camb) 2013;5:183-94. [PMID: 23093022 DOI: 10.1039/c2ib20169k] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
8 Huang Y, Wang J, Jiang K, Chung EJ. Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions. J Control Release 2021;334:127-37. [PMID: 33892054 DOI: 10.1016/j.jconrel.2021.04.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Dewi N, Mi P, Yanagie H, Sakurai Y, Morishita Y, Yanagawa M, Nakagawa T, Shinohara A, Matsukawa T, Yokoyama K, Cabral H, Suzuki M, Sakurai Y, Tanaka H, Ono K, Nishiyama N, Kataoka K, Takahashi H. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol 2016;142:767-75. [PMID: 26650198 DOI: 10.1007/s00432-015-2085-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
10 Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Critical Reviews in Toxicology 2016;46:490-560. [DOI: 10.1080/10408444.2016.1181047] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 8.7] [Reference Citation Analysis]
11 Niehl A, Appaix F, Boscá S, van der Sanden B, Nicoud JF, Bolze F, Heinlein M. Fluorescent Tobacco mosaic virus-Derived Bio-Nanoparticles for Intravital Two-Photon Imaging. Front Plant Sci 2015;6:1244. [PMID: 26793221 DOI: 10.3389/fpls.2015.01244] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
12 Metcalf CA, Svenson S, Hwang J, Tripathi S, Gangal G, Kabir S, Lazarus D, Cole R, Sweryda-krawiec B, Shum P, Brown D, Case RI, van der Poll D, Rohde E, Harlfinger S, Teng C, Eliasof S. Discovery of a Novel Cabazitaxel Nanoparticle–Drug Conjugate (CRLX522) with Improved Pharmacokinetic Properties and Anticancer Effects Using a β-Cyclodextrin–PEG Copolymer Based Delivery Platform. J Med Chem 2019;62:9541-59. [DOI: 10.1021/acs.jmedchem.9b00892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
13 Walia S, Sharma S, Markand Kulurkar P, Patial V, Acharya A. A bimodal molecular imaging probe based on chitosan encapsulated magneto-fluorescent nanocomposite offers biocompatibility, visualization of specific cancer cells in vitro and lung tissues in vivo. Int J Pharm 2016;498:110-8. [PMID: 26680315 DOI: 10.1016/j.ijpharm.2015.12.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
14 Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. Nanomaterials (Basel) 2021;11:460. [PMID: 33670161 DOI: 10.3390/nano11020460] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
15 Zhang J, Ring HL, Hurley KR, Shao Q, Carlson CS, Idiyatullin D, Manuchehrabadi N, Hoopes PJ, Haynes CL, Bischof JC, Garwood M. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn Reson Med 2017;78:702-12. [PMID: 27667655 DOI: 10.1002/mrm.26394] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
16 Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41:2656-2672. [PMID: 22189429 DOI: 10.1039/c2cs15261d] [Cited by in Crossref: 943] [Cited by in F6Publishing: 236] [Article Influence: 85.7] [Reference Citation Analysis]
17 Li Y, Li Z, Wang X, Liu F, Cheng Y, Zhang B, Shi D. In Vivo Cancer Targeting and Imaging-Guided Surgery with Near Infrared-Emitting Quantum Dot Bioconjugates. Theranostics 2012;2:769-76. [DOI: 10.7150/thno.4690] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
18 Lima AC, Alvarez-lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthcare Mater 2016;5:1687-723. [DOI: 10.1002/adhm.201600219] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
19 Yin R, Zhang X, Ge J, Wen L, Chen L, Zeng J, Li Z, Gao M. Recent Advances in Renal Clearable Inorganic Nanoparticles for Cancer Diagnosis. Part Part Syst Charact 2021;38:2000270. [DOI: 10.1002/ppsc.202000270] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Schmidtke C, Pöselt E, Ostermann J, Pietsch A, Kloust H, Tran H, Schotten T, Bastús NG, Eggers R, Weller H. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes. Nanoscale 2013;5:7433-44. [PMID: 23831679 DOI: 10.1039/c3nr01520c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
