BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cai Y, Liang P, Tang Q, Yang X, Si W, Huang W, Zhang Q, Dong X. Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy. ACS Nano 2017;11:1054-63. [PMID: 28033465 DOI: 10.1021/acsnano.6b07927] [Cited by in Crossref: 290] [Cited by in F6Publishing: 303] [Article Influence: 48.3] [Reference Citation Analysis]
Number Citing Articles
1 Sun W, Wang X, Cheng Z, Wang X, Fan N, Dong P, Tong MQ, Liu Y, Sun W. Phototheranostics for NIR fluorescence image guided PDT/PTT with extended conjugation and enhanced TICT. Biomed Pharmacother 2023;158:114071. [PMID: 36525820 DOI: 10.1016/j.biopha.2022.114071] [Reference Citation Analysis]
2 Pecourneau J, Losantos R, Gansmuller A, Parant S, Bernhard Y, Mourer M, Monari A, Pasc A. Tuning the competition between photoisomerization and photothermy in biomimetic cyclocurcumin analogues. Journal of Photochemistry and Photobiology A: Chemistry 2023. [DOI: 10.1016/j.jphotochem.2023.114583] [Reference Citation Analysis]
3 Cai Y, Pan Y, Liu L, Zhang T, Liang C, Mou X, Ye X, Wang W, Dong X. Succinct croconic acid-based near-infrared functional materials for biomedical applications. Coordination Chemistry Reviews 2023;474:214865. [DOI: 10.1016/j.ccr.2022.214865] [Reference Citation Analysis]
4 Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. Chem Rec 2023;23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Reference Citation Analysis]
5 Wang B, Hu X, Sun F, Yang Z, Huang W. Advanced strategic constructions of diketopyrrolopyrrole derivatives‐based organic semiconducting phototheranostics. Interdisciplinary Medicine 2022. [DOI: 10.1002/inmd.20220010] [Reference Citation Analysis]
6 Zhang X, Zhang Y, Wang N, Shen Y, Chen Q, Han L, Hu B. Photothermal Nanoheaters-Modified Spores for Safe and Controllable Antitumor Therapy. Int J Nanomedicine 2022;17:6399-412. [PMID: 36545219 DOI: 10.2147/IJN.S385269] [Reference Citation Analysis]
7 Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS Omega 2022;7:45882-909. [PMID: 36570217 DOI: 10.1021/acsomega.2c05852] [Reference Citation Analysis]
8 Chen L, Li X, Xiong M, Zhao Y, Liu S, Li C, Wang K. Development of novel nanoporphyrin biomaterials for NIR-II activated photothermal therapy against tumor in vivo. Materials & Design 2022. [DOI: 10.1016/j.matdes.2022.111532] [Reference Citation Analysis]
9 An L, Zheng L, Xu C, Zhao Z, Gao F, Wang W, Ou C, Dong X. Organic Charge‐Transfer Complexes for Near‐Infrared‐Triggered Photothermal Materials. Small Structures 2022. [DOI: 10.1002/sstr.202200220] [Reference Citation Analysis]
10 Liu B, Feng W, Ge J, Liu Z, Feng S, Chen Z, Bo S. Organic nanomedicine containing nonlinear optical chromophores for ultrastable photo-to-heat converting theranostics in the near-infrared window. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110962] [Reference Citation Analysis]
11 Kong C, Xu B, Qiu G, Wei M, Zhang M, Bao S, Tang J, Li L, Liu J. Multifunctional Nanoparticles-Mediated PTT/PDT Synergistic Immune Activation and Antitumor Activity Combined with Anti-PD-L1 Immunotherapy for Breast Cancer Treatment. IJN 2022;Volume 17:5391-5411. [DOI: 10.2147/ijn.s373282] [Reference Citation Analysis]
12 Shi Y, Zhu D, Wang D, Liu B, Du X, Wei G, Zhou X. Recent advances of smart AIEgens for photoacoustic imaging and phototherapy. Coordination Chemistry Reviews 2022;471:214725. [DOI: 10.1016/j.ccr.2022.214725] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Maki T, Zhou Z, Irie Y, Matsunaga T, Onodera T, Imamichi S, Sasaki Y, Masutani M, Otaki H, Sakuda E, Tanaka Y, Murota H. Singlet-oxygen photosensitizers with a tetrad structure and a single BODIPY chromophore: An evidence for transition state stabilization of intersystem crossing. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110963] [Reference Citation Analysis]
14 Maroń AM, Cannelli O, Socie EC, Lodowski P, Machura B. Push-Pull Effect of Terpyridine Substituted by Triphenylamine Motive—Impact of Viscosity, Polarity and Protonation on Molecular Optical Properties. Molecules 2022;27:7071. [DOI: 10.3390/molecules27207071] [Reference Citation Analysis]
15 Huang Y, Liu K, Ni H, Zhang R, Liu X, Fan Q, Wang L, Huang W. Organic Theranostic Nanoplatform with Enhanced Fluorescence and Singlet Oxygen Quantum Yield for Tumor-Targeting Image-Guided Photodynamic/Photothermal Synergistic Therapy. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01297] [Reference Citation Analysis]
16 Ponzio RA, Ibarra LE, Achilli EE, Odella E, Chesta CA, Martínez SR, Palacios RE. Sweet light o' mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. Journal of Photochemistry and Photobiology B: Biology 2022;234:112510. [DOI: 10.1016/j.jphotobiol.2022.112510] [Reference Citation Analysis]
