BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rusling JF. Developing Microfluidic Sensing Devices Using 3D Printing. ACS Sens 2018;3:522-6. [PMID: 29490458 DOI: 10.1021/acssensors.8b00079] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Hlavatsch M, Haas J, Stach R, Kokoric V, Teuber A, Dinc M, Mizaikoff B. Infrared Spectroscopy–Quo Vadis? Applied Sciences 2022;12:7598. [DOI: 10.3390/app12157598] [Reference Citation Analysis]
2 dos Santos DM, Cardoso RM, Migliorini FL, Facure MH, Mercante LA, Mattoso LH, Correa DS. Advances in 3D printed sensors for food analysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116672] [Reference Citation Analysis]
3 Nguyen MTH, Kim SY, Jeong TH, Kim JH, Cho HS, Ha TH, Ahn SJ, Kim YH. Preparation and Stability of PEGDA/GO Conductive Materials by DLP 3D Printing. Electron Mater Lett . [DOI: 10.1007/s13391-022-00338-8] [Reference Citation Analysis]
4 Tsegay F, Elsherif M, Butt H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers 2022;14:1012. [DOI: 10.3390/polym14051012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zárybnická L, Ševčík R, Pokorný J, Machová D, Stránská E, Šál J. CaCO3 Polymorphs Used as Additives in Filament Production for 3D Printing. Polymers (Basel) 2022;14:199. [PMID: 35012221 DOI: 10.3390/polym14010199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Adye DR, Ponneganti S, Malakar TK, Radhakrishnanand P, Murty US, Banerjee S, Borkar RM. Extraction of small molecule from human plasma by prototyping 3D printed sorbent through extruded filament for LC-MS/MS analysis. Anal Chim Acta 2021;1187:339142. [PMID: 34753580 DOI: 10.1016/j.aca.2021.339142] [Reference Citation Analysis]
7 Sheng T, Xu M, Li Q, Wu Y, Zhang J, Liu J, Zhu X, Zhang Y. Elucidating the role of energy management in making brighter, and more colorful upconversion nanoparticles. Materials Today Physics 2021;20:100451. [DOI: 10.1016/j.mtphys.2021.100451] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
8 Weigel N, Männel MJ, Thiele J. Flexible Materials for High-Resolution 3D Printing of Microfluidic Devices with Integrated Droplet Size Regulation. ACS Appl Mater Interfaces 2021;13:31086-101. [PMID: 34176257 DOI: 10.1021/acsami.1c05547] [Reference Citation Analysis]
9 Rusling JF, Forster RJ. Biosensors Designed for Clinical Applications. Biomedicines 2021;9:702. [PMID: 34206405 DOI: 10.3390/biomedicines9070702] [Reference Citation Analysis]
10 Scott SM, Ali Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines (Basel) 2021;12:319. [PMID: 33803689 DOI: 10.3390/mi12030319] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 41.0] [Reference Citation Analysis]
11 Pezzana L, Riccucci G, Spriano S, Battegazzore D, Sangermano M, Chiappone A. 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System. Nanomaterials (Basel) 2021;11:373. [PMID: 33540598 DOI: 10.3390/nano11020373] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 8.0] [Reference Citation Analysis]
12 Tian X, Cai G, Zhi D, Fan K, Song ZL, Qiu B, Jia L, Gao R. A Transparent Vessel-on-a-Chip Device for Hemodynamic Analysis and Early Diagnosis of Intracranial Aneurysms by CFD and PC-MRI. ACS Sens 2020;5:4064-71. [PMID: 33289559 DOI: 10.1021/acssensors.0c02164] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Palmara G, Frascella F, Roppolo I, Chiappone A, Chiadò A. Functional 3D printing: Approaches and bioapplications. Biosens Bioelectron 2021;175:112849. [PMID: 33250333 DOI: 10.1016/j.bios.2020.112849] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
14 Pinheiro ND, Freire RT, Conrado JAM, Batista AD, da Silveira Petruci JF. Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments. Anal Chim Acta 2021;1143:1-8. [PMID: 33384106 DOI: 10.1016/j.aca.2020.11.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Sharafeldin M, Chen T, Ozkaya GU, Choudhary D, Molinolo AA, Gutkind JS, Rusling JF. Detecting cancer metastasis and accompanying protein biomarkers at single cell levels using a 3D-printed microfluidic immunoarray. Biosens Bioelectron 2021;171:112681. [PMID: 33096435 DOI: 10.1016/j.bios.2020.112681] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