21 Nasr M, Hashem F, Abdelmoniem R, Tantawy N, Teiama M. In Vitro Cytotoxicity and Cellular Uptake of Tamoxifen Citrate-Loaded Polymeric Micelles. AAPS PharmSciTech 2020;21:306. [PMID: 33151433 DOI: 10.1208/s12249-020-01850-6] [Reference Citation Analysis]
22 Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug Chem 2016;27:2225-38. [PMID: 27547843 DOI: 10.1021/acs.bioconjchem.6b00437] [Cited by in Crossref: 395] [Cited by in F6Publishing: 339] [Article Influence: 65.8] [Reference Citation Analysis]
23 Singh V, Banerjee V. Ferromagnetism, hysteresis and enhanced heat dissipation in assemblies of superparamagnetic nanoparticles. Journal of Applied Physics 2012;112:114912. [DOI: 10.1063/1.4768904] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
24 Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release 2015;219:536-47. [PMID: 26450667 DOI: 10.1016/j.jconrel.2015.10.006] [Cited by in Crossref: 138] [Cited by in F6Publishing: 113] [Article Influence: 19.7] [Reference Citation Analysis]
25 Yamaguchi H, Tsuchimochi M, Hayama K, Kawase T, Tsubokawa N. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells. Int J Mol Sci 2016;17:E1086. [PMID: 27399687 DOI: 10.3390/ijms17071086] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
26 Lee DS, Qian H, Tay CY, Leong DT. Cellular processing and destinies of artificial DNA nanostructures. Chem Soc Rev 2016;45:4199-225. [DOI: 10.1039/c5cs00700c] [Cited by in Crossref: 100] [Cited by in F6Publishing: 23] [Article Influence: 16.7] [Reference Citation Analysis]
27 Hirsjärvi S, Bastiat G, Saulnier P, Benoît J. Evaluation of surface deformability of lipid nanocapsules by drop tensiometer technique, and its experimental assessment by dialysis and tangential flow filtration. International Journal of Pharmaceutics 2012;434:460-7. [DOI: 10.1016/j.ijpharm.2012.06.019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
28 Nagai K, Sato T, Kojima C. Design of a dendrimer with a matrix metalloproteinase-responsive fluorescence probe and a tumor-homing peptide for metastatic tumor cell imaging in the lymph node. Bioorg Med Chem Lett 2021;33:127726. [PMID: 33316406 DOI: 10.1016/j.bmcl.2020.127726] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kojima C, Fusaoka‐nishioka E, Imai T, Nakahira A, Onodera H. Dendrigraft polylysine coated‐poly(glycolic acid) fibrous scaffolds for hippocampal neurons. J Biomed Mater Res 2016;104:2744-50. [DOI: 10.1002/jbm.a.35807] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
30 Nuñez-Rivera A, Fournier PGJ, Arellano DL, Rodriguez-Hernandez AG, Vazquez-Duhalt R, Cadena-Nava RD. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein J Nanotechnol 2020;11:372-82. [PMID: 32175217 DOI: 10.3762/bjnano.11.28] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
31 Sugikawa K, Kozawa K, Ueda M, Ikeda A. Stepwise Growth of Fullerene Nanoparticles through Guest Exchange of γ-Cyclodextrin Complexes in Water. Chem Eur J 2017;23:13704-10. [DOI: 10.1002/chem.201701717] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
32 Allmeroth M, Moderegger D, Gündel D, Buchholz HG, Mohr N, Koynov K, Rösch F, Thews O, Zentel R. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J Control Release 2013;172:77-85. [PMID: 23954630 DOI: 10.1016/j.jconrel.2013.07.027] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 4.8] [Reference Citation Analysis]
33 Wani WA, Prashar S, Shreaz S, Gómez-ruiz S. Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coordination Chemistry Reviews 2016;312:67-98. [DOI: 10.1016/j.ccr.2016.01.001] [Cited by in Crossref: 131] [Cited by in F6Publishing: 83] [Article Influence: 21.8] [Reference Citation Analysis]
