BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nambiar S, Yeow JTW. Polymer-Composite Materials for Radiation Protection. ACS Appl Mater Interfaces 2012;4:5717-26. [DOI: 10.1021/am300783d] [Cited by in Crossref: 233] [Cited by in F6Publishing: 73] [Article Influence: 23.3] [Reference Citation Analysis]
Number Citing Articles
1 Mirji R, Lobo B. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies. Radiation Physics and Chemistry 2017;135:32-44. [DOI: 10.1016/j.radphyschem.2017.03.001] [Cited by in Crossref: 43] [Cited by in F6Publishing: 8] [Article Influence: 8.6] [Reference Citation Analysis]
2 Sayyed M, Abdalsalam AH, Taki MM, Mhareb M, Alim B, Baltakesmez A, Şakar E. MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications. Radiation Physics and Chemistry 2020;172:108852. [DOI: 10.1016/j.radphyschem.2020.108852] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
3 Zhang Q, Liang D, Zhu W, Liu J, Wu Y, Xu D, Bai X, Wei M, Zhou Y. Fabrication of h-BN@PbWO4 with a facile sol-gel method towards enhanced photocatalytic and radiation shielding properties. Journal of Solid State Chemistry 2019;269:594-9. [DOI: 10.1016/j.jssc.2018.10.043] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
4 Alfaify S, Shkir M. A facile one pot synthesis of novel pure and Cd doped PbI2 nanostructures for electro-optic and radiation detection applications. Optical Materials 2019;88:417-23. [DOI: 10.1016/j.optmat.2018.11.054] [Cited by in Crossref: 62] [Cited by in F6Publishing: 17] [Article Influence: 20.7] [Reference Citation Analysis]
5 Jing S, Guo H, Qi Y, Yang G, Huang Y. A portable fast neutron irradiation system for tumor therapy. Appl Radiat Isot 2020;160:109138. [PMID: 32351230 DOI: 10.1016/j.apradiso.2020.109138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Abutalib M, Yahia I. Synthesis, Raman spectroscopy and dielectric properties of Ag:Mn co-doped nanostructured PbI 2 for solid state radiation detectors. Journal of Molecular Structure 2017;1138:215-21. [DOI: 10.1016/j.molstruc.2017.03.016] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
7 Alshahri S, Alsuhybani M, Alosime E, Almurayshid M, Alrwais A, Alotaibi S. LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-ray Shielding. Polymers (Basel) 2021;13:3081. [PMID: 34577982 DOI: 10.3390/polym13183081] [Reference Citation Analysis]
8 Abdalsalam AH, Şakar E, Kaky KM, Mhareb M, Cevi̇z Şakar B, Sayyed M, Gürol A. Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiation Physics and Chemistry 2020;168:108537. [DOI: 10.1016/j.radphyschem.2019.108537] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 11.5] [Reference Citation Analysis]
9 Kim H, Tse Y, Webb A, Mudd E, Abedin MR, Mormile M, Dutta S, Rege K, Barua S. PolyRad - Protection Against Free Radical Damage. Sci Rep 2020;10:8335. [PMID: 32433503 DOI: 10.1038/s41598-020-65247-y] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Awad SA, Mahini SS, Tucker SJ, Fellows CM. Evaluation of the performance of microcrystalline cellulose in retarding degradation of two epoxy resin systems. International Journal of Polymer Analysis and Characterization 2019;24:150-68. [DOI: 10.1080/1023666x.2018.1562597] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Chang L, Zhang Y, Liu Y, Fang J, Luan W, Yang X, Zhang W. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015;356-357:88-93. [DOI: 10.1016/j.nimb.2015.04.062] [Cited by in Crossref: 64] [Cited by in F6Publishing: 6] [Article Influence: 9.1] [Reference Citation Analysis]
12 Avadhanam V, Thanasamy D, Kiran Mathad J, Tumuki P. Single walled carbon nano tube -Polyaniline core-shell/polyurethane polymer composite for electromagnetic interference shielding. Polym Compos 2018;39:4104-14. [DOI: 10.1002/pc.24474] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
