BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wei X, Wang X, Gao B, Zou W, Dong L. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS Omega 2020;5:5748-55. [PMID: 32226853 DOI: 10.1021/acsomega.9b03787] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Tang J, Ma Y, Zeng C, Yang L, Cui S, Zhi S, Yang F, Ding Y, Zhang K, Zhang Z. Fe-Al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. Bioresour Technol 2023;369:128385. [PMID: 36423760 DOI: 10.1016/j.biortech.2022.128385] [Reference Citation Analysis]
2 Kagdada HL, Bhojani AK, Singh DK. An Overview of Nanomaterials: History, Fundamentals, and Applications. Nanomaterials 2023. [DOI: 10.1007/978-981-19-7963-7_1] [Reference Citation Analysis]
3 Srividya D, Seema JP, Prabhurajeshwar, Navya H. Microbial metallonanoparticles—an alternative to traditional nanoparticle synthesis. Environmental Applications of Microbial Nanotechnology 2023. [DOI: 10.1016/b978-0-323-91744-5.00019-9] [Reference Citation Analysis]
4 Zayed MF, El hotaby W, Eisa WH. Glycyrrhiza glabra bio-inspire the growth of monodispersed iron oxalate nanoparticles: A sustainable catalyst for dyes degradation. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.135484] [Reference Citation Analysis]
5 Altintas Yildirim O, Pehlivan E. Removal of methylene blue using a novel generation photocatalyst based on nano-SnO2/wild plumb kernel shell biochar composite. Journal of Dispersion Science and Technology 2022. [DOI: 10.1080/01932691.2022.2144878] [Reference Citation Analysis]
6 Szczęśniak B, Głowniak S, Choma J, Jaroniec M. Mesoporous carbon-alumina composites, aluminas and carbons prepared via a facile ball milling-assisted strategy. Microporous and Mesoporous Materials 2022. [DOI: 10.1016/j.micromeso.2022.112325] [Reference Citation Analysis]
7 Kumar A, Bhattacharya T, Shaikh WA, Chakraborty S, Sarkar D, Biswas JK. Biochar Modification Methods for Augmenting Sorption of Contaminants. Curr Pollution Rep. [DOI: 10.1007/s40726-022-00238-3] [Reference Citation Analysis]
8 Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. Chemosphere 2022. [DOI: 10.1016/j.chemosphere.2022.136989] [Reference Citation Analysis]
9 Luo Y, Zheng A, Xue M, Xie Y, Yu S, Yin Z, Xie C, Hong Z, Tan W, Zou W, Dong L, Gao B. Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: Kinetics and mechanisms. Industrial Crops and Products 2022;186:115229. [DOI: 10.1016/j.indcrop.2022.115229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Das R, Panda SN. Preparation and applications of biochar based nanocomposite: A review. Journal of Analytical and Applied Pyrolysis 2022;167:105691. [DOI: 10.1016/j.jaap.2022.105691] [Reference Citation Analysis]
11 Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. Critical Reviews in Environmental Science and Technology. [DOI: 10.1080/10643389.2022.2128194] [Reference Citation Analysis]
12 Joy J, Krishnamoorthy A, Tanna A, Kamathe V, Nagar R, Srinivasan S. Recent Developments on the Synthesis of Nanocomposite Materials via Ball Milling Approach for Energy Storage Applications. Applied Sciences 2022;12:9312. [DOI: 10.3390/app12189312] [Reference Citation Analysis]
13 Amusat SO, Kebede TG, Nxumalo EN, Dube S, Nindi MM. Incorporating pristine biochar into metal-organic frameworks: Facile green synthesis, characterization, and wastewater remediation. Bioresource Technology Reports 2022;19:101160. [DOI: 10.1016/j.biteb.2022.101160] [Reference Citation Analysis]
14 Lee DN, Kim YR, Yang S, Tran NM, Park BJ, Lee SJ, Kim Y, Yoo H, Kim SJ, Shin JH. Controllable Nitric Oxide Storage and Release in Cu-BTC: Crystallographic Insights and Bioactivity. Int J Mol Sci 2022;23:9098. [PMID: 36012363 DOI: 10.3390/ijms23169098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 A Al-khateeb L, Hakami W, Abdel Salam M, A.sanari J, El-shaheny R, El-maghrabey M. Solid phase-fabrication of magnetically separable Fe3O4@graphene nanoplatelets nanocomposite for efficient removal of NSAIDs from wastewater. Perception of adsorption kinetics, thermodynamics, and extra-thermodynamics. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340158] [Reference Citation Analysis]