17 Liang H, Tang L, He J, Li J, Chen Z, Cai S, Pang J, Mahmood Z, Chen W, Li MD, Zhao Z, Huo Y, Ji S. Modulating the intersystem crossing mechanism of anthracene carboxyimide-based photosensitizers via structural adjustments and application as a potent photodynamic therapeutic reagent. Phys Chem Chem Phys 2022. [PMID: 36047252 DOI: 10.1039/d2cp02897b] [Reference Citation Analysis]
18 Xu N, Zhang X, Qi T, Wu Y, Xie X, Chen F, Shao D, Liao J. Biomedical applications and prospects of temperature‐orchestrated photothermal therapy. MedComm – Biomaterials and Applications 2022;1. [DOI: 10.1002/mba2.25] [Reference Citation Analysis]
19 Liu B, Feng W, Ge J, Liu Z, Feng S, Chen Z, Bo S. Organic Nanomedicine Containing Nonlinear Optical Chromophores for Ultrastable Photo-to-Heat Converting Theranostics in the Near-Infrared Window.. [DOI: 10.21203/rs.3.rs-1970104/v1] [Reference Citation Analysis]
20 Jiang X, Luo Z, Zhang B, Li P, Xiao J, Su W. Moderate microwave-assisted preparation of phthalocyanine-based carbon quantum dots for improved photo-inactivation of bacteria. Inorganic Chemistry Communications 2022;142:109543. [DOI: 10.1016/j.inoche.2022.109543] [Reference Citation Analysis]
21 Li B, Lu X, Tian Y, Li D. Embedding Multiphoton Active Units within Metal–Organic Frameworks for Turning on High‐Order Multiphoton Excited Fluorescence for Bioimaging. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202206755] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Choi M, Kim G, Seitkazina A, Kim S, Yoon WS, Kwon JE, Kim S, Park SY. A novel fluorescent bis-lactam scaffold presenting high photostability and brightness. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110699] [Reference Citation Analysis]
23 Yao S, Chen Y, Xu H, Qi F, Zhang Y, Yang T, Wu Y, Fang H, He W, Guo Z. Hypoxia-responsive near infrared thioxanthene-hemicyanine nanoparticle for multimodal imaging-guided photothermal/photodynamic therapy. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110583] [Reference Citation Analysis]
24 Yue H, Ming S, Du H, Zhao J, Zhang Y. Achieving the gray to transparent switching electrochromic properties based on the diketopyrrolopyrrole, 3,4-propylenedioxythiophene and thieno[3,2-b]thiophene units. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111395] [Reference Citation Analysis]
25 Chen H, Yu L, Gong C, Huang Y, Wang L, Du X, Li Z, Liu J, Zhao X, Deng G. Nanogel loading 808 nm laser-activated organic dyes with a special D− π − a structure and the regulation of their photothermal property by non-conjugated modification. Sensors and Actuators B: Chemical 2022;362:131817. [DOI: 10.1016/j.snb.2022.131817] [Reference Citation Analysis]
26 Zhu K, Qian S, Guo H, Wang Q, Chu X, Wang X, Lu S, Peng Y, Guo Y, Zhu Z, Qin T, Liu B, Yang YW, Wang B. pH-Activatable Organic Nanoparticles for Efficient Low-Temperature Photothermal Therapy of Ocular Bacterial Infection. ACS Nano 2022. [PMID: 35749223 DOI: 10.1021/acsnano.2c03971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Kyrylenko S, Gogotsi O, Baginskiy I, Balitskyi V, Zahorodna V, Husak Y, Yanko I, Pernakov M, Roshchupkin A, Lyndin M, Singer BB, Buranych V, Pogrebnjak A, Sulaieva O, Solodovnyk O, Gogotsi Y, Pogorielov M. MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Appl Mater Interfaces 2022. [PMID: 35704779 DOI: 10.1021/acsami.2c08678] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022;20:257. [PMID: 35658974 DOI: 10.1186/s12951-022-01449-y] [Reference Citation Analysis]
29 Du T, Xiao Z, Cao J, Wei L, Li C, Jiao J, Song Z, Liu J, Du X, Wang S. NIR-activated multi-hit therapeutic Ag2S quantum dot-based hydrogel for healing of bacteria-infected wounds. Acta Biomater 2022;145:88-105. [PMID: 35429669 DOI: 10.1016/j.actbio.2022.04.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhang M, Wang L, Liu H, Wang Z, Feng W, Jin H, Liu S, Lan S, Liu Y, Zhang H. Copper Ion and Ruthenium Complex Codoped Polydopamine Nanoparticles for Magnetic Resonance/Photoacoustic Tomography Imaging-Guided Photodynamic/Photothermal Dual-Mode Therapy. ACS Appl Bio Mater 2022. [PMID: 35507759 DOI: 10.1021/acsabm.2c00212] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Zeng W, Li Z, Chen H, Zeng X, Mei L. An optimal portfolio of photothermal combined immunotherapy. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100898] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yang K, Long F, Liu W, Zhang Z, Zhao S, Wang B, Zou Y, Lan M, Yuan J, Song X, Lin C. A-DA'D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy. ACS Appl Mater Interfaces 2022;14:18043-52. [PMID: 35420773 DOI: 10.1021/acsami.1c22444] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