13 Srinivasan K, Samuel EJJ. Evaluation of Radiation Shielding Properties of the Polyvinyl Alcohol/Iron Oxide Polymer Composite. J Med Phys 2017;42:273-8. [PMID: 29296043 DOI: 10.4103/jmp.JMP_54_17] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
14 Swiatkowska-warkocka Z, Pyatenko A, Koga K, Kawaguchi K, Wang H, Koshizaki N. Various Morphologies/Phases of Gold-Based Nanocomposite Particles Produced by Pulsed Laser Irradiation in Liquid Media: Insight in Physical Processes Involved in Particles Formation. J Phys Chem C 2017;121:8177-87. [DOI: 10.1021/acs.jpcc.7b00187] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
15 Zhang X, Zhang X, Guo S. Simple approach to developing high-efficiency neutron shielding composites. Polym Eng Sci 2019;59:E348-55. [DOI: 10.1002/pen.25065] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
16 Lv J, Wang H, Xu J, Liu Y, Zhang H, Sun J, Zhao H, Zhu C. γ-Irradiation Induced Decomposition of Polydopamine Nanoparticles under Ambient Condition. Chem Lett 2019;48:426-8. [DOI: 10.1246/cl.190019] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Agulto VC, Empizo MJF, Kawano K, Minami Y, Yamanoi K, Sarukura N, Yago ACC, Sarmago RV. Two-step fabrication of ZnO-PVP composites with tunable visible emissions. Optical Materials 2018;76:317-22. [DOI: 10.1016/j.optmat.2017.12.048] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
18 Mehnati P, Arash M, Akhlaghi P. Bismuth-Silicon and Bismuth-Polyurethane Composite Shields for Breast Protection in Chest Computed Tomography Examinations. J Med Phys 2018;43:61-5. [PMID: 29628636 DOI: 10.4103/jmp.JMP_74_17] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
19 Xing T, Huang Y, Zhang K, Wu J. Carborane polyimides, synthesis and characterization. RSC Adv 2014;4:53628-33. [DOI: 10.1039/c4ra09886b] [Cited by in Crossref: 19] [Article Influence: 2.4] [Reference Citation Analysis]
20 Thibeault SA, Kang JH, Sauti G, Park C, Fay CC, King GC. Nanomaterials for radiation shielding. MRS Bull 2015;40:836-41. [DOI: 10.1557/mrs.2015.225] [Cited by in Crossref: 62] [Cited by in F6Publishing: 14] [Article Influence: 8.9] [Reference Citation Analysis]
21 Wu Y, Zhang Q, Zhou D, Zhou Y, Zheng J. Controlled synthesis of anisotropic lead borate crystals and its co-shielding of neutron and gamma radiations. Journal of Alloys and Compounds 2017;727:1027-35. [DOI: 10.1016/j.jallcom.2017.08.219] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.6] [Reference Citation Analysis]
22 Liu J, Zhang Q, Sun N, Zhao Y, Shi R, Zhou Y, Zheng J. Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures. Journal of Physics and Chemistry of Solids 2018;112:185-9. [DOI: 10.1016/j.jpcs.2017.09.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
23 Viegas J, Silva LA, Batista AMS, Furtado CA, Nascimento JP, Faria LO. Increased X-ray Attenuation Efficiency of Graphene-Based Nanocomposite. Ind Eng Chem Res 2017;56:11782-90. [DOI: 10.1021/acs.iecr.7b02711] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhang X, Yang M, Zhang X, Wu H, Guo S, Wang Y. Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure. Composites Science and Technology 2017;150:16-23. [DOI: 10.1016/j.compscitech.2017.06.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 6.2] [Reference Citation Analysis]
25 Li R, Gu Y, Zhang G, Yang Z, Li M, Zhang Z. Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology 2017;143:67-74. [DOI: 10.1016/j.compscitech.2017.03.002] [Cited by in Crossref: 51] [Article Influence: 10.2] [Reference Citation Analysis]
26 Selvi M, Devaraju S, Vengatesan MR, Go JS, Kumar M, Alagar M. The effect of UV radiation on polybenzoxazine/epoxy/OG-POSS nanocomposites. RSC Adv 2014;4:8238. [DOI: 10.1039/c3ra47228k] [Cited by in Crossref: 35] [Cited by in F6Publishing: 9] [Article Influence: 4.4] [Reference Citation Analysis]