16 Xu S, Li D, Guo H, Lu H, Qiu M, Yang J, Shen F. Solvent-Free Synthesis of MgO-Modified Biochars for Phosphorus Removal from Wastewater. IJERPH 2022;19:7770. [DOI: 10.3390/ijerph19137770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ashraf W, Khan A, Bansal S, Khanuja M. Mechanical ball milling: A sustainable route to induce structural transformations in tungsten disulfide for its photocatalytic applications. Physica E: Low-dimensional Systems and Nanostructures 2022;140:115152. [DOI: 10.1016/j.physe.2022.115152] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Ghosh N, Das S, Biswas G, Haldar PK. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment. Water Sci Technol 2022;85:3370-95. [PMID: 35771052 DOI: 10.2166/wst.2022.153] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Luo Y, Han Y, Xue M, Xie Y, Yin Z, Xie C, Li X, Zheng Y, Huang J, Zhang Y, Yang Y, Gao B. Ball-milled bismuth oxybromide/biochar composites with enhanced removal of reactive red owing to the synergy between adsorption and photodegradation. Journal of Environmental Management 2022;308:114652. [DOI: 10.1016/j.jenvman.2022.114652] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale 2022;14:3987-4017. [PMID: 35244647 DOI: 10.1039/d1nr07643d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chen N, Pilla S. A comprehensive review on transforming lignocellulosic materials into biocarbon and its utilization for composites applications. Composites Part C: Open Access 2022;7:100225. [DOI: 10.1016/j.jcomc.2021.100225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022;300:102597. [PMID: 34979471 DOI: 10.1016/j.cis.2021.102597] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 36.0] [Reference Citation Analysis]
23 Wang J, Cai J, Wang S, Zhou X, Ding X, Ali J, Zheng L, Wang S, Yang L, Xi S, Wang M, Chen Z. Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species. Chemical Engineering Journal 2022;428:131233. [DOI: 10.1016/j.cej.2021.131233] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
24 Babar ZB, Shahi A, Rauf A, Sattar H, Rizwan K. Organic–Inorganic Nanohybrids for the Removal of Environmental Pollutants. Materials Horizons: From Nature to Nanomaterials 2022. [DOI: 10.1007/978-981-19-4538-0_13] [Reference Citation Analysis]
25 Azam MA, Mupit M. Carbon nanomaterial-based sensor: Synthesis and characterization. Carbon Nanomaterials-Based Sensors 2022. [DOI: 10.1016/b978-0-323-91174-0.00015-9] [Reference Citation Analysis]
26 Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HMN. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. J Environ Manage 2021;300:113762. [PMID: 34543967 DOI: 10.1016/j.jenvman.2021.113762] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
27 Feng K, Xu Z, Gao B, Xu X, Zhao L, Qiu H, Cao X. Mesoporous ball-milling iron-loaded biochar for enhanced sorption of reactive red: Performance and mechanisms. Environ Pollut 2021;290:117992. [PMID: 34418859 DOI: 10.1016/j.envpol.2021.117992] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Wei X, Yu F, Ji J, Cai Y, Zou W, Zheng Y, Huang J, Zhang Y, Yang Y, Naushad M, Gao B, Dong L. Porous biochar supported Ag3PO4 photocatalyst for “two-in-one” synergistic adsorptive-photocatalytic removal of methylene blue under visible light irradiation. Journal of Environmental Chemical Engineering 2021;9:106753. [DOI: 10.1016/j.jece.2021.106753] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Wei X, Wang X, Pu Y, Liu A, Chen C, Zou W, Zheng Y, Huang J, Zhang Y, Yang Y, Naushad M, Gao B, Dong L. Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms. Chemical Engineering Journal 2021;420:127719. [DOI: 10.1016/j.cej.2020.127719] [Cited by in Crossref: 65] [Cited by in F6Publishing: 80] [Article Influence: 32.5] [Reference Citation Analysis]
30 Chausali N, Saxena J, Prasad R. Nanobiochar and biochar based nanocomposites: Advances and applications. Journal of Agriculture and Food Research 2021;5:100191. [DOI: 10.1016/j.jafr.2021.100191] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
31 Cui S, Zhang R, Peng Y, Gao X, Li Z, Fan B, Guan C, Beiyuan J, Zhou Y, Liu J, Chen Q, Sheng J, Guo L. New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption. Journal of Hazardous Materials 2021;416:126258. [DOI: 10.1016/j.jhazmat.2021.126258] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
32 Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Hussain I, Saravanan R, Vo DN. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere 2021;286:131651. [PMID: 34346345 DOI: 10.1016/j.chemosphere.2021.131651] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 18.5] [Reference Citation Analysis]