33 Ma Q, Sun X, Wang W, Yang D, Yang C, Shen Q, Shao J. Diketopyrrolopyrrole‐derived organic small molecular dyes for tumor phototheranostics. Chinese Chemical Letters 2022;33:1681-92. [DOI: 10.1016/j.cclet.2021.10.054] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 36.0] [Reference Citation Analysis]
34 Yin L, Wang Z, Wu Q, Liu L, Zhang N, Xie Z, Zhu G. Water-Dispersible Porous Aromatic Frameworks with Quasi-Amino Acid Structures via N-H Insertion Reactions. ACS Nano 2022. [PMID: 35349273 DOI: 10.1021/acsnano.2c00007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Feng L, Li C, Liu L, Wang Z, Chen Z, Yu J, Ji W, Jiang G, Zhang P, Wang J, Tang BZ. Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy via Type I PDT and PTT. ACS Nano 2022;16:4162-74. [PMID: 35230081 DOI: 10.1021/acsnano.1c10019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
36 Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022;20:139. [PMID: 35300712 DOI: 10.1186/s12951-022-01243-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Lin L, Song C, Wei Z, Zou H, Han S, Cao Z, Zhang X, Zhang G, Ran J, Cai Y, Han W. Multifunctional photodynamic/photothermal nano-agents for the treatment of oral leukoplakia. J Nanobiotechnology 2022;20:106. [PMID: 35246146 DOI: 10.1186/s12951-022-01310-2] [Reference Citation Analysis]
38 I. V. Ramos C, A. S. Almodôvar V, Candeias N, Santos T, Cruz C, Graça P. M. S. Neves M, Tomé AC. Diketopyrrolo[3,4–c]pyrrole derivative as a promising ligand for the stabilization of G-quadruplex DNA structures. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.105703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Mu X, Wu F, Tang Y, Wang R, Li Y, Li K, Li C, Lu Y, Zhou X, Li Z. Boost photothermal theranostics via self‐assembly‐induced crystallization (SAIC). Aggregate. [DOI: 10.1002/agt2.170] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Tan Y, Liu P, Li D, Wang D, Tang BZ. NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors (Basel) 2022;12:46. [PMID: 35049674 DOI: 10.3390/bios12010046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Li C, Luo Z, Yang L, Chen J, Cheng K, Xue Y, Liu G, Luo X, Wu F. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Mater Today Bio 2022;13:100198. [PMID: 35024599 DOI: 10.1016/j.mtbio.2021.100198] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
42 Yue L, Li H, Sun Q, Luo X, Wu F, Zhu X. Organic Nanoparticles Based on D-A-D Small Molecule: Self-Assembly, Photophysical Properties, and Synergistic Photodynamic/Photothermal Effects. Materials (Basel) 2022;15:502. [PMID: 35057220 DOI: 10.3390/ma15020502] [Reference Citation Analysis]
43 Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021;19:443. [PMID: 34949202 DOI: 10.1186/s12951-021-01078-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
44 Du W, Lu X, Yuan T, Sun Z, Li X, Li S, Zhang Q, Tian X, Li D, Tian Y. Halogen-modified carbazole derivatives for lipid droplet-specific bioimaging and two-photon photodynamic therapy. Analyst 2021;147:66-71. [PMID: 34821886 DOI: 10.1039/d1an01826d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. Sens Actuators A Phys 2021;332:112925. [PMID: 34937992 DOI: 10.1016/j.sna.2021.112925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Li Y, Li G, zhang Q, Li Y, Jia Q, Zhang W, Feng X, Xu W, Liu J. Heavy atom effect on water-soluble porphyrin photosensitizers for photodynamic therapy. Chemical Physics Letters 2021;784:139091. [DOI: 10.1016/j.cplett.2021.139091] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021;179:114036. [PMID: 34740763 DOI: 10.1016/j.addr.2021.114036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
48 Zheng Z, Bindra AK, Jin H, Sun Q, Liu S, Zheng Y. Morphology-dependent resonance enhanced nonlinear photoacoustic effect in nanoparticle suspension: a temporal-spatial model. Biomed Opt Express 2021;12:7280. [DOI: 10.1364/boe.434207] [Reference Citation Analysis]
49 Tian Y, Younis MR, Tang Y, Liao X, He G, Wang S, Teng Z, Huang P, Zhang L, Lu G. Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. J Nanobiotechnology 2021;19:365. [PMID: 34789274 DOI: 10.1186/s12951-021-01109-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
50 Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021;121:13454-619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Cited by in Crossref: 141] [Cited by in F6Publishing: 172] [Article Influence: 70.5] [Reference Citation Analysis]