27 Mehta P, Bhayani D. Impact of space environment on stability of medicines: Challenges and prospects. J Pharm Biomed Anal 2017;136:111-9. [PMID: 28068518 DOI: 10.1016/j.jpba.2016.12.040] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 4.4] [Reference Citation Analysis]
28 Li Q, Zhong R, Xiao X, Liao J, Liao X, Shi B. Lightweight and Flexible Bi@Bi-La Natural Leather Composites with Superb X-ray Radiation Shielding Performance and Low Secondary Radiation. ACS Appl Mater Interfaces 2020;12:54117-26. [PMID: 33201659 DOI: 10.1021/acsami.0c17008] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Majewski PW, Michelson A, Cordeiro MAL, Tian C, Ma C, Kisslinger K, Tian Y, Liu W, Stach EA, Yager KG, Gang O. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci Adv 2021;7:eabf0617. [PMID: 33741597 DOI: 10.1126/sciadv.abf0617] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Li Q, Wei Q, Zheng W, Zheng Y, Okosi N, Wang Z, Su M. Enhanced Radiation Shielding with Conformal Light-Weight Nanoparticle–Polymer Composite. ACS Appl Mater Interfaces 2018;10:35510-5. [DOI: 10.1021/acsami.8b10600] [Cited by in Crossref: 27] [Cited by in F6Publishing: 7] [Article Influence: 6.8] [Reference Citation Analysis]
31 Weyemi U, Redon CE, Aziz T, Choudhuri R, Maeda D, Parekh PR, Bonner MY, Arbiser JL, Bonner WM. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat Res 2015;183:262-70. [PMID: 25706776 DOI: 10.1667/RR13799.1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 18] [Article Influence: 5.1] [Reference Citation Analysis]
32 Li P, White KL, Lin CH, Kim D, Muliana A, Krishnamoorti R, Nishimura R, Sue HJ. Mechanical reinforcement of epoxy with self-assembled synthetic clay in smectic order. ACS Appl Mater Interfaces 2014;6:10188-95. [PMID: 24915977 DOI: 10.1021/am5015293] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
33 Ferreira FV, Cividanes LS, Gouveia RF, Lona LM. An overview on properties and applications of poly(butylene adipate- co -terephthalate)-PBAT based composites. Polym Eng Sci 2019;59:E7-E15. [DOI: 10.1002/pen.24770] [Cited by in Crossref: 87] [Cited by in F6Publishing: 31] [Article Influence: 17.4] [Reference Citation Analysis]
34 Zhao T, Zhang X. Enhanced thermal conductivity of PE/BN composites through controlling crystallization behavior of PE matrix. Polym Compos 2017;38:2806-13. [DOI: 10.1002/pc.23880] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
35 Afshar M, Morshedian J, Ahmadi S. Radiation attenuation capability and flow characteristics of HDPE composite loaded with W, MoS 2 , and B 4 C. Polym Compos 2019;40:149-58. [DOI: 10.1002/pc.24620] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
36 Sun Q, Zhang Q, Zheng J, Zhou D, Li Y, Zhou Y. Preparation of integrated multifunction Pb 3 B 10 O 16 [OH] 4 whisker by solvothermal method. Physics Letters A 2016;380:1197-200. [DOI: 10.1016/j.physleta.2016.01.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
37 El Tecle NE, El Ahmadieh TY, Patel BM, Lall RR, Bendok BR, Smith ZA. Minimizing Radiation Exposure in Minimally Invasive Spine Surgery. Neurosurgery Clinics of North America 2014;25:247-60. [DOI: 10.1016/j.nec.2013.12.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
38 Shkir M, Alfaify S, Yahia I, Ganesh V, Shoukry H. Microwave-assisted synthesis of Gd3+ doped PbI2 hierarchical nanostructures for optoelectronic and radiation detection applications. Physica B: Condensed Matter 2017;508:41-6. [DOI: 10.1016/j.physb.2016.12.016] [Cited by in Crossref: 42] [Cited by in F6Publishing: 13] [Article Influence: 8.4] [Reference Citation Analysis]
39 Zhou D, Zhang Q, Zheng J, Wu Y, Zhao Y, Zhou Y. Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol-gel method. Inorganic Chemistry Communications 2017;77:55-8. [DOI: 10.1016/j.inoche.2017.01.034] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