34 He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Adv Mater 2019;31:1902409. [DOI: 10.1002/adma.201902409] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 22.7] [Reference Citation Analysis]
35 Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Materials Today 2013;16:477-86. [DOI: 10.1016/j.mattod.2013.11.003] [Cited by in Crossref: 208] [Cited by in F6Publishing: 135] [Article Influence: 23.1] [Reference Citation Analysis]
36 Hörner S, Fabritz S, Herce HD, Avrutina O, Dietz C, Stark RW, Cardoso MC, Kolmar H. Cube-octameric silsesquioxane-mediated cargo peptide delivery into living cancer cells. Org Biomol Chem 2013;11:2258-65. [DOI: 10.1039/c2ob26808f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
37 Kobayashi H, Choyke PL. Recipe for a new imaging biomarker: carefully combine target, reagent, and technology. Kidney Int 2012;81:129-31. [PMID: 22205431 DOI: 10.1038/ki.2011.374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
38 Chen D, Yu Y, Huang F, Lin H, Huang P, Yang A, Wang Z, Wang Y. Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence. J Mater Chem 2012;22:2632-40. [DOI: 10.1039/c1jm14589d] [Cited by in Crossref: 77] [Article Influence: 7.7] [Reference Citation Analysis]
39 Xue B, Kozlovskaya V, Liu F, Chen J, Williams JF, Campos-gomez J, Saeed M, Kharlampieva E. Intracellular Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Appl Mater Interfaces 2015;7:13633-44. [DOI: 10.1021/acsami.5b03360] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 8.1] [Reference Citation Analysis]
40 Kobayashi H, Turkbey B, Watanabe R, Choyke PL. Cancer drug delivery: considerations in the rational design of nanosized bioconjugates. Bioconjug Chem 2014;25:2093-100. [PMID: 25385142 DOI: 10.1021/bc500481x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
41 Kaur G, Tripathi S. Investigation of trypsin–CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015;134:173-83. [DOI: 10.1016/j.saa.2014.05.064] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
42 Nakajima T, Turkbey B, Sano K, Sato K, Bernardo M, Hoyt RF, Choyke PL, Kobayashi H. MR lymphangiography with intradermal gadofosveset and human serum albumin in mice and primates. J Magn Reson Imaging 2014;40:691-7. [PMID: 24123370 DOI: 10.1002/jmri.24395] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
43 Parvani JG, Jackson MW. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocr Relat Cancer 2017;24:R81-97. [PMID: 28148541 DOI: 10.1530/ERC-16-0482] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
44 Ennen F, Fenner P, Boye S, Lederer A, Komber H, Voit B, Appelhans D. Sphere-Like Protein–Glycopolymer Nanostructures Tailored by Polyassociation. Biomacromolecules 2016;17:32-45. [DOI: 10.1021/acs.biomac.5b00975] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
45 She W, Li N, Luo K, Guo C, Wang G, Geng Y, Gu Z. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 2013;34:2252-64. [PMID: 23298778 DOI: 10.1016/j.biomaterials.2012.12.017] [Cited by in Crossref: 185] [Cited by in F6Publishing: 160] [Article Influence: 20.6] [Reference Citation Analysis]
46 Peters JA, Djanashvili K. Lanthanide Loaded Zeolites, Clays, and Mesoporous Silica Materials as MRI Probes. Eur J Inorg Chem 2012;2012:1961-74. [DOI: 10.1002/ejic.201101195] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
47 Lim J, Turkbey B, Bernardo M, Bryant LH Jr, Garzoni M, Pavan GM, Nakajima T, Choyke PL, Simanek EE, Kobayashi H. Gadolinium MRI contrast agents based on triazine dendrimers: relaxivity and in vivo pharmacokinetics. Bioconjug Chem 2012;23:2291-9. [PMID: 23035964 DOI: 10.1021/bc300461r] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
