BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shitanda I, Fujimura Y, Takarada T, Suzuki R, Aikawa T, Itagaki M, Tsujimura S. Self-Powered Diaper Sensor with Wireless Transmitter Powered by Paper-Based Biofuel Cell with Urine Glucose as Fuel. ACS Sens 2021;6:3409-15. [PMID: 34264071 DOI: 10.1021/acssensors.1c01266] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Han HH, Jung S, Kim S, Lee G, Kim S, Kim Y, Hahn SK. Bimetallic Electrocatalyst of Hyaluronate-Au@Pt for Durable Oxygen Reduction in Biofuel Cells. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c02091] [Reference Citation Analysis]
2 Coria-oriundo LL, Herrera SE, Méndez De Leo LP, Battaglini F. Current Response Enhancement According to the Doping Anion’s Nature in Redox Polyelectrolyte─Enzyme Assemblies. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01300] [Reference Citation Analysis]
3 Shi Z, Li X, Shuai Y, Lu Y, Liu Q. The development of wearable technologies and their potential for measuring nutrient intake: Towards precision nutrition. Nutr Bull 2022. [PMID: 36134894 DOI: 10.1111/nbu.12581] [Reference Citation Analysis]
4 Shitanda I, Tsujimura S. Development of Wearable Biofuel Cell and Application to Health Monitoring Devices. IEEJ Journal 2022;142:572-575. [DOI: 10.1541/ieejjournal.142.572] [Reference Citation Analysis]
5 Fan S, Chang W, Fei C, Zhang Z, Hou B, Shi Z, Wang H, Hui Y. Stretchable and bendable textile matrix based on cellulose fibers for wearable self-powered glucose biosensors. Cellulose. [DOI: 10.1007/s10570-022-04820-2] [Reference Citation Analysis]
6 Loew N, Shitanda I, Goto H, Watanabe H, Mikawa T, Tsujimura S, Itagaki M. High-performance paper-based biocathode fabricated by screen-printing an improved mesoporous carbon ink and by oriented immobilization of bilirubin oxidase. Sci Rep 2022;12:14649. [PMID: 36030337 DOI: 10.1038/s41598-022-19052-4] [Reference Citation Analysis]
7 Ates HC, Nguyen PQ, Gonzalez-macia L, Morales-narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. [DOI: 10.1038/s41578-022-00460-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wu Y, Bakker E. Direct Energy Transfer from a pH Glass Electrode to a Liquid Crystal Display. Anal Chem 2022. [PMID: 35818788 DOI: 10.1021/acs.analchem.2c01557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Mirzajani H, Istif E, Abbasiasl T, Mirlou F, Özkahraman EE, Hasanreisoglu M, Beker L. Femtosecond Laser Ablation Assisted NFC Antenna Fabrication for Smart Contact Lenses. Adv Materials Technologies. [DOI: 10.1002/admt.202101629] [Reference Citation Analysis]
10 Izumi K, Yoshida Y, Ushijima H. New Wetness Sensor with an Energy Storage Structure and a Novel Battery-Less Wetness Detection System. Journal of Japan Institute of Electronics Packaging 2022;25:225-231. [DOI: 10.5104/jiep.jiep-d-21-00032] [Reference Citation Analysis]
11 Tiwari N, Chatterjee S, Kaswan K, Chung J, Fan K, Lin Z. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. Journal of Electroanalytical Chemistry 2022;907:116064. [DOI: 10.1016/j.jelechem.2022.116064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Hui Y, Wang H, Zuo W, Ma X. Spider nest shaped multi-scale three-dimensional enzymatic electrodes for glucose/oxygen biofuel cells. International Journal of Hydrogen Energy 2021. [DOI: 10.1016/j.ijhydene.2021.11.210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]