40 Li Z, Zhou W, Zhang X, Gao Y, Guo S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism. Sci Rep 2021;11:4384. [PMID: 33623062 DOI: 10.1038/s41598-021-83031-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Xu Y, Zhang Q, Liu J, Wu Y, Liu L, Xu D, Zhou Y. PbWO 4 nanofibers for shielding gamma radiation: crystal growth, morphology and performance evaluation. CrystEngComm 2018;20:6197-206. [DOI: 10.1039/c8ce01224e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
42 Xia W, Xue H, Wang J, Wang T, Song L, Guo H, Fan X, Gong H, He J. Functionlized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites. Carbon 2016;101:315-23. [DOI: 10.1016/j.carbon.2016.02.004] [Cited by in Crossref: 69] [Cited by in F6Publishing: 32] [Article Influence: 11.5] [Reference Citation Analysis]
43 Kaur P, Singh K, Thakur S, Singh P, Bajwa B. Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019;206:367-77. [DOI: 10.1016/j.saa.2018.08.038] [Cited by in Crossref: 136] [Cited by in F6Publishing: 22] [Article Influence: 45.3] [Reference Citation Analysis]
44 Badawy SM, Abd El-latif A. Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym Compos 2017;38:974-80. [DOI: 10.1002/pc.23660] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 1.9] [Reference Citation Analysis]
45 Derradji M, Zegaoui A, Xu Y, Wang A, Dayo AQ, Wang J, Liu W, Liu Y, Khiari K. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2018;421:13-7. [DOI: 10.1016/j.nimb.2018.02.017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
46 Wang Y, Zhong R, Li Q, Liao J, Liu N, Joshi NS, Shi B, Liao X, Guo J. Lightweight and Wearable X‐Ray Shielding Material with Biological Structure for Low Secondary Radiation and Metabolic Saving Performance. Adv Mater Technol 2020;5:2000240. [DOI: 10.1002/admt.202000240] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
47 Seibers Z, Orr M, Collier GS, Henriquez A, Gabel M, Shofner ML, La Saponara V, Reynolds J. Chemically Functionalized Reduced Graphene Oxide as Additives in Polyethylene Composites for Space Applications. Polym Eng Sci 2020;60:86-94. [DOI: 10.1002/pen.25262] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
48 Zegaoui A, Wang A, Qadeer Dayo A, Tian B, Liu W, Wang J, Liu Y. Effects of gamma irradiation on the mechanical and thermal properties of cyanate ester/benzoxazine resin. Radiation Physics and Chemistry 2017;141:110-7. [DOI: 10.1016/j.radphyschem.2017.06.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 5] [Article Influence: 4.6] [Reference Citation Analysis]
49 Wang Y, Wang G, Hu T, Wen S, Hu S, Liu L. Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: A Monte Carlo simulation study. Nuclear Engineering and Technology 2020;52:1565-70. [DOI: 10.1016/j.net.2019.12.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
50 Konefa  A, aciak M, Dawidowska A, Osewski W. Significant change in the construction of a door to a room with slowed down neutron field by means of commonly used inexpensive protective materials. Radiation Protection Dosimetry 2014;162:197-207. [DOI: 10.1093/rpd/nct326] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
51 Li R, Gu Y, Yang Z, Li M, Hou Y, Zhang Z. Gamma ray shielding property, shielding mechanism and predicting model of continuous basalt fiber reinforced polymer matrix composite containing functional filler. Materials & Design 2017;124:121-30. [DOI: 10.1016/j.matdes.2017.03.045] [Cited by in Crossref: 23] [Article Influence: 4.6] [Reference Citation Analysis]
52 Kelkar AD, Tian Q, Yu D, Zhang L. Boron nitride nanoparticle enhanced prepregs: A novel route for manufacturing aerospace structural composite laminate. Materials Chemistry and Physics 2016;176:136-42. [DOI: 10.1016/j.matchemphys.2016.03.044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.2] [Reference Citation Analysis]