48 Chen Y, Wang L, Yu H, Zhao Y, Sun R, Jing G, Huang J, Khalid H, Abbasi NM, Akram M. Synthesis and application of polyethylene-based functionalized hyperbranched polymers. Progress in Polymer Science 2015;45:23-43. [DOI: 10.1016/j.progpolymsci.2015.01.004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 38] [Article Influence: 10.6] [Reference Citation Analysis]
49 Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 2017;24:1898-908. [PMID: 29191048 DOI: 10.1080/10717544.2017.1410259] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
50 Dominguez-martinez I, Joaquin-ovalle F, Ferrer-acosta Y, Griebenow KH. Folate-Decorated Cross-Linked Cytochrome c Nanoparticles for Active Targeting of Non-Small Cell Lung Carcinoma (NSCLC). Pharmaceutics 2022;14:490. [DOI: 10.3390/pharmaceutics14030490] [Reference Citation Analysis]
51 Truillet C, Bouziotis P, Tsoukalas C, Brugière J, Martini M, Sancey L, Brichart T, Denat F, Boschetti F, Darbost U, Bonnamour I, Stellas D, Anagnostopoulos CD, Koutoulidis V, Moulopoulos LA, Perriat P, Lux F, Tillement O. Ultrasmall particles for Gd-MRI and (68) Ga-PET dual imaging. Contrast Media Mol Imaging 2015;10:309-19. [PMID: 25483609 DOI: 10.1002/cmmi.1633] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
52 Reijnders L. Human health hazards of persistent inorganic and carbon nanoparticles. J Mater Sci 2012;47:5061-73. [DOI: 10.1007/s10853-012-6288-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
53 Tang S, Tomalia DA, Orr BG, Baker JR, Huang B. Regio-specific size, shape and surface chemistry designed dendrimers based on differentiated dendroid templates. New J Chem 2013;37:690-700. [DOI: 10.1039/c2nj41002h] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
54 Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 2012;17:1044-52. [PMID: 22652342 DOI: 10.1016/j.drudis.2012.05.010] [Cited by in Crossref: 324] [Cited by in F6Publishing: 297] [Article Influence: 32.4] [Reference Citation Analysis]
55 Zhang C, Pan D, Luo K, She W, Guo C, Yang Y, Gu Z. Peptide Dendrimer-Doxorubicin Conjugate-Based Nanoparticles as an Enzyme-Responsive Drug Delivery System for Cancer Therapy. Adv Healthcare Mater 2014;3:1299-308. [DOI: 10.1002/adhm.201300601] [Cited by in Crossref: 99] [Cited by in F6Publishing: 89] [Article Influence: 12.4] [Reference Citation Analysis]
56 Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N. Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res 2013;3:33. [PMID: 23618132 DOI: 10.1186/2191-219X-3-33] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
57 Dichello GA, Fukuda T, Maekawa T, Whitby RLD, Mikhalovsky SV, Alavijeh M, Pannala AS, Sarker DK. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions. Eur J Pharm Sci 2017;105:55-63. [PMID: 28476616 DOI: 10.1016/j.ejps.2017.05.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
58 Thanh VM, Nguyen TH, Tran TV, Ngoc UP, Ho MN, Nguyen TT, Chau YNT, Le VT, Tran NQ, Nguyen CK, Nguyen DH. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater Sci Eng C Mater Biol Appl 2018;82:291-8. [PMID: 29025661 DOI: 10.1016/j.msec.2017.07.051] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
59 Bruckman MA, Randolph LN, VanMeter A, Hern S, Shoffstall AJ, Taurog RE, Steinmetz NF. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 2014;449:163-73. [PMID: 24418549 DOI: 10.1016/j.virol.2013.10.035] [Cited by in Crossref: 127] [Cited by in F6Publishing: 109] [Article Influence: 14.1] [Reference Citation Analysis]
60 Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 2013;10:2093-110. [PMID: 23461379 DOI: 10.1021/mp300697h] [Cited by in Crossref: 191] [Cited by in F6Publishing: 144] [Article Influence: 21.2] [Reference Citation Analysis]
