BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vashisth P, Kar N, Gupta D, Bellare JR. Three Dimensional Quercetin-Functionalized Patterned Scaffold: Development, Characterization, and In Vitro Assessment for Neural Tissue Engineering. ACS Omega 2020;5:22325-34. [PMID: 32923790 DOI: 10.1021/acsomega.0c02678] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Visser ZB, Verma SK, Rainey JK, Frampton JP. Loading and Release of Quercetin from Contact-Drawn Polyvinyl Alcohol Fiber Scaffolds. ACS Pharmacol Transl Sci 2022. [DOI: 10.1021/acsptsci.2c00191] [Reference Citation Analysis]
2 Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Adv Sci (Weinh) 2022;9:e2103875. [PMID: 35182046 DOI: 10.1002/advs.202103875] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
3 Behtaj S, Ekberg JAK, St John JA. Advances in Electrospun Nerve Guidance Conduits for Engineering Neural Regeneration. Pharmaceutics 2022;14:219. [DOI: 10.3390/pharmaceutics14020219] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
4 Pramanik S, Muthuvijayan V. Electrospun Nanofibrous Scaffolds for Neural Tissue Engineering. Advances in Polymer Science 2022. [DOI: 10.1007/12_2022_130] [Reference Citation Analysis]
5 Liu C, Wang Z, Yao X, Wang M, Huang Z, Li X. Sustained Biochemical Signaling and Contact Guidance by Electrospun Bicomponents as Promising Scaffolds for Nerve Tissue Regeneration. ACS Omega 2021;6:33010-7. [PMID: 34901652 DOI: 10.1021/acsomega.1c05117] [Reference Citation Analysis]
6 Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021;135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
7 Shen H, Zhang J, Guo C, Gao X, Chen J, Chang C, Han X, Wang L. Characterization and optimization of hydrothermal extraction of quercetin from Quercus leaves using response surface methodology. Can J Chem Eng 2022;100:598-606. [DOI: 10.1002/cjce.24196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Raj Preeth D, Saravanan S, Shairam M, Selvakumar N, Selestin Raja I, Dhanasekaran A, Vimalraj S, Rajalakshmi S. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci 2021;160:105768. [PMID: 33607242 DOI: 10.1016/j.ejps.2021.105768] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
9 Vigani B, Valentino C, Cavalloro V, Catenacci L, Sorrenti M, Sandri G, Bonferoni MC, Bozzi C, Collina S, Rossi S, Ferrari F. Gellan-Based Composite System as a Potential Tool for the Treatment of Nervous Tissue Injuries: Cross-Linked Electrospun Nanofibers Embedded in a RC-33-Loaded Freeze-Dried Matrix. Pharmaceutics 2021;13:164. [PMID: 33530643 DOI: 10.3390/pharmaceutics13020164] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Kyrylenko S, Kornienko V, Gogotsi O, Oleshko O, Kolesnyk M, Mishchenko O, Zahorodna V, Buranich V, Pogrebnjak A, Zozulia Y, Balitskyi V, Pogorielov M, Baginskiy I. Bio-functionalization of Electrospun Polymeric Nanofibers by Ti3C2Tx MXene. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP) 2020. [DOI: 10.1109/nap51477.2020.9309612] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]