BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vaquer A, Barón E, de la Rica R. Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers. ACS Sens 2021;6:130-6. [PMID: 33371672 DOI: 10.1021/acssensors.0c01980] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu L, Zhang X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. Micromachines (Basel) 2022;13:1356. [PMID: 36014277 DOI: 10.3390/mi13081356] [Reference Citation Analysis]
2 Ates HC, Nguyen PQ, Gonzalez-macia L, Morales-narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. [DOI: 10.1038/s41578-022-00460-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Xu J, Tao X, Liu X, Yang L. Wearable Eye Patch Biosensor for Noninvasive and Simultaneous Detection of Multiple Biomarkers in Human Tears. Anal Chem . [DOI: 10.1021/acs.analchem.2c00614] [Reference Citation Analysis]
4 Li M, Xu J, Zheng Q, Guo C, Chen Y. Chemical-Based Surface Plasmon Resonance Imaging of Fingerprints. Anal Chem 2022. [PMID: 35549090 DOI: 10.1021/acs.analchem.2c00389] [Reference Citation Analysis]
5 Yang Q, Rosati G, Abarintos V, Aroca MA, Osma JF, Merkoçi A. Wearable and fully printed microfluidic nanosensor for sweat rate, conductivity, and copper detection with healthcare applications. Biosensors and Bioelectronics 2022;202:114005. [DOI: 10.1016/j.bios.2022.114005] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Wu W, Wang L, Yang Y, Du W, Ji W, Fang Z, Hou X, Wu Q, Zhang C, Li L. Optical flexible biosensors: From detection principles to biomedical applications. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Vaquer A, Barón E, de la Rica R. Dissolvable Polymer Valves for Sweat Chrono-Sampling in Wearable Paper-Based Analytical Devices. ACS Sens 2022;7:488-94. [PMID: 35172102 DOI: 10.1021/acssensors.1c02244] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ghoorchian A, Kamalabadi M, Moradi M, Madrakian T, Afkhami A, Bagheri H, Ahmadi M, Khoshsafar H. Wearable Potentiometric Sensor Based on Na0.44MnO2 for Non-invasive Monitoring of Sodium Ions in Sweat. Anal Chem 2022. [PMID: 35050594 DOI: 10.1021/acs.analchem.1c04960] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
9 Zhong B, Jiang K, Wang L, Shen G. Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. Adv Sci (Weinh) 2022;9:e2103257. [PMID: 34713981 DOI: 10.1002/advs.202103257] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
10 Du XJ, Chen Y, Qin LY, Luo HQ, Li NB, Li BL. Plasmonic Gold Nanoparticles Stain Hydrogels for the Portable and High-Throughput Monitoring of Mercury Ions. Environ Sci Technol 2021. [PMID: 34964603 DOI: 10.1021/acs.est.1c07217] [Reference Citation Analysis]
11 Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021;27:165. [PMID: 35011400 DOI: 10.3390/molecules27010165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Heng W, Yang G, Kim WS, Xu K. Emerging wearable flexible sensors for sweat analysis. Bio-des Manuf . [DOI: 10.1007/s42242-021-00171-2] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
13 Zhang YD, Shi YP. Colorimetric detection of human alpha-2-macroglobulin by janus imprinted nanoparticles constructed dual molecular imprinting immunosandwich strategy. Anal Chim Acta 2021;1184:339039. [PMID: 34625267 DOI: 10.1016/j.aca.2021.339039] [Reference Citation Analysis]
14 Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA Jr, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021;6:2787-801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 19.0] [Reference Citation Analysis]
15 Zheng Y, Tang N, Omar R, Hu Z, Duong T, Wang J, Wu W, Haick H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Adv Funct Materials 2021;31:2105482. [DOI: 10.1002/adfm.202105482] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
16 Vaquer A, Barón E, de la Rica R. Detection of low glucose levels in sweat with colorimetric wearable biosensors. Analyst 2021;146:3273-9. [PMID: 33999074 DOI: 10.1039/d1an00283j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]