53 Iguchi D, Ohashi S, Abarro GJE, Yin X, Winroth S, Scott C, Gleydura M, Jin L, Kanagasegar N, Lo C, Arza CR, Froimowicz P, Ishida H. Development of Hydrogen-Rich Benzoxazine Resins with Low Polymerization Temperature for Space Radiation Shielding. ACS Omega 2018;3:11569-81. [PMID: 31459257 DOI: 10.1021/acsomega.8b01297] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
54 Shkir M, Alfaify S, Yahia IS, Hamdy MS, Ganesh V, Algarni H. Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-4020-6] [Cited by in Crossref: 50] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
55 Li F, Liu Y, Leng J. Progress of shape memory polymers and their composites in aerospace applications. Smart Mater Struct 2019;28:103003. [DOI: 10.1088/1361-665x/ab3d5f] [Cited by in Crossref: 17] [Article Influence: 5.7] [Reference Citation Analysis]
56 Jung C, Lee D, Hwang I, Im D, Shin J, Kang P, Choi J. Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites. Journal of Nuclear Materials 2013;438:41-5. [DOI: 10.1016/j.jnucmat.2013.03.023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
57 Zhang Q, Sun N, Zheng J, Wang S, Wu Y, Luo D, Zhou Y. Fabrication of Lead Borate Single Crystal Nanosheets for Attenuating Both Neutron and Gamma Radiations: Fabrication of Lead Borate Single Crystal Nanosheets…. Adv Eng Mater 2017;19:1600650. [DOI: 10.1002/adem.201600650] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
58 Hu C, Xiao J, Mao X, Song L, Yang X, Liu S. Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive. Materials Letters 2019;240:113-6. [DOI: 10.1016/j.matlet.2018.12.123] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
59 Cao W, Mantanona AJ, Mao H, Mccallum NC, Jiao Y, Battistella C, Caponetti V, Zang N, Thompson MP, Montalti M, Stoddart JF, Wasielewski MR, Rinehart JD, Gianneschi NC. Radical-Enriched Artificial Melanin. Chem Mater 2020;32:5759-67. [DOI: 10.1021/acs.chemmater.0c01573] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Wang Y, Ding P, Xu H, Li Q, Guo J, Liao X, Shi B. Advanced X-ray Shielding Materials Enabled by the Coordination of Well-Dispersed High Atomic Number Elements in Natural Leather. ACS Appl Mater Interfaces 2020;12:19916-26. [PMID: 32237713 DOI: 10.1021/acsami.0c01663] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
61 Shang Y, Yang G, Su F, Feng Y, Ji Y, Liu D, Yin R, Liu C, Shen C. Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Composites Communications 2020;19:147-53. [DOI: 10.1016/j.coco.2020.03.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
62 Huang X, Zhang Q, Deng G, Meng Z, Jia X, Xi K. Benzocyclobutene resin with m-carborane cages and a siloxane backbone: a novel thermosetting material with high thermal stability and shape-memory property. RSC Adv 2016;6:24690-7. [DOI: 10.1039/c5ra27647k] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
63 Soylu HM, Yurt Lambrecht F, Ersöz OA. Gamma radiation shielding efficiency of a new lead-free composite material. J Radioanal Nucl Chem 2015;305:529-34. [DOI: 10.1007/s10967-015-4051-3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
64 Kim J, Lee B, Uhm YR, Miller WH. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites. Journal of Nuclear Materials 2014;453:48-53. [DOI: 10.1016/j.jnucmat.2014.06.026] [Cited by in Crossref: 53] [Cited by in F6Publishing: 15] [Article Influence: 6.6] [Reference Citation Analysis]
65 Ferreira F, Franceschi W, Menezes B, Brito F, Lozano K, Coutinho A, Cividanes L, Thim G. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Applied Surface Science 2017;410:267-77. [DOI: 10.1016/j.apsusc.2017.03.098] [Cited by in Crossref: 59] [Cited by in F6Publishing: 22] [Article Influence: 11.8] [Reference Citation Analysis]
