BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu C, Wu F, Yu P, Mao L. In Vivo Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sens 2019;4:3102-18. [PMID: 31718157 DOI: 10.1021/acssensors.9b01713] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 17.7] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Liu Z, Tian Y. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain. Acc Chem Res 2022. [PMID: 36074539 DOI: 10.1021/acs.accounts.2c00333] [Reference Citation Analysis]
2 Xu M, Lin L, Jin G, Lin Y, Zhang K. Two-in-one: Portable piezoelectric and plasmonic exciton effect-based co-enhanced photoelectrochemical biosensor for point-of-care testing of low-abundance cancer markers. Biosensors and Bioelectronics 2022;211:114413. [DOI: 10.1016/j.bios.2022.114413] [Reference Citation Analysis]
3 Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2022. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Reference Citation Analysis]
4 Pan C, Wu F, Mao J, Wu W, Zhao G, Ji W, Ma W, Yu P, Mao L. Highly Stable and Selective Sensing of Hydrogen Sulfide in Living Mouse Brain with NiN4 Single-Atom Catalyst-Based Galvanic Redox Potentiometry. J Am Chem Soc 2022. [PMID: 35925758 DOI: 10.1021/jacs.2c04695] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. Sensors 2022;22:5200. [DOI: 10.3390/s22145200] [Reference Citation Analysis]
6 Yang B, Wang K, Zhou J, Shao X, Gu X, Xue Y, Tian S. Ratiometric SERS detection of H2O2 and glucose using a pyrroloquinoline skeleton containing molecule as H2O2-responsive probe. Applied Surface Science 2022;590:153020. [DOI: 10.1016/j.apsusc.2022.153020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Gao Z, Wu G, Song Y, Li H, Zhang Y, Schneider MJ, Qiang Y, Kaszas J, Weng Z, Sun H, Huey BD, Lai RY, Zhang Y. Multiplexed Monitoring of Neurochemicals via Electrografting-Enabled Site-Selective Functionalization of Aptamers on Field-Effect Transistors. Anal Chem 2022;94:8605-17. [PMID: 35678711 DOI: 10.1021/acs.analchem.1c05531] [Reference Citation Analysis]
8 Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li J, Liu Y, Yuan L, Zhang B, Bishop ES, Wang K, Tang J, Zheng YQ, Xu W, Niu S, Beker L, Li TL, Chen G, Diyaolu M, Thomas AL, Mottini V, Tok JB, Dunn JCY, Cui B, Pașca SP, Cui Y, Habtezion A, Chen X, Bao Z. A tissue-like neurotransmitter sensor for the brain and gut. Nature 2022;606:94-101. [PMID: 35650358 DOI: 10.1038/s41586-022-04615-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
10 Suriyaprakash J, Gupta N, Shan L, Wu L. Immobilized Molecules’ Impact on the Efficacy of Nanocarbon Organic Sensors for Ultralow Dopamine Detection in Biofluids. Adv Materials Technologies. [DOI: 10.1002/admt.202200099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Custers M, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022;14:1051. [DOI: 10.3390/pharmaceutics14051051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Sohrabi H, Arbabzadeh O, Falaki M, Majidi MR, Han N, Yoon Y, Khataee A. Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.113010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Ferapontova EE. Bioelectrochemical analysis of neurodegeneration: Refocusing efforts. Current Opinion in Electrochemistry 2022;32:100924. [DOI: 10.1016/j.coelec.2021.100924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zuo WM, Li YJ, Cui KY, Shen D, Zhang D, Zheng YW, Huang M, Wu Y, Shen XY, Wang LN, Ding GH. The real-time detection of acupuncture-induced extracellular ATP mobilization in acupoints and exploration of its role in acupuncture analgesia. Purinergic Signal 2022. [PMID: 35113324 DOI: 10.1007/s11302-021-09833-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Zeng H, Gao N, Yin Y, Zhang M. Recent progress in improving performance of in vivo electrochemical microsensor based on materials. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.100957] [Reference Citation Analysis]