61 Jo E, Heo JS, Lim J, Lee B, Yoon CJ, Kim J, Lee J. Peptide ligand-mediated endocytosis of nanoparticles to cancer cells: Cell receptor-binding- versus cell membrane-penetrating peptides. Biotechnol Bioeng 2018;115:1437-49. [DOI: 10.1002/bit.26575] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
62 Mérian J, Gravier J, Navarro F, Texier I. Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 2012;17:5564-91. [PMID: 22576228 DOI: 10.3390/molecules17055564] [Cited by in Crossref: 113] [Cited by in F6Publishing: 101] [Article Influence: 11.3] [Reference Citation Analysis]
63 Pippa N, Kaditi E, Pispas S, Demetzos C. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1685-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
64 Behnke T, Mathejczyk JE, Brehm R, Würth C, Gomes FR, Dullin C, Napp J, Alves F, Resch-Genger U. Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials. 2013;34:160-170. [PMID: 23072943 DOI: 10.1016/j.biomaterials.2012.09.028] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
65 Busatto S, Pham A, Suh A, Shapiro S, Wolfram J. Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomed Microdevices 2019;21:46. [PMID: 30989386 DOI: 10.1007/s10544-019-0396-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
66 Griffiths GL, Vasquez C, Escorcia F, Clanton J, Lindenberg L, Mena E, Choyke PL. Translating a Radiolabeled Imaging Agent to the Clinic. Adv Drug Deliv Rev 2021;:114086. [PMID: 34942275 DOI: 10.1016/j.addr.2021.114086] [Reference Citation Analysis]
67 Walter A, Garofalo A, Parat A, Jouhannaud J, Pourroy G, Voirin E, Laurent S, Bonazza P, Taleb J, Billotey C, Vander Elst L, Muller RN, Begin-colin S, Felder-flesch D. Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles. J Mater Chem B 2015;3:1484-94. [DOI: 10.1039/c4tb01954g] [Cited by in Crossref: 24] [Cited by in F6Publishing: 1] [Article Influence: 3.4] [Reference Citation Analysis]
68 Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:219-233. [PMID: 22231928 DOI: 10.1002/wnan.1157] [Cited by in Crossref: 265] [Cited by in F6Publishing: 241] [Article Influence: 26.5] [Reference Citation Analysis]
69 Wu X, Chang S, Sun X, Guo Z, Li Y, Tang J, Shen Y, Shi J, Tian H, Zhu W. Constructing NIR silica–cyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large Stokes shift. Chem Sci 2013;4:1221. [DOI: 10.1039/c2sc22035k] [Cited by in Crossref: 66] [Cited by in F6Publishing: 53] [Article Influence: 7.3] [Reference Citation Analysis]
70 Hirsjärvi S, Dufort S, Bastiat G, Saulnier P, Passirani C, Coll J, Benoît J. Surface modification of lipid nanocapsules with polysaccharides: From physicochemical characteristics to in vivo aspects. Acta Biomaterialia 2013;9:6686-93. [DOI: 10.1016/j.actbio.2013.01.038] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
71 Hamblin GD, Carneiro KM, Fakhoury JF, Bujold KE, Sleiman HF. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J Am Chem Soc 2012;134:2888-91. [PMID: 22283197 DOI: 10.1021/ja2107492] [Cited by in Crossref: 151] [Cited by in F6Publishing: 132] [Article Influence: 15.1] [Reference Citation Analysis]
72 Ghobril C, Lamanna G, Kueny-stotz M, Garofalo A, Billotey C, Felder-flesch D. Dendrimers in nuclear medical imaging. New J Chem 2012;36:310-23. [DOI: 10.1039/c1nj20416e] [Cited by in Crossref: 27] [Article Influence: 2.7] [Reference Citation Analysis]
73 Govender P, Therrien B, Smith GS. Bio-Metallodendrimers - Emerging Strategies in Metal-Based Drug Design. Eur J Inorg Chem 2012;2012:2853-62. [DOI: 10.1002/ejic.201200161] [Cited by in Crossref: 75] [Cited by in F6Publishing: 52] [Article Influence: 7.5] [Reference Citation Analysis]
74 Xue B, Wang W, Qin JJ, Nijampatnam B, Murugesan S, Kozlovskaya V, Zhang R, Velu SE, Kharlampieva E. Highly efficient delivery of potent anticancer iminoquinone derivative by multilayer hydrogel cubes. Acta Biomater 2017;58:386-98. [PMID: 28583901 DOI: 10.1016/j.actbio.2017.06.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