51 Hu Y, Yu L, Huang Y, Wang Z, Wang S, Chen X, Ji D, Dong H, Li J, Sun Y, Li L, Hu W. Thermally-enhanced photo-electric response of an organic semiconductor with low exciton binding energy for simultaneous and distinguishable detection of light and temperature. Sci China Chem 2022;65:145-52. [DOI: 10.1007/s11426-021-1118-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther 2021;36:102597. [PMID: 34699982 DOI: 10.1016/j.pdpdt.2021.102597] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
53 Vodyashkin AA, Rizk MGH, Kezimana P, Kirichuk AA, Stanishevskiy YM. Application of Gold Nanoparticle-Based Materials in Cancer Therapy and Diagnostics. ChemEngineering 2021;5:69. [DOI: 10.3390/chemengineering5040069] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
54 Tian R, Wang C, Chi W, Fan J, Du J, Long S, Guo L, Liu X, Peng X. Emerging Design Principle of Near-Infrared Upconversion Sensitizer Based on Mitochondria-Targeted Organic Dye for Enhanced Photodynamic Therapy. Chemistry 2021. [PMID: 34648222 DOI: 10.1002/chem.202102866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Li J, Zhang W, Ji W, Wang J, Wang N, Wu W, Wu Q, Hou X, Hu W, Li L. Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J Mater Chem B 2021;9:7909-26. [PMID: 34611678 DOI: 10.1039/d1tb01310f] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 17.0] [Reference Citation Analysis]
56 Liang H, Zafar M, Pang J, Chen Z, Li M, Ji S, Huo Y, Zhang H. Enhancing the Triplet yield in compact dibenzofuran-napthalimide donor/acceptor dyad based on Charge Recombination Induced Intersystem Crossing via substitution of one atom. Journal of Luminescence 2021;238:118238. [DOI: 10.1016/j.jlumin.2021.118238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Cai Y, Chen X, Si J, Mou X, Dong X. All-in-One Nanomedicine: Multifunctional Single-Component Nanoparticles for Cancer Theranostics. Small 2021;:e2103072. [PMID: 34561968 DOI: 10.1002/smll.202103072] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 8.5] [Reference Citation Analysis]
58 Yang S, Yang P, Xie Y, Zhang B, Lin J, Fan J, Zhao Z. Organic–inorganic hybrid photothermal nanomaterials for combined photothermal and chemotherapy therapy of tumors under the dual biological window. J Mater Sci 2021;56:18219-32. [DOI: 10.1007/s10853-021-06471-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Li X, Zhang D, Lu G, He T, Wan Y, Tse MK, Ren C, Wang P, Li S, Luo J, Lee CS. Photochemical Synthesis of Nonplanar Small Molecules with Ultrafast Nonradiative Decay for Highly Efficient Phototheranostics. Adv Mater 2021;33:e2102799. [PMID: 34319622 DOI: 10.1002/adma.202102799] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
60 Bai L, Yi W, Wang Y, Tian Y, Zhou B, Yi T, Zhang P, Cheng X, Si J, Hou X, Hou J. A PdMo bimetallene with precise wavelength adjustment and catalysis for synergistic photothermal ablation and hydrogen therapy of cancer at different depths. J Mater Chem B 2021;9:6441-59. [PMID: 34328487 DOI: 10.1039/d1tb01284c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
61 Yin C, Zhang H, Sun B, Chen S, Jiang X, Miao X, Sun P, Hu W, Fan Q, Huang W. Remarkable Suppression of Vibrational Relaxation in Organic Semiconducting Polymers by Introducing a Weak Electron Donor for Improved NIR‐II Phototheranostics. Adv Funct Materials 2021;31:2106575. [DOI: 10.1002/adfm.202106575] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
62 Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021;9:3640-61. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
63 Diez-Cabanes V, Monari A, Pastore M. Competition between the Photothermal Effect and Emission in Potential Phototherapy Agents. J Phys Chem B 2021;125:8733-41. [PMID: 34323496 DOI: 10.1021/acs.jpcb.1c03977] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Chen T, Yao T, Peng H, Whittaker AK, Li Y, Zhu S, Wang Z. An Injectable Hydrogel for Simultaneous Photothermal Therapy and Photodynamic Therapy with Ultrahigh Efficiency Based on Carbon Dots and Modified Cellulose Nanocrystals. Adv Funct Materials 2021;31:2106079. [DOI: 10.1002/adfm.202106079] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
65 Almodôvar VAS, Tomé AC. A Convenient Synthesis of Diketopyrrolopyrrole Dyes. Molecules 2021;26:4758. [PMID: 34443350 DOI: 10.3390/molecules26164758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Ma C, Zhang T, Xie Z. Leveraging BODIPY nanomaterials for enhanced tumor photothermal therapy. J Mater Chem B 2021. [PMID: 34355720 DOI: 10.1039/d1tb00855b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
67 Yang Z, Fan X, Li H, Li X, Li S, Zhang Z, Lin H, Qian J, Hua J. A Small-Molecule Diketopyrrolopyrrole-Based Dye for in vivo NIR-IIa Fluorescence Bioimaging. Chemistry 2021. [PMID: 34337810 DOI: 10.1002/chem.202102312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