16 Zheng Y, Hu D, Wu D, Hu K, Ren X, Qin L, Guo Z, Wang S, Hu Y, Ma S. Cascade i-motifs-dependent reversible electrochemical impedance strategy-oriented pH and terminal deoxynucleotidyl transferase biosensing. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Tan J, Li H, Ji C, Zhang L, Zhao C, Tang L, Zhang C, Sun Z, Tan W, Yuan Q. Electron transfer-triggered imaging of EGFR signaling activity. Nat Commun 2022;13:594. [PMID: 35105871 DOI: 10.1038/s41467-022-28213-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Alamry KA, Khan A, Hussein MA, Alfaifi SY. Sensitive electrochemical detection of toxic nitro-phenol in real environmental samples using enzymeless oxidized-carboxymethyl cellulose-sulfate/sulfated polyaniline composite based electrode. Microchemical Journal 2022;172:106902. [DOI: 10.1016/j.microc.2021.106902] [Reference Citation Analysis]
19 Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339461] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Guo J, Wei T, Huang Q, Li M, Yang C, Mou J, Shi L, Gao T, Li G. Direct acupuncture of nitric oxide by an electrochemical microsensor with high time-space resolution. Biosens Bioelectron 2022;195:113667. [PMID: 34598107 DOI: 10.1016/j.bios.2021.113667] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Suriyaprakash J, Bala K, Shan L, Wu L, Gupta N. Molecular Engineered Carbon-Based Sensor for Ultrafast and Specific Detection of Neurotransmitters. ACS Appl Mater Interfaces 2021;13:60878-93. [PMID: 34920668 DOI: 10.1021/acsami.1c18137] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
22 Weltin A, Kieninger J, Urban GA, Buchholz S, Arndt S, Rosskothen-Kuhl N. Standard cochlear implants as electrochemical sensors: Intracochlear oxygen measurements in vivo. Biosens Bioelectron 2021;199:113859. [PMID: 34911002 DOI: 10.1016/j.bios.2021.113859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
23 Godage NH, Olomukoro AA, Emmons RV, Gionfriddo E. In vivo analytical techniques facilitated by contemporary materials. TrAC Trends in Analytical Chemistry 2021;142:116290. [DOI: 10.1016/j.trac.2021.116290] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhang E, Galle L, Lochmann S, Grothe J, Kaskel S. Nanoporous carbon architectures for iontronics: Ion-based computing, logic circuits and biointerfacing. Chemical Engineering Journal 2021;420:130431. [DOI: 10.1016/j.cej.2021.130431] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Wang L, Chen J, Wang J, Li H, Chen C, Feng J, Guo Y, Yu H, Sun X, Peng H. Flexible dopamine-sensing fiber based on potentiometric method for long-term detection in vivo. Sci China Chem 2021;64:1763-9. [DOI: 10.1007/s11426-021-1039-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ganesana M, Venton BJ. Spontaneous, transient adenosine release is not enhanced in the CA1 region of hippocampus during severe ischemia models. J Neurochem 2021;159:887-900. [PMID: 34453336 DOI: 10.1111/jnc.15496] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Lai S, Vlamidis Y, Mishra N, Cosseddu P, Mišeikis V, Ricci PC, Voliani V, Coletti C, Bonfiglio A. A Flexible, Transparent Chemosensor Integrating an Inkjet‐Printed Organic Field‐Effect Transistor and a Non‐Covalently Functionalized Graphene Electrode. Adv Materials Technologies 2021;6:2100481. [DOI: 10.1002/admt.202100481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wang X, Xu T, Zhang Y, Gao N, Feng T, Wang S, Zhang M. In Vivo Detection of Redox-Inactive Neurochemicals in the Rat Brain with an Ion Transfer Microsensor. ACS Sens 2021;6:2757-62. [PMID: 34191484 DOI: 10.1021/acssensors.1c00978] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 dos Santos OAL, Sneha M, Devarani T, Bououdina M, Backx BP, Vijaya JJ, Bellucci S. Review—Perovskite/Spinel Based Graphene Derivatives Electrochemical and Biosensors. J Electrochem Soc 2021;168:067506. [DOI: 10.1149/1945-7111/ac0306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
30 Zhang Y, Jiang N, Yetisen AK. Brain neurochemical monitoring. Biosens Bioelectron 2021;189:113351. [PMID: 34049083 DOI: 10.1016/j.bios.2021.113351] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
