BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mankar SV, Garcia Gonzalez MN, Warlin N, Valsange NG, Rehnberg N, Lundmark S, Jannasch P, Zhang B. Synthesis, Life Cycle Assessment, and Polymerization of a Vanillin-Based Spirocyclic Diol toward Polyesters with Increased Glass-Transition Temperature. ACS Sustainable Chem Eng 2019;7:19090-103. [DOI: 10.1021/acssuschemeng.9b04930] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Sedrik R, Bonjour O, Laanesoo S, Liblikas I, Pehk T, Jannasch P, Vares L. Chemically Recyclable Poly(β-thioether ester)s Based on Rigid Spirocyclic Ketal Diols Derived from Citric Acid. Biomacromolecules 2022. [PMID: 35617050 DOI: 10.1021/acs.biomac.2c00452] [Reference Citation Analysis]
2 Hammer TJ, Pugh C, Soucek MD. Ultraviolet-Curable Cycloaliphatic Polyesters Containing Spiroacetal Moieties for Application as Powder Coatings. ACS Appl Polym Mater 2022;4:2294-305. [DOI: 10.1021/acsapm.1c01295] [Reference Citation Analysis]
3 Song T, Wang Q, Li J, Chen X, Liu S, Wang G. Modifying the properties of poly(1,4-cyclohexylenedimethylene terephthalate) by hydroquinone bis(2-hydroxyethyl) ether. J Polym Res 2022;29. [DOI: 10.1007/s10965-021-02875-6] [Reference Citation Analysis]
4 Liu X, Lebrun L, Follain N, Desilles N. Bio-based copolyesters involving 1,4:3,6-dianhydrohexitols and sebacic acid: 2,6-pyridinedicarboxylic acid as platforms for high gas barrier food packaging. Mater Adv 2022;3:389-98. [DOI: 10.1039/d1ma00797a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Song T, Wang Q, Li J, Chen X, Liu S, Wang G. Synthesis and characterization of biphenyldicarboxylic acid-modified poly(1,4-cyclohexylenedimethylene terephthalate) copolyesters. Journal of Macromolecular Science, Part A. [DOI: 10.1080/10601325.2021.2013728] [Reference Citation Analysis]
6 Guo Z, Warlin N, Mankar SV, Sidqi M, Andersson M, Zhang B, Nilsson E. Development of Circularly Recyclable Low Melting Temperature Bicomponent Fibers toward a Sustainable Nonwoven Application. ACS Sustainable Chem Eng 2021;9:16778-85. [DOI: 10.1021/acssuschemeng.1c06302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Progress in Polymer Science 2021;120:101430. [DOI: 10.1016/j.progpolymsci.2021.101430] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
8 Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2020;49:6329-63. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 12.0] [Reference Citation Analysis]
9 Janczewski Ł, Zieliński D, Kolesińska B. Synthesis of amides and esters containing furan rings under microwave-assisted conditions. Open Chemistry 2021;19:265-80. [DOI: 10.1515/chem-2021-0034] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Shen A, Wang J, Ma S, Fei X, Zhang X, Zhu J, Liu X. Completely amorphous high thermal resistant copolyesters from bio‐based 2, 5‐furandicarboxylic acid. J Appl Polym Sci 2021;138:50627. [DOI: 10.1002/app.50627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
11 Liu J, Wang S, Peng Y, Zhu J, Zhao W, Liu X. Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability. Progress in Polymer Science 2021;113:101353. [DOI: 10.1016/j.progpolymsci.2020.101353] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 24.0] [Reference Citation Analysis]
12 Hu H, Tian Y, Kong Z, Ying WB, Chen C, Li F, Zhang R, Zhu J. A High Performance Copolyester with “Locked” Biodegradability: Solid Stability and Controlled Degradation Enabled by Acid-Labile Acetal. ACS Sustainable Chem Eng 2021;9:2280-90. [DOI: 10.1021/acssuschemeng.0c08274] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
13 Zhang H, Jiang M, Wu Y, Li L, Wang Z, Wang R, Zhou G. Development of completely furfural-based renewable polyesters with controllable properties. Green Chem 2021;23:2437-48. [DOI: 10.1039/d1gc00221j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
14 Sousa AF, Patrício R, Terzopoulou Z, Bikiaris DN, Stern T, Wenger J, Loos K, Lotti N, Siracusa V, Szymczyk A, Paszkiewicz S, Triantafyllidis KS, Zamboulis A, Nikolic MS, Spasojevic P, Thiyagarajan S, van Es DS, Guigo N. Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chem 2021;23:8795-820. [DOI: 10.1039/d1gc02082j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
15 Fang L, Tao Y, Zhou J, Wang C, Dai M, Sun J, Fang Q. A biobased low dielectric resin derived from vanillin and guaiacol. Polym Chem 2021;12:766-70. [DOI: 10.1039/d0py01653e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Bass GF, Epps TH. Recent developments towards performance-enhancing lignin-based polymers. Polym Chem 2021;12:4130-58. [DOI: 10.1039/d1py00694k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Warlin N, Nilsson E, Guo Z, Mankar SV, Valsange NG, Rehnberg N, Lundmark S, Jannasch P, Zhang B. Synthesis and melt-spinning of partly bio-based thermoplastic poly(cycloacetal-urethane)s toward sustainable textiles. Polym Chem 2021;12:4942-53. [DOI: 10.1039/d1py00450f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wang P, Linares-pastén JA, Zhang B. Synthesis, Molecular Docking Simulation, and Enzymatic Degradation of AB-Type Indole-Based Polyesters with Improved Thermal Properties. Biomacromolecules 2020;21:1078-90. [DOI: 10.1021/acs.biomac.9b01399] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang X, Liu F, Li Y, Zhang W, Bai S, Zheng X, Huan J, Cao G, Yang T, Wang M, Jiang Z, Wang C, Ho S. Development of a facile and bi-functional superhydrophobic suspension and its applications in superhydrophobic coatings and aerogels in high-efficiency oil–water separation. Green Chem 2020;22:7424-34. [DOI: 10.1039/d0gc01834a] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
20 Wang B, Ma S, Li Q, Zhang H, Liu J, Wang R, Chen Z, Xu X, Wang S, Lu N, Liu Y, Yan S, Zhu J. Facile synthesis of “digestible”, rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chem 2020;22:1275-90. [DOI: 10.1039/c9gc04020j] [Cited by in Crossref: 15] [Article Influence: 7.5] [Reference Citation Analysis]
21 Debnath S, Kaushal S, Mandal S, Ojha U. Solvent processable and recyclable covalent adaptable organogels based on dynamic trans-esterification chemistry: separation of toluene from azeotropic mixtures. Polym Chem 2020;11:1471-80. [DOI: 10.1039/c9py01807g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Bonjour O, Liblikas I, Pehk T, Khai-nghi T, Rissanen K, Vares L, Jannasch P. Rigid biobased polycarbonates with good processability based on a spirocyclic diol derived from citric acid. Green Chem 2020;22:3940-51. [DOI: 10.1039/d0gc00849d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
23 Kainulainen TP, Hukka TI, Özeren HD, Sirviö JA, Hedenqvist MS, Heiskanen JP. Utilizing Furfural-Based Bifuran Diester as Monomer and Comonomer for High-Performance Bioplastics: Properties of Poly(butylene furanoate), Poly(butylene bifuranoate), and Their Copolyesters. Biomacromolecules 2020;21:743-52. [PMID: 31790208 DOI: 10.1021/acs.biomac.9b01447] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 6.7] [Reference Citation Analysis]