68 Li L, Han X, Wang M, Li C, Jia T, Zhao X. Recent advances in the development of near-infrared organic photothermal agents. Chemical Engineering Journal 2021;417:128844. [DOI: 10.1016/j.cej.2021.128844] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
69 Chen B, Cao J, Zhang K, Zhang YN, Lu J, Zubair Iqbal M, Zhang Q, Kong X. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. J Biomater Sci Polym Ed 2021;:1-18. [PMID: 34251996 DOI: 10.1080/09205063.2021.1954138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Zhang D, Yang J, Liu C, Ye S, Zhang Q, Liu R. An Acceptor-π-Donor Structured Organic Chromophore for NIR Triggered Thermal Ablation of Tumor via DNA Damage-Mediated Apoptosis. Int J Nanomedicine 2021;16:4901-11. [PMID: 34321878 DOI: 10.2147/IJN.S319089] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Jin W, Dong C, Yang D, Zhang R, Jiang T, Wu D. Nano-Carriers of Combination Tumor Physical Stimuli-Responsive Therapies. Curr Drug Deliv 2020;17:577-87. [PMID: 32448102 DOI: 10.2174/1567201817666200525004225] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
72 Du J, Yang S, Qiao Y, Lu H, Dong H. Recent progress in near-infrared photoacoustic imaging. Biosens Bioelectron 2021;191:113478. [PMID: 34246125 DOI: 10.1016/j.bios.2021.113478] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
73 Shin J, Xu Y, Koo S, Lim JH, Lee JY, Sharma A, Sun Y, Kim JS. Mitochondria-targeted nanotheranostic: Harnessing single-laser-activated dual phototherapeutic processing for hypoxic tumor treatment. Matter 2021;4:2508-21. [DOI: 10.1016/j.matt.2021.05.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
74 Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 2021;606:120848. [PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
75 Gholami MD, Liu Q, Sonar P, Manzhos S, Ayoko GA, Izake EL. Naphthalene Flanked Diketopyrrolopyrrole: A New Functional Dye Based Optical Sensors for Monitoring Cyanide Ions in Water. Adv Materials Technologies 2022;7:2100170. [DOI: 10.1002/admt.202100170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Wang Q, Cai J, Niu X, Wang J, Liu J, Xie C, Huang W, Fan Q. Rational design of high performance nanotheranostics for NIR-II fluorescence/magnetic resonance imaging guided enhanced phototherapy. Biomater Sci 2021;9:3499-506. [PMID: 33949444 DOI: 10.1039/d1bm00172h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
77 Li H, Yue L, Li L, Liu G, Zhang J, Luo X, Wu F. Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids Surf B Biointerfaces 2021;205:111841. [PMID: 33992824 DOI: 10.1016/j.colsurfb.2021.111841] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
78 Li Y, Zhang J, Liu S, Zhang C, Chuah C, Tang Y, Kwok RTK, Lam JWY, Ou H, Ding D, Tang BZ. Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infrared‐II Fluorescence Imaging and Near Infrared‐I Photothermal Therapy. Adv Funct Mater 2021;31:2102213. [DOI: 10.1002/adfm.202102213] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
79 Xia R, Zheng X, Li C, Yuan X, Wang J, Xie Z, Jing X. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Photothermal Ablation of Tumors. ACS Nano 2021;15:7638-48. [PMID: 33792303 DOI: 10.1021/acsnano.1c01194] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
80 Bian H, Ma D, Zhang X, Xin K, Yang Y, Peng X, Xiao Y. Tailored Engineering of Novel Xanthonium Polymethine Dyes for Synergetic PDT and PTT Triggered by 1064 nm Laser toward Deep-Seated Tumors. Small 2021;17:e2100398. [PMID: 33885221 DOI: 10.1002/smll.202100398] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
81 Yi X, Wang S, Chen Y, Li C, Yang Z. Ultrasonic Imaging And Release Of Insulin-Loaded Chitosan Nano-Scale Microbubbles. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA) 2021. [DOI: 10.1109/spawda51471.2021.9445519] [Reference Citation Analysis]
82 Fan W, Han H, Chen Y, Zhang X, Gao Y, Li S, Jin Q, Ji J, Yao K. Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Deliv Transl Res 2021;11:1352-75. [PMID: 33840082 DOI: 10.1007/s13346-021-00966-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
83 Han W, Du Y, Song M, Sun K, Xu B, Yan F, Tian W. Fluorescent nanorods based on 9,10-distyrylanthracene (DSA) derivatives for efficient and long-term bioimaging. J Mater Chem B 2020;8:9544-54. [PMID: 33000780 DOI: 10.1039/c9tb02883h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
84 Zhao Y, He Z, Zhang Q, Wang J, Jia W, Jin L, Zhao L, Lu Y. 880 nm NIR-Triggered Organic Small Molecular-Based Nanoparticles for Photothermal Therapy of Tumor. Nanomaterials (Basel) 2021;11:773. [PMID: 33803677 DOI: 10.3390/nano11030773] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