31 Jing C, Chen H, Cai R, Tian Y, Zhou N. An electrochemical aptasensor for ATP based on a configuration-switchable tetrahedral DNA nanostructure. Anal Methods 2020;12:3285-9. [PMID: 32930192 DOI: 10.1039/d0ay00431f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Akande IG, Ajayi S, Fajobi MA, Oluwole OO, Fayomi OSI. Advancement in the Production and Applications of Conductive Polymers (CPs). KEM 2021;886:12-29. [DOI: 10.4028/www.scientific.net/kem.886.12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors (Basel) 2021;21:3038. [PMID: 33926034 DOI: 10.3390/s21093038] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Booth MA, Gowers SAN, Hersey M, Samper IC, Park S, Anikeeva P, Hashemi P, Stevens MM, Boutelle MG. Fiber-Based Electrochemical Biosensors for Monitoring pH and Transient Neurometabolic Lactate. Anal Chem 2021;93:6646-55. [PMID: 33797893 DOI: 10.1021/acs.analchem.0c05108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
35 Li Y, Tu L, Ma X, Chen H, Fan Y, Zhou Q, Sun Y. Engineering a Smart Nanofluidic Sensor for High-Performance Peroxynitrite Sensing through a Spirocyclic Ring Open/Close Reaction Strategy. ACS Sens 2021;6:808-14. [PMID: 33480688 DOI: 10.1021/acssensors.0c01719] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
36 Ji W, Liu K, Zhao G, Wu F, Jiang Y, Hou L, Zhang M, Mao L. Electrochemical Sensing of Ascorbate as an Index of Neuroprotection from Seizure Activity by Physical Exercise in Freely Moving Rats. ACS Sens 2021;6:546-52. [PMID: 33346640 DOI: 10.1021/acssensors.0c02326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Feng J, Chen C, Sun X, Peng H. Implantable Fiber Biosensors Based on Carbon Nanotubes. Acc Mater Res 2021;2:138-46. [DOI: 10.1021/accountsmr.0c00109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
38 Peng M, Zhao X, Wang C, Guan L, Li K, Gu C, Lin Y. In Situ Observation of Glucose Metabolism Dynamics of Endothelial Cells in Hyperglycemia with a Stretchable Biosensor: Research Tool for Bridging Diabetes and Atherosclerosis. Anal Chem 2021;93:1043-9. [PMID: 33296175 DOI: 10.1021/acs.analchem.0c03938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
39 Wang J, Wang L, Feng J, Tang C, Sun X, Peng H. Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Adv Fiber Mater 2021;3:47-58. [DOI: 10.1007/s42765-020-00061-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
40 Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020;11:4024-47. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
41 Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem 2020;132:22841-7. [DOI: 10.1002/ange.202010195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Zhou Y, Yin H, Zhao W, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coordination Chemistry Reviews 2020;424:213519. [DOI: 10.1016/j.ccr.2020.213519] [Cited by in Crossref: 19] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
43 Jin J, Ji W, Li L, Zhao G, Wu W, Wei H, Ma F, Jiang Y, Mao L. Electrochemically Probing Dynamics of Ascorbate during Cytotoxic Edema in Living Rat Brain. J Am Chem Soc 2020;142:19012-6. [PMID: 33108734 DOI: 10.1021/jacs.0c09011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
44 Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem Int Ed 2020;59:22652-8. [DOI: 10.1002/anie.202010195] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
45 Hou H, Jin Y, Wei H, Ji W, Xue Y, Hu J, Zhang M, Jiang Y, Mao L. A Generalizable and Noncovalent Strategy for Interfacing Aptamers with a Microelectrode for the Selective Sensing of Neurotransmitters In Vivo. Angew Chem Int Ed Engl 2020;59:18996-9000. [PMID: 32662903 DOI: 10.1002/anie.202008284] [Cited by in Crossref: 13] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
46 Hou H, Jin Y, Wei H, Ji W, Xue Y, Hu J, Zhang M, Jiang Y, Mao L. A Generalizable and Noncovalent Strategy for Interfacing Aptamers with a Microelectrode for the Selective Sensing of Neurotransmitters In Vivo. Angew Chem 2020;132:19158-62. [DOI: 10.1002/ange.202008284] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
47 Wei H, Li L, Jin J, Wu F, Yu P, Ma F, Mao L. Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain. Anal Chem 2020;92:10177-82. [PMID: 32600032 DOI: 10.1021/acs.analchem.0c02225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Lyu Y, Gan S, Bao Y, Zhong L, Xu J, Wang W, Liu Z, Ma Y, Yang G, Niu L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. Membranes (Basel) 2020;10:E128. [PMID: 32585903 DOI: 10.3390/membranes10060128] [Cited by in Crossref: 14] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]