75 Hadjesfandiari N, Parambath A. Stealth coatings for nanoparticles. Engineering of Biomaterials for Drug Delivery Systems. Elsevier; 2018. pp. 345-61. [DOI: 10.1016/b978-0-08-101750-0.00013-1] [Cited by in Crossref: 15] [Article Influence: 3.8] [Reference Citation Analysis]
76 Halamoda Kenzaoui B, Chapuis Bernasconi C, Juillerat-jeanneret L. Stress reaction of kidney epithelial cells to inorganic solid-core nanoparticles. Cell Biol Toxicol 2013;29:39-58. [DOI: 10.1007/s10565-012-9236-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
77 Tang J, Sheng Y, Hu H, Shen Y. Macromolecular MRI contrast agents: Structures, properties and applications. Progress in Polymer Science 2013;38:462-502. [DOI: 10.1016/j.progpolymsci.2012.07.001] [Cited by in Crossref: 107] [Cited by in F6Publishing: 72] [Article Influence: 11.9] [Reference Citation Analysis]
78 Yhee JY, Lee S, Kim K. Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nanoscale 2014;6:13383-90. [DOI: 10.1039/c4nr04334k] [Cited by in Crossref: 45] [Cited by in F6Publishing: 7] [Article Influence: 5.6] [Reference Citation Analysis]
79 She W, Luo K, Zhang C, Wang G, Geng Y, Li L, He B, Gu Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy. Biomaterials 2013;34:1613-23. [DOI: 10.1016/j.biomaterials.2012.11.007] [Cited by in Crossref: 183] [Cited by in F6Publishing: 173] [Article Influence: 20.3] [Reference Citation Analysis]
80 Pippa N, Dokoumetzidis A, Pispas S, Demetzos C. The interplay between the rate of release from polymer grafted liposomes and their fractal morphology. International Journal of Pharmaceutics 2014;465:63-9. [DOI: 10.1016/j.ijpharm.2014.02.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
81 Dominguez-martinez I, Joaquin-ovalle F, Ferrer-acosta Y, Griebenow KH. Folate-Decorated Cross-Linked Cytochrome c Nanoparticles for Active Targeting of Non-Small Cell Lung Carcinoma (NSCLC). Pharmaceutics 2022;14:490. [DOI: 10.3390/pharmaceutics14030490] [Reference Citation Analysis]
82 Wang Y, Shim MS, Levinson NS, Sung HW, Xia Y. Stimuli-Responsive Materials for Controlled Release of Theranostic Agents. Adv Funct Mater 2014;24:4206-20. [PMID: 25477774 DOI: 10.1002/adfm.201400279] [Cited by in Crossref: 218] [Cited by in F6Publishing: 202] [Article Influence: 27.3] [Reference Citation Analysis]
83 Gong L, Wang Y, Liu J. Bioapplications of renal-clearable luminescent metal nanoparticles. Biomater Sci 2017;5:1393-406. [DOI: 10.1039/c7bm00257b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 4.2] [Reference Citation Analysis]
84 Ennen F, Boye S, Lederer A, Cernescu M, Komber H, Brutschy B, Voit B, Appelhans D. Biohybrid structures consisting of biotinylated glycodendrimers and proteins: influence of the biotin ligand's number and chemical nature on the biotin–avidin conjugation. Polym Chem 2014;5:1323-39. [DOI: 10.1039/c3py01152f] [Cited by in Crossref: 19] [Article Influence: 2.4] [Reference Citation Analysis]
85 Fakhri KU, Sultan A, Mushtaque M, Hasan MR, Nafees S, Hafeez ZB, Zafaryab M, Rizwanullah M, Sharma D, Bano F, Almalki WH, Ahmad FJ, Rizvi MMA. Obstructions in Nanoparticles Conveyance, Nano-Drug Retention, and EPR Effect in Cancer Therapies. In: Kumar S, Rizvi MA, Verma S, editors. Handbook of Research on Advancements in Cancer Therapeutics. IGI Global; 2021. pp. 669-704. [DOI: 10.4018/978-1-7998-6530-8.ch026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Zhang C, Pan D, Luo K, Li N, Guo C, Zheng X, Gu Z. Dendrimer–doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polym Chem 2014;5:5227-35. [DOI: 10.1039/c4py00601a] [Cited by in Crossref: 96] [Article Influence: 12.0] [Reference Citation Analysis]