66 Jia X, Zhou Y, Zheng J, Li Y, Zou H, Xie R. Cerium doped barium tantalates: Fabrication, characterization, and investigation of gamma radiation attenuation. Journal of Alloys and Compounds 2016;688:679-84. [DOI: 10.1016/j.jallcom.2016.07.188] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
67 Guo J, Liu T, Ma L, Hao W, Yan H, Li T, Yang Y, Cai J, Gao F, Xu Z, Liu H. Polydatin Attenuates 14.1 MeV Neutron-Induced Injuries via Regulating the Apoptosis and Antioxidative Pathways and Improving the Hematopoiesis of Mice. Oxid Med Cell Longev 2020;2020:8905860. [PMID: 32934763 DOI: 10.1155/2020/8905860] [Reference Citation Analysis]
68 Zhang K, Tang W, Fu K. Modeling of Dynamic Behavior of Carbon Fiber-Reinforced Polymer (CFRP) Composite under X-ray Radiation. Materials (Basel) 2018;11:E143. [PMID: 29337891 DOI: 10.3390/ma11010143] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
69 Mesbahi A, Ghiasi H. Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations. Appl Radiat Isot 2018;136:27-31. [PMID: 29455112 DOI: 10.1016/j.apradiso.2018.02.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 13] [Article Influence: 12.8] [Reference Citation Analysis]
70 Acevedo-Del-Castillo A, Águila-Toledo E, Maldonado-Magnere S, Aguilar-Bolados H. A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites. Int J Mol Sci 2021;22:9079. [PMID: 34445783 DOI: 10.3390/ijms22169079] [Reference Citation Analysis]
71 La LB, Leatherday C, Leong Y, Watts HP, Zhang L. Green lightweight lead-free Gd 2 O 3 /epoxy nanocomposites with outstanding X-ray attenuation performance. Composites Science and Technology 2018;163:89-95. [DOI: 10.1016/j.compscitech.2018.05.018] [Cited by in Crossref: 15] [Article Influence: 3.8] [Reference Citation Analysis]
72 Kim J, Seo D, Lee BC, Seo YS, Miller WH. Nano-W Dispersed Gamma Radiation Shielding Materials: Nano-W Dispersed Gamma Radiation Shielding Materials. Adv Eng Mater 2014;16:1083-9. [DOI: 10.1002/adem.201400127] [Cited by in Crossref: 53] [Cited by in F6Publishing: 13] [Article Influence: 6.6] [Reference Citation Analysis]
73 Wu Y, Cao Y, Wu Y, Li D. Neutron Shielding Performance of 3D-Printed Boron Carbide PEEK Composites. Materials (Basel) 2020;13:E2314. [PMID: 32443451 DOI: 10.3390/ma13102314] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
74 Shi S, Vissapragada R, Abi Jaoude J, Huang C, Mittal A, Liu E, Zhong J, Kumar V. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater 2020;5:233-40. [PMID: 32123777 DOI: 10.1016/j.bioactmat.2020.01.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
75 Lin Y, Liu Y, Zhang D, Chen C, Wu G. Radiation resistance of poly(methyl methacrylate)/reduced graphene oxide nanocomposites fabricated through latex mixing and in situ reduction. Chemical Engineering Journal 2017;315:516-26. [DOI: 10.1016/j.cej.2017.01.053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
76 Cherkashina N, Pavlenko V, Noskov A. Radiation shielding properties of polyimide composite materials. Radiation Physics and Chemistry 2019;159:111-7. [DOI: 10.1016/j.radphyschem.2019.02.041] [Cited by in Crossref: 24] [Article Influence: 8.0] [Reference Citation Analysis]
77 Ambika MR, Nagaiah N, Suman SK. Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites. J Appl Polym Sci 2017;134. [DOI: 10.1002/app.44657] [Cited by in Crossref: 28] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
78 F K, S M, M A H. A Monte Carlo Study on the Shielding Properties of a Novel Polyvinyl Alcohol (PVA)/WO3 Composite, Against Gamma Rays, Using the MCNPX Code. J Biomed Phys Eng 2019;9:465-72. [PMID: 31531300 DOI: 10.31661/jbpe.v0i0.1114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
79 Li X, Wu J, Tang C, He Z, Yuan P, Sun Y, Lau W, Zhang K, Mei J, Huang Y. High temperature resistant polyimide/boron carbide composites for neutron radiation shielding. Composites Part B: Engineering 2019;159:355-61. [DOI: 10.1016/j.compositesb.2018.10.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