85 Deng J, Yang M, Li C, Liu G, Sun Q, Luo X, Wu F. Single molecular-based nanoparticles with aggregation-induced emission characteristics for fluorescence imaging and efficient cancer phototherapy. Dyes and Pigments 2021;187:109130. [DOI: 10.1016/j.dyepig.2020.109130] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
86 Auwalu MA, Cheng S. Diketopyrrolopyrrole Fluorescent Probes, Photophysical and Biological Applications. Chemosensors 2021;9:44. [DOI: 10.3390/chemosensors9030044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
87 Wang JL, Zhang L, Zhao MJ, Zhang T, Liu Y, Jiang FL. Mitochondria-Targeted BODIPY Nanoparticles for Enhanced Photothermal and Photoacoustic Imaging In Vivo. ACS Appl Bio Mater 2021;4:1760-70. [PMID: 35014522 DOI: 10.1021/acsabm.0c01509] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
88 Cai Y, Tang C, Wei Z, Song C, Zou H, Zhang G, Ran J, Han W. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy. ACS Appl Bio Mater 2021;4:1942-9. [DOI: 10.1021/acsabm.0c01576] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
89 Chen J, Cui Y, Song K, Liu T, Zhou L, Bao B, Wang R, Wang L. The self-assembly of a hybrid photosensitizer for the synergistically enhanced photodynamic/photothermal therapy. Biomater Sci 2021;9:2115-23. [PMID: 33481965 DOI: 10.1039/d0bm01863e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
90 Zhang X, Jiang D, Yang G, Zhu Y, Tian J, Cao H, Gao Y, Zhang W. A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOO−) to Enhance Phototherapeutic Efficacy. Chin J Polym Sci 2021;39:692-701. [DOI: 10.1007/s10118-021-2540-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
91 Zhang S, Chen H, Wang L, Liu C, Liu L, Sun Y, Shen XC. A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy. J Mater Chem B 2021;9:1089-95. [PMID: 33427258 DOI: 10.1039/d0tb02674c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
92 Yang H, Jiang F, Ji X, Wang L, Wang Y, Zhang L, Tang Y, Wang D, Luo Y, Li N, Wang Q, Zou J. Genetically Engineered Bacterial Protein Nanoparticles for Targeted Cancer Therapy. Int J Nanomedicine 2021;16:105-17. [PMID: 33447030 DOI: 10.2147/IJN.S292432] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
93 Cavigli L, Khlebtsov BN, Centi S, Khlebtsov NG, Pini R, Ratto F. Photostability of Contrast Agents for Photoacoustics: The Case of Gold Nanorods. Nanomaterials (Basel) 2021;11:E116. [PMID: 33419130 DOI: 10.3390/nano11010116] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
94 Bumrung J, Chanchao C, Intasanta V, Palaga T, Wanichwecharungruang S. Water-dispersible unadulterated α-mangostin particles for biomedical applications. R Soc Open Sci 2020;7:200543. [PMID: 33391780 DOI: 10.1098/rsos.200543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
95 Li X, Fang F, Sun B, Yin C, Tan J, Wan Y, Zhang J, Sun P, Fan Q, Wang P, Li S, Lee C. Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horiz 2021;6:177-85. [DOI: 10.1039/d0nh00672f] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 18.0] [Reference Citation Analysis]
96 Chen Z. Application of Molecular Probes in Tumor Treatment. E3S Web Conf 2021;271:03028. [DOI: 10.1051/e3sconf/202127103028] [Reference Citation Analysis]
97 Liu F, Ma F, Chen Q, Zhou E, Zhang P, Cui Z, Liu Z, Huang Y. Synergistic non-bonding interactions based on diketopyrrolo-pyrrole for elevated photoacoustic imaging-guided photothermal therapy. Biomater Sci 2021;9:908-16. [DOI: 10.1039/d0bm01569e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
98 Wang Q, Niu X, Yang L, Liu J, Wang J, Xu X, Tang W, Huang W, Fan Q. Asymmetric small organic molecule-based NIR-II fluorophores for high performance tumor phototheranostics. Mater Chem Front 2021;5:5689-97. [DOI: 10.1039/d1qm00472g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
99 Gao H, Zhang L, Lian X, Wang Y, Jiang S, Wang G, Dai X, Zou H, Ding D. A dentin hypersensitivity treatment using highly stable photothermal conversion nanoparticles. Mater Chem Front 2021;5:3388-95. [DOI: 10.1039/d0qm01006e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
100 Iqbal MZ, Siddique S. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis to Applications. Engineering Materials 2021. [DOI: 10.1007/978-3-030-62761-4_7] [Reference Citation Analysis]
101 Yang Y, Xu M, Wang Z, Yang Y, Liu J, Hu Q, Li L, Huang W. Immune remodeling triggered by photothermal therapy with semiconducting polymer nanoparticles in combination with chemotherapy to inhibit metastatic cancers. J Mater Chem B 2021;9:2613-22. [DOI: 10.1039/d0tb02903c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
102 Sun W, Tang F, Cui JX, Lu ZL. Fluorescent Nanoparticles for Targeted Tumor Imaging and DNA Tracking Gene Delivery In Vitro/In Vivo. ACS Omega 2020;5:31700-5. [PMID: 33344822 DOI: 10.1021/acsomega.0c04213] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