33 Amusat SO, Kebede TG, Dube S, Nindi MM. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering 2021;41:101993. [DOI: 10.1016/j.jwpe.2021.101993] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 16.5] [Reference Citation Analysis]
34 Adeyeye SAO, Ashaolu TJ. Applications of nano‐materials in food packaging: A review. J Food Process Eng 2021;44. [DOI: 10.1111/jfpe.13708] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Xiao Y, Lyu H, Yang C, Zhao B, Wang L, Tang J. Graphitic carbon nitride/biochar composite synthesized by a facile ball-milling method for the adsorption and photocatalytic degradation of enrofloxacin. J Environ Sci (China) 2021;103:93-107. [PMID: 33743922 DOI: 10.1016/j.jes.2020.10.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
36 Yu F, Tian F, Zou H, Ye Z, Peng C, Huang J, Zheng Y, Zhang Y, Yang Y, Wei X, Gao B. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J Hazard Mater 2021;415:125511. [PMID: 33740715 DOI: 10.1016/j.jhazmat.2021.125511] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 24.0] [Reference Citation Analysis]
37 Khataee A, Kalderis D, Motlagh PY, Binas V, Stefa S, Konsolakis M. Synthesis of copper (I, II) oxides/hydrochar nanocomposites for the efficient sonocatalytic degradation of organic contaminants. Journal of Industrial and Engineering Chemistry 2021;95:73-82. [DOI: 10.1016/j.jiec.2020.12.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
38 Gautam A, Komal P, Gautam P, Sharma A, Kumar N, Jung JP. Recent Trends in Noble Metal Nanoparticles for Colorimetric Chemical Sensing and Micro-Electronic Packaging Applications. Metals 2021;11:329. [DOI: 10.3390/met11020329] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
39 Gurav R, Bhatia SK, Choi T, Choi Y, Kim HJ, Song H, Lee SM, Lee Park S, Lee HS, Koh J, Jeon J, Yoon J, Yang Y. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere 2021;264:128539. [DOI: 10.1016/j.chemosphere.2020.128539] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 25.0] [Reference Citation Analysis]
40 Alghuthaymi MA, C R, P R, Kalia A, Bhardwaj K, Bhardwaj P, Abd-Elsalam KA, Valis M, Kuca K. Nanohybrid Antifungals for Control of Plant Diseases: Current Status and Future Perspectives. J Fungi (Basel) 2021;7:48. [PMID: 33450851 DOI: 10.3390/jof7010048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
41 Tayibi S, Monlau F, Fayoud NE, Abdeljaoued E, Hannache H, Zeroual Y, Oukarroum A, Barakat A. Production and Dry Mechanochemical Activation of Biochars Derived from Moroccan Red Macroalgae Residue and Olive Pomace Biomass for Treating Wastewater: Thermodynamic, Isotherm, and Kinetic Studies. ACS Omega 2021;6:159-71. [PMID: 33458468 DOI: 10.1021/acsomega.0c04020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
42 Karthigadevi G, Manikandan S, Karmegam N, Subbaiya R, Chozhavendhan S, Ravindran B, Chang SW, Awasthi MK. Chemico-nanotreatment methods for the removal of persistent organic pollutants and xenobiotics in water - A review. Bioresour Technol 2021;324:124678. [PMID: 33461128 DOI: 10.1016/j.biortech.2021.124678] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
43 Turunç E, Akay S, Baran T, Kalderis D, Tsubota T, Kayan B. An easily fabricated palladium nanocatalyst on magnetic biochar for Suzuki–Miyaura and aryl halide cyanation reactions. New J Chem 2021;45:12519-27. [DOI: 10.1039/d1nj00941a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
44 Pandey D, Singh S, Dutta K, Daverey A, Arunachalam K. Biochar-Based Nanocomposites: A Sustainable Solution for Water and Wastewater Treatment. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-61985-5_22] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Kumar M, Xiong X, Wan Z, Sun Y, Tsang DC, Gupta J, Gao B, Cao X, Tang J, Ok YS. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology 2020;312:123613. [DOI: 10.1016/j.biortech.2020.123613] [Cited by in Crossref: 142] [Cited by in F6Publishing: 113] [Article Influence: 47.3] [Reference Citation Analysis]
46 Chaudhary P, Fatima F, Kumar A. Relevance of Nanomaterials in Food Packaging and its Advanced Future Prospects. J Inorg Organomet Polym Mater 2020;:1-13. [PMID: 32837459 DOI: 10.1007/s10904-020-01674-8] [Cited by in Crossref: 57] [Cited by in F6Publishing: 63] [Article Influence: 19.0] [Reference Citation Analysis]