80 Li Z, Chen S, Nambiar S, Sun Y, Zhang M, Zheng W, Yeow JT. PMMA/MWCNT nanocomposite for proton radiation shielding applications. Nanotechnology 2016;27:234001. [PMID: 27125319 DOI: 10.1088/0957-4484/27/23/234001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
81 Wu Y, Chen G, Zhan M, Yang J. High heat resistant carbon fiber/polyimide composites with neutron shielding performance. Progress in Organic Coatings 2019;132:184-90. [DOI: 10.1016/j.porgcoat.2019.03.047] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
82 Kaçal MR, Polat H, Oltulu M, Akman F, Agar O, Tekin HO. Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical, and simulation based study. Appl Phys A 2020;126. [DOI: 10.1007/s00339-020-3382-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 10.5] [Reference Citation Analysis]
83 Jouni M, Djurado D, Massardier V, Boiteux G. A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers: Polymer composites with nanofillers. Polym Int 2017;66:1237-51. [DOI: 10.1002/pi.5378] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 4.4] [Reference Citation Analysis]
84 Alfaify S, Shkir M, Ganesh V. Facile one pot synthesis of novel Hg2+ doped PbI2 nanostructures for optoelectronic and radiation shielding applications. Materials Science in Semiconductor Processing 2018;83:231-8. [DOI: 10.1016/j.mssp.2018.04.040] [Cited by in Crossref: 14] [Article Influence: 3.5] [Reference Citation Analysis]
85 Li Q, Wang Y, Xiao X, Zhong R, Liao J, Guo J, Liao X, Shi B. Research on X-ray shielding performance of wearable Bi/Ce-natural leather composite materials. Journal of Hazardous Materials 2020;398:122943. [DOI: 10.1016/j.jhazmat.2020.122943] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
86 Lebedev SM, Gefle OS, Amitov ET, Berchuk DY, Zhuravlev DV. Influence of Heavy Metal Powders on Rheological Properties of Poly(Lactic Acid). Russ Phys J 2017;60:624-30. [DOI: 10.1007/s11182-017-1117-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
87 La LB, Leong Y, Leatherday C, Au PI, Hayward KJ, Zhang L. X-ray protection, surface chemistry and rheology of ball-milled submicron Gd2O3 aqueous suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016;501:75-82. [DOI: 10.1016/j.colsurfa.2016.04.058] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
88 Khoerunnisa F, Futamura R, Mukai S, Konishi T, Fujikawa T, Kaneko K. X-ray absorption anomaly of well-characterized multiwall carbon nanotubes. Carbon 2019;145:209-17. [DOI: 10.1016/j.carbon.2019.01.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
89 Akman F, Ogul H, Kaçal MR, Polat H, Dilsiz K, Turhan MF. Impact of lead(II) iodide on radiation shielding properties of polyester composites. Appl Phys A 2020;126. [DOI: 10.1007/s00339-020-03494-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
90 Rajamanikam R, Pichaimani P, Kumar M, Muthukaruppan A. Optical and thermomechanical behavior of benzoxazine functionalized ZnO reinforced polybenzoxazine nanocomposites. Polym Compos 2017;38:1881-9. [DOI: 10.1002/pc.23758] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
91 Cai Y, Hao R, Yu S, Wang C, Hu G. Comparison of two multi-objective optimization methods for composite radiation shielding materials. Appl Radiat Isot 2020;159:109061. [PMID: 32068147 DOI: 10.1016/j.apradiso.2020.109061] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
92 Vasileiou T, Summerer L. A biomimetic approach to shielding from ionizing radiation: The case of melanized fungi. PLoS One 2020;15:e0229921. [PMID: 32330147 DOI: 10.1371/journal.pone.0229921] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