103 Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS Appl Bio Mater 2021;4:3937-61. [DOI: 10.1021/acsabm.0c01341] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
104 Li H, Yue L, Wu M, Wu F. Self-assembly of methylene violet-conjugated perylene diimide with photodynamic/photothermal properties for DNA photocleavage and cancer treatment. Colloids and Surfaces B: Biointerfaces 2020;196:111351. [DOI: 10.1016/j.colsurfb.2020.111351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
105 Pang C, Li R, Dong N, Li Z, Wang J, Ren F, Chen F. Plasmonic core-shell nano-heterostructures with temperature-dependent optical nonlinearity. Nanoscale 2020;12:22995-3002. [PMID: 33241823 DOI: 10.1039/d0nr05176d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
106 Cao Y, Wu C, Liu Y, Hu L, Shang W, Gao Z, Xia N. Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721. Drug Deliv 2020;27:258-68. [PMID: 32009475 DOI: 10.1080/10717544.2020.1718801] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
107 Dong Y, Dong S, Wang Z, Feng L, Sun Q, Chen G, He F, Liu S, Li W, Yang P. Multimode Imaging-Guided Photothermal/Chemodynamic Synergistic Therapy Nanoagent with a Tumor Microenvironment Responded Effect. ACS Appl Mater Interfaces 2020;12:52479-91. [PMID: 33196186 DOI: 10.1021/acsami.0c17923] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
108 Li Y, Lu J, Zhang J, Zhu X, Liu J, Zhang Y. Phase-Change Nanotherapeutic Agents Based on Mesoporous Carbon for Multimodal Imaging and Tumor Therapy. ACS Appl Bio Mater 2020;3:8705-13. [DOI: 10.1021/acsabm.0c01102] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
109 Chen S, Huang B, Pei W, Wang L, Xu Y, Niu C. Mitochondria-Targeting Oxygen-Sufficient Perfluorocarbon Nanoparticles for Imaging-Guided Tumor Phototherapy. Int J Nanomedicine 2020;15:8641-58. [PMID: 33177823 DOI: 10.2147/IJN.S281649] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
110 Gao D, Wong RCH, Wang Y, Guo X, Yang Z, Lo PC. Shifting the absorption to the near-infrared region and inducing a strong photothermal effect by encapsulating zinc(II) phthalocyanine in poly(lactic-co-glycolic acid)-hyaluronic acid nanoparticles. Acta Biomater 2020;116:329-43. [PMID: 32890751 DOI: 10.1016/j.actbio.2020.08.042] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
111 Hu J, Lei Q, Zhang X. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Progress in Materials Science 2020;114:100685. [DOI: 10.1016/j.pmatsci.2020.100685] [Cited by in Crossref: 71] [Cited by in F6Publishing: 50] [Article Influence: 23.7] [Reference Citation Analysis]
112 Jiang X, Wang L, Tang H, Cao D, Chen W. Diketopyrrolopyrrole: An emerging phototherapy agent in fighting cancer. Dyes and Pigments 2020;181:108599. [DOI: 10.1016/j.dyepig.2020.108599] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
113 Feng W, Zhao W, Chen Z, Zhang C, Ge J, Zheng X, Ren H, Bo S. Organic Dye Nanoparticles with a Special D-π-A Structure for Photoacoustic Imaging and Photothermal Therapy. ACS Appl Bio Mater 2020;3:5722-9. [PMID: 35021803 DOI: 10.1021/acsabm.0c00504] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
114 Chen J, Ma Y, Du W, Dai T, Wang Y, Jiang W, Wan Y, Wang Y, Liang G, Wang G. Furin‐Instructed Intracellular Gold Nanoparticle Aggregation for Tumor Photothermal Therapy. Adv Funct Mater 2020;30:2001566. [DOI: 10.1002/adfm.202001566] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 11.7] [Reference Citation Analysis]
115 Yu C, Xu L, Zhang Y, Timashev PS, Huang Y, Liang X. Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy. ACS Appl Polym Mater 2020;2:4289-305. [DOI: 10.1021/acsapm.0c00704] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
116 Li Y, Xu X, Liu X, Li B, Han Y, Zheng Y, Chen DF, Yeung KWK, Cui Z, Li Z, Liang Y, Zhu S, Wang X, Wu S. Photoelectrons Mediating Angiogenesis and Immunotherapy through Heterojunction Film for Noninvasive Disinfection. Adv Sci (Weinh) 2020;7:2000023. [PMID: 32999817 DOI: 10.1002/advs.202000023] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
117 Wu F, Yue L, Cheng K, Chen J, Wong KL, Wong WK, Zhu X. Facile Preparation of Phthalocyanine-Based Nanodots for Photoacoustic Imaging and Photothermal Cancer Therapy In Vivo. ACS Biomater Sci Eng 2020;6:5230-9. [PMID: 33455272 DOI: 10.1021/acsbiomaterials.0c00684] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
118 Wu F, Chen J, Li H, Li C, Wang H, Liu G, Luo X, Zhu X. Gd (III) DOTA‐Functionalized Phthalocyanine Nanodots for Magnetic Resonance Imaging and Photothermal/Photodynamic Therapy. Adv Mater Interfaces 2020;7:2000713. [DOI: 10.1002/admi.202000713] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