87 Mathew AP, Uthaman S, Bae EH, Lee JY, Park IK. Vimentin Targeted Nano-gene Carrier for Treatment of Renal Diseases. J Korean Med Sci 2021;36:e333. [PMID: 34931497 DOI: 10.3346/jkms.2021.36.e333] [Reference Citation Analysis]
88 Saranya J, Sreeja BS, Arivanandan M, Bhuvaneswari K, Sherin S, Shivani KS, Saradhapreetha G, Saroja KK. Nanoarchitectonics of Cerium Oxide/Zinc Oxide/Graphene Oxide Composites for Evaluation of Cytotoxicity and Apoptotic Behavior in HeLa and VERO Cell Lines. J Inorg Organomet Polym. [DOI: 10.1007/s10904-021-02128-5] [Reference Citation Analysis]
89 Rohner NA, Thomas SN. Flexible Macromolecule versus Rigid Particle Retention in the Injected Skin and Accumulation in Draining Lymph Nodes Are Differentially Influenced by Hydrodynamic Size. ACS Biomater Sci Eng 2017;3:153-9. [PMID: 29888321 DOI: 10.1021/acsbiomaterials.6b00438] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
90 Mintzer MA, Dane EL, O'Toole GA, Grinstaff MW. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases. Mol Pharm 2012;9:342-54. [PMID: 22126461 DOI: 10.1021/mp2005033] [Cited by in Crossref: 107] [Cited by in F6Publishing: 96] [Article Influence: 9.7] [Reference Citation Analysis]
91 Maldonado CR, Salassa L, Gomez-blanco N, Mareque-rivas JC. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coordination Chemistry Reviews 2013;257:2668-88. [DOI: 10.1016/j.ccr.2013.04.014] [Cited by in Crossref: 63] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
92 Gravier J, Sancey L, Hirsjärvi S, Rustique E, Passirani C, Benoît JP, Coll JL, Texier I. FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles. Mol Pharm 2014;11:3133-44. [PMID: 25098740 DOI: 10.1021/mp500329z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 5.9] [Reference Citation Analysis]
93 Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 2015;88:20150207. [PMID: 25969868 DOI: 10.1259/bjr.20150207] [Cited by in Crossref: 194] [Cited by in F6Publishing: 164] [Article Influence: 27.7] [Reference Citation Analysis]
94 Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artificial Cells, Nanomedicine, and Biotechnology 2019;47:524-39. [DOI: 10.1080/21691401.2018.1561457] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 17.7] [Reference Citation Analysis]
95 Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. Adv Funct Mater 2021;31:2007096. [PMID: 34366761 DOI: 10.1002/adfm.202007096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Barouti G, Jaffredo CG, Guillaume SM. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Progress in Polymer Science 2017;73:1-31. [DOI: 10.1016/j.progpolymsci.2017.05.002] [Cited by in Crossref: 52] [Cited by in F6Publishing: 19] [Article Influence: 10.4] [Reference Citation Analysis]
97 Choyke PL. Nanoparticles: take only pictures, leave only footprints. Sci Transl Med 2014;6:260fs44. [PMID: 25355696 DOI: 10.1126/scitranslmed.aaa0614] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
98 Gao X, Li C. Nanoprobes visualizing gliomas by crossing the blood brain tumor barrier. Small 2014;10:426-40. [PMID: 24106064 DOI: 10.1002/smll.201301673] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
99 Xue W, Trital A, Shen J, Wang L, Chen S. Zwitterionic Polypeptide-Based Nanodrug Augments pH-Triggered Tumor Targeting via Prolonging Circulation Time and Accelerating Cellular Internalization. ACS Appl Mater Interfaces 2020;12:46639-52. [DOI: 10.1021/acsami.0c11747] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
100 Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:2119-27. [DOI: 10.1016/j.nano.2015.08.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