93 Mozumder MS, Mairpady A, Mourad AI. Polymeric nanobiocomposites for biomedical applications. J Biomed Mater Res B Appl Biomater 2017;105:1241-59. [PMID: 26910862 DOI: 10.1002/jbm.b.33633] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
94 Kumar P, Khan N, Kumar D. POLYVINYL BUTYRAL (PVB), VERSETILE TEMPLATE FOR DESIGNING NANOCOMPOSITE/COMPOSITE MATERIALS:A REVIEW. gctl 2016;2:185-94. [DOI: 10.18510/gctl.2016.244] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
95 Li Z, Nambiar S, Zheng W, Yeow J. PDMS/single-walled carbon nanotube composite for proton radiation shielding in space applications. Materials Letters 2013;108:79-83. [DOI: 10.1016/j.matlet.2013.06.030] [Cited by in Crossref: 34] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
96 Li R, Gu Y, Wang Y, Yang Z, Li M, Zhang Z. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater Res Express 2017;4:035035. [DOI: 10.1088/2053-1591/aa6651] [Cited by in Crossref: 34] [Article Influence: 6.8] [Reference Citation Analysis]
97 Wu Y, Zhang Q, Zhou D, Liu L, Xu Y, Xu D, Zhou Y. One-dimensional lead borate nanowhiskers for the joint shielding of neutron and gamma radiation: controlled synthesis, microstructure, and performance evaluation. CrystEngComm 2017;19:7260-9. [DOI: 10.1039/c7ce01547j] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
98 Bagheri K, Razavi SM, Ahmadi SJ, Kosari M, Abolghasemi H. Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiation Physics and Chemistry 2018;146:5-10. [DOI: 10.1016/j.radphyschem.2017.12.024] [Cited by in Crossref: 27] [Cited by in F6Publishing: 4] [Article Influence: 6.8] [Reference Citation Analysis]
99 Jiang X, Zhu X, Chang C, Liu S, Luo X. X-ray shielding structural and properties design for the porous transparent BaSO4/cellulose nanocomposite membranes. Int J Biol Macromol 2019;139:793-800. [PMID: 31362024 DOI: 10.1016/j.ijbiomac.2019.07.186] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
100 Fernandes NJ, Koerner H, Giannelis EP, Vaia RA. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges. MRS Communications 2013;3:13-29. [DOI: 10.1557/mrc.2013.9] [Cited by in Crossref: 123] [Cited by in F6Publishing: 74] [Article Influence: 13.7] [Reference Citation Analysis]
101 Atashi P, Rahmani S, Ahadi B, Rahmati A. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. J Mater Sci: Mater Electron 2018;29:12306-22. [DOI: 10.1007/s10854-018-9344-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
102 Lin Y, Liu Y, Zhang D, Wu G. Radiation resistance of polypropylene composites by incorporating reduced graphene oxide and antioxidant: A comparison study. Composites Science and Technology 2017;146:83-90. [DOI: 10.1016/j.compscitech.2017.04.025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
103 Thongpool V, Phunpueok A, Barnthip N, Jaiyen S. BaSO<sub>4</sub>/Polyvinyl Alcohol Composites for Radiation Shielding. AMM 2015;804:3-6. [DOI: 10.4028/www.scientific.net/amm.804.3] [Cited by in Crossref: 10] [Article Influence: 1.4] [Reference Citation Analysis]
104 Fernandes NJ, Wallin TJ, Vaia RA, Koerner H, Giannelis EP. Nanoscale Ionic Materials. Chem Mater 2014;26:84-96. [DOI: 10.1021/cm402372q] [Cited by in Crossref: 69] [Cited by in F6Publishing: 47] [Article Influence: 7.7] [Reference Citation Analysis]
105 Xia W, Zhao J, Wang T, Song L, Gong H, Guo H, Gao B, Fan X, He J. Anchoring ceria nanoparticles on graphene oxide and their radical scavenge properties under gamma irradiation environment. Phys Chem Chem Phys 2017;19:16785-94. [DOI: 10.1039/c7cp02559a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 3.8] [Reference Citation Analysis]
106 Liu Y, Tian Q, Wang S, Li Z, Duan X, Que L, Pei C. Preparation of boron carbide nanosheets with high neutron-shielding properties based on reduced graphene oxide aerogel. Ceramics International 2020;46:18131-41. [DOI: 10.1016/j.ceramint.2020.04.134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]