16 de Oliveira FM, de Melo EI, da Silva RA. 3D Pen: A low-cost and portable tool for manufacture of 3D-printed sensors. Sensors and Actuators B: Chemical 2020;321:128528. [DOI: 10.1016/j.snb.2020.128528] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
17 Zhao J, Lu H, Zhao X, Malyi OI, Peng J, Lu C, Li X, Zhang Y, Zeng Z, Xing G, Tang Y. Printable Ink Design towards Customizable Miniaturized Energy Storage Devices. ACS Materials Lett 2020;2:1041-56. [DOI: 10.1021/acsmaterialslett.0c00176] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
18 Nesterenko PN. 3D printing in analytical chemistry: current state and future. Pure and Applied Chemistry 2020;92:1341-55. [DOI: 10.1515/pac-2020-0206] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
19 Zarybnicka L, Stranska E. Preparation of cation exchange filament for 3D membrane print. RPJ 2020;26:1435-45. [DOI: 10.1108/rpj-03-2019-0082] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Anjikar IS, Wales S, Beckingham LE. Fused Filament Fabrication 3‐D Printing of Reactive Porous Media. Geophys Res Lett 2020;47. [DOI: 10.1029/2020gl087665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
21 Li F, Ceballos MR, Balavandy SK, Fan J, Khataei MM, Yamini Y, Maya F. 3D Printing in analytical sample preparation. J Sep Sci 2020;43:1854-66. [PMID: 32056373 DOI: 10.1002/jssc.202000035] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
22 Zolfagharian A, Kaynak A, Kouzani A. Closed-loop 4D-printed soft robots. Materials & Design 2020;188:108411. [DOI: 10.1016/j.matdes.2019.108411] [Cited by in Crossref: 34] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
23 Marzo AML, Gusmão R, Sofer Z, Pumera M. Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chemistry 2020;26:6583-90. [PMID: 32017255 DOI: 10.1002/chem.201905245] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
24 López Marzo AM, Mayorga-Martinez CC, Pumera M. 3D-printed graphene direct electron transfer enzyme biosensors. Biosens Bioelectron 2020;151:111980. [PMID: 31999587 DOI: 10.1016/j.bios.2019.111980] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 15.7] [Reference Citation Analysis]
25 Han T, Kundu S, Nag A, Xu Y. 3D Printed Sensors for Biomedical Applications: A Review. Sensors (Basel) 2019;19:E1706. [PMID: 30974757 DOI: 10.3390/s19071706] [Cited by in Crossref: 61] [Cited by in F6Publishing: 19] [Article Influence: 20.3] [Reference Citation Analysis]
26 Kojic SP, Stojanovic GM, Radonic V. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization. Sensors (Basel) 2019;19:E1719. [PMID: 30974880 DOI: 10.3390/s19071719] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
27 Bagheri A, Jin J. Photopolymerization in 3D Printing. ACS Appl Polym Mater 2019;1:593-611. [DOI: 10.1021/acsapm.8b00165] [Cited by in Crossref: 355] [Cited by in F6Publishing: 221] [Article Influence: 118.3] [Reference Citation Analysis]
28 O'neil GD, Ahmed S, Halloran K, Janusz JN, Rodríguez A, Terrero Rodríguez IM. Single-step fabrication of electrochemical flow cells utilizing multi-material 3D printing. Electrochemistry Communications 2019;99:56-60. [DOI: 10.1016/j.elecom.2018.12.006] [Cited by in Crossref: 60] [Cited by in F6Publishing: 34] [Article Influence: 20.0] [Reference Citation Analysis]
29 Chen Z, Zhang Z, Guo X, Memon K, Panhwar F, Wang M, Cao Y, Zhao G. Sensing Cell Membrane Biophysical Properties for Detection of High Quality Human Oocytes. ACS Sens 2019;4:192-9. [PMID: 30584760 DOI: 10.1021/acssensors.8b01215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Gulyas M, Csiszer M, Mehes E, Czirok A. Software tools for cell culture-related 3D printed structures. PLoS One 2018;13:e0203203. [PMID: 30180178 DOI: 10.1371/journal.pone.0203203] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
31 de Cataldo R, Griffith KM, Fogarty KH. Hands-On Hybridization: 3D-Printed Models of Hybrid Orbitals. J Chem Educ 2018;95:1601-6. [DOI: 10.1021/acs.jchemed.8b00078] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
32 Sharafeldin M, Jones A, Rusling JF. 3D-Printed Biosensor Arrays for Medical Diagnostics. Micromachines (Basel) 2018;9:E394. [PMID: 30424327 DOI: 10.3390/mi9080394] [Cited by in Crossref: 40] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]