BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pendola M, Davidyants A, Jung YS, Evans JS. Sea Urchin Spicule Matrix Proteins Form Mesoscale "Smart" Hydrogels That Exhibit Selective Ion Interactions. ACS Omega 2017;2:6151-8. [PMID: 31457861 DOI: 10.1021/acsomega.7b00719] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Jain G, Pendola M, Koutsoumpeli E, Johnson S, Evans JS. Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization. Biochemistry 2018;57:3032-5. [PMID: 29757633 DOI: 10.1021/acs.biochem.8b00207] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
2 Pendola M, Jain G, Huang YC, Gebauer D, Evans JS. Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation. ACS Omega 2018;3:11823-30. [PMID: 30320276 DOI: 10.1021/acsomega.8b01697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
3 Jain G, Pendola M, Huang Y, Gebauer D, Koutsoumpeli E, Johnson S, Evans JS. Selective Synergism Created by Interactive Nacre Framework-Associated Proteins Possessing EGF and vWA Motifs: Implications for Mollusk Shell Formation. Biochemistry 2018;57:2657-66. [DOI: 10.1021/acs.biochem.8b00119] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
4 Pendola M, Evans JS. Noninvasive Microcomputerized X-ray Tomography Visualization of Mineralization Directed by Sea Urchin- and Nacre-Specific Proteins. Crystal Growth & Design 2018;18:1768-75. [DOI: 10.1021/acs.cgd.7b01668] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Pendola M, Jain G, Evans JS. Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains. PLoS One 2019;14:e0222068. [PMID: 31574084 DOI: 10.1371/journal.pone.0222068] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Juan-Colas J, Jung YS, Johnson S, Evans JS. A Complicated Relationship: Glycosylation, Ca(II), and Primary Sequence Affect the Interactions and Kinetics between Two Model Mollusk Shell Intracrystalline Nacre Proteins. Biochemistry 2020;59:346-50. [PMID: 31868354 DOI: 10.1021/acs.biochem.9b00867] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Pendola M, Evans JS. Insights into Mollusk Shell Formation: Interlamellar and Lamellar-Specific Nacre Protein Hydrogels Differ in Ion Interaction Signatures. J Phys Chem B 2018;122:1161-8. [DOI: 10.1021/acs.jpcb.7b10915] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
8 Gildor T, Winter MR, Layous M, Hijaze E, Ben-Tabou de-Leon S. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue. J Struct Biol 2021;213:107797. [PMID: 34530133 DOI: 10.1016/j.jsb.2021.107797] [Reference Citation Analysis]