101 Singh V, Banerjee V. Ferromagnetism in assemblies of superparamagnetic nanoparticles: theory and applications. Indian J Phys 2014;88:939-44. [DOI: 10.1007/s12648-014-0487-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
102 Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013;4:81-9. [PMID: 24396516 DOI: 10.7150/thno.7193] [Cited by in Crossref: 540] [Cited by in F6Publishing: 523] [Article Influence: 60.0] [Reference Citation Analysis]
103 Schmidtke C, Kloust H, Bastús NG, Merkl J, Tran H, Flessau S, Feld A, Schotten T, Weller H. A general route towards well-defined magneto- or fluorescent-plasmonic nanohybrids. Nanoscale 2013;5:11783. [DOI: 10.1039/c3nr04155g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
104 Parat A, Kryza D, Degoul F, Taleb J, Viallard C, Janier M, Garofalo A, Bonazza P, Heinrich-balard L, Cohen R, Miot-noirault E, Chezal J, Billotey C, Felder-flesch D. Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma. J Mater Chem B 2015;3:2560-71. [DOI: 10.1039/c5tb00235d] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
105 Jhala D, Rather H, Vasita R. Nano-delivery of Food-Derived Biomolecules: An Overview. In: Rani V, Yadav UCS, editors. Functional Food and Human Health. Singapore: Springer; 2018. pp. 447-70. [DOI: 10.1007/978-981-13-1123-9_20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
106 Heo JY, Kang SH, Kim YH, You S, Jin KS, Kim SW, Jung HY, Jung KO, Lee CH, Kim MJ, Sung SE, Kim B, Choi IS, Youn H, Chung JK, Kim SK, Kim Y. Toward redesigning the PEG surface of nanocarriers for tumor targeting: impact of inner functionalities on size, charge, multivalent binding, and biodistribution. Chem Sci 2017;8:5186-95. [PMID: 28970905 DOI: 10.1039/c6sc05640g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Mahadevan K, Patthipati VS, Han S, Swanson RJ, Whelan EC, Osgood C, Balasubramanian R. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance. Nanotechnology 2016;27:335101. [PMID: 27378394 DOI: 10.1088/0957-4484/27/33/335101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
108 Cryer AM, Chan C, Eftychidou A, Maksoudian C, Mahesh M, Tetley TD, Spivey AC, Thorley AJ. Tyrosine Kinase Inhibitor Gold Nanoconjugates for the Treatment of Non-Small Cell Lung Cancer. ACS Appl Mater Interfaces 2019;11:16336-46. [DOI: 10.1021/acsami.9b02986] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
109 Ahn K, Ko HK, Lee B, Lee EJ, Lee J, Byun Y, Kwon IC, Kim K, Lee J. Engineered protein nanoparticles for in vivo tumor detection. Biomaterials 2014;35:6422-9. [DOI: 10.1016/j.biomaterials.2014.04.041] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
110 Jung KH, Park JA, Kim JY, Kim MH, Oh S, Kim HK, Choi EJ, Kim HJ, Do SH, Lee KC, Kim KM, Lee YJ, Chang Y. Image-Guided Neutron Capture Therapy Using the Gd-DO3A-BTA Complex as a New Combinatorial Treatment Approach. Contrast Media Mol Imaging 2018;2018:3727109. [PMID: 30515066 DOI: 10.1155/2018/3727109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
111 Zhang C, Pan D, Li J, Hu J, Bains A, Guys N, Zhu H, Li X, Luo K, Gong Q, Gu Z. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 2017;55:153-62. [PMID: 28259838 DOI: 10.1016/j.actbio.2017.02.047] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 14.4] [Reference Citation Analysis]
112 Li N, Li N, Yi Q, Luo K, Guo C, Pan D, Gu Z. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 2014;35:9529-45. [PMID: 25145854 DOI: 10.1016/j.biomaterials.2014.07.059] [Cited by in Crossref: 151] [Cited by in F6Publishing: 141] [Article Influence: 18.9] [Reference Citation Analysis]
113 Wen AM, Rambhia PH, French RH, Steinmetz NF. Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 2013;39:301-25. [PMID: 23860875 DOI: 10.1007/s10867-013-9314-z] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]