119 Xie W, Guo Z, Gao Q, Wang D, Liang K, Gu Z, Zhao LY. Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Appl Bio Mater 2020;3:5845-55. [DOI: 10.1021/acsabm.0c00564] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
120 Shao W, Yang C, Li F, Wu J, Wang N, Ding Q, Gao J, Ling D. Molecular Design of Conjugated Small Molecule Nanoparticles for Synergistically Enhanced PTT/PDT. Nanomicro Lett 2020;12:147. [PMID: 34138129 DOI: 10.1007/s40820-020-00474-6] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
121 Wu F, Lu Y, Mu X, Chen Z, Liu S, Zhou X, Liu S, Li Z. Intriguing H-Aggregates of Heptamethine Cyanine for Imaging-Guided Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2020;12:32388-96. [PMID: 32597630 DOI: 10.1021/acsami.0c07608] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
122 Li C, Zhang W, Liu S, Hu X, Xie Z. Mitochondria-Targeting Organic Nanoparticles for Enhanced Photodynamic/Photothermal Therapy. ACS Appl Mater Interfaces 2020;12:30077-84. [DOI: 10.1021/acsami.0c06144] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
123 Wu F, Chen J, Yue L, Li H, Wang H, Zhu X. A Simple Strategy to Fabricate Phthalocyanine-Encapsulated Nanodots for Magnetic Resonance Imaging and Antitumor Phototherapy. ACS Appl Bio Mater 2020;3:3681-9. [PMID: 35025239 DOI: 10.1021/acsabm.0c00325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
124 Zhou K, Qiu X, Xu L, Li G, Rao B, Guo B, Pei D, Li A, He G. Poly(selenoviologen)-Assembled Upconversion Nanoparticles for Low-Power Single-NIR Light-Triggered Synergistic Photodynamic and Photothermal Antibacterial Therapy. ACS Appl Mater Interfaces 2020;12:26432-43. [PMID: 32429664 DOI: 10.1021/acsami.0c04506] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
125 Ghosh S, Shankar S, Philips DS, Ajayaghosh A. Diketopyrrolopyrrole-based functional supramolecular polymers: next-generation materials for optoelectronic applications. Materials Today Chemistry 2020;16:100242. [DOI: 10.1016/j.mtchem.2020.100242] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
126 Han Y, Qu B, Li J, Zhang X, Peng X, Li W, Zhang R. A simple POM clusters for in vivo NIR-II photoacoustic imaging-guided NIR-II photothermal therapy. J Inorg Biochem 2020;209:111121. [PMID: 32505013 DOI: 10.1016/j.jinorgbio.2020.111121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
127 Wen K, Wu L, Wu X, Lu Y, Duan T, Ma H, Peng A, Shi Q, Huang H. Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angew Chem Int Ed 2020;59:12756-61. [DOI: 10.1002/anie.202004181] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
128 Wen K, Wu L, Wu X, Lu Y, Duan T, Ma H, Peng A, Shi Q, Huang H. Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angew Chem 2020;132:12856-61. [DOI: 10.1002/ange.202004181] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
129 Zhang Z, Cao Y, Zhu X, Li Y, Cai X. Zwitterionic Conjugated Polymer as the Single Component for Photoacoustic-Imaging-Guided Dual-Modal Near-Infrared Phototherapy. ACS Biomater Sci Eng 2020;6:4005-11. [DOI: 10.1021/acsbiomaterials.0c00206] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
130 Chen L, Liu D, Wu M, Chau H, Wang K, Fung Y, Wong K, Wang Z, Wu F. Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Nanotechnology 2020;31:315101. [DOI: 10.1088/1361-6528/ab86ea] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
131 Tang C, Song C, Wei Z, Liang C, Ran J, Cai Y, Dong X, Han W. Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy. Sci China Chem 2020;63:946-56. [DOI: 10.1007/s11426-020-9723-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
132 Chen D, Yu Q, Huang X, Dai H, Luo T, Shao J, Chen P, Chen J, Huang W, Dong X. A Highly‐Efficient Type I Photosensitizer with Robust Vascular‐Disruption Activity for Hypoxic‐and‐Metastatic Tumor Specific Photodynamic Therapy. Small 2020;16:2001059. [DOI: 10.1002/smll.202001059] [Cited by in Crossref: 66] [Cited by in F6Publishing: 73] [Article Influence: 22.0] [Reference Citation Analysis]
133 Lv S, Miao Y, Liu D, Song F. Recent Development of Photothermal Agents (PTAs) Based on Small Organic Molecular Dyes. Chembiochem 2020;21:2098-110. [PMID: 32202062 DOI: 10.1002/cbic.202000089] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
134 Luo Y, Rong R, Li J, Chen X, Wang S, Li X, Wang K. Effective Renal Clearance and Photothermal Therapy of a Cyclodextrin-Modified Quaterrylene Derivative. ACS Appl Bio Mater 2020;3:3390-400. [DOI: 10.1021/acsabm.0c00311] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Chen D, Wang Z, Dai H, Lv X, Ma Q, Yang D, Shao J, Xu Z, Dong X. Boosting O 2•− Photogeneration via Promoting Intersystem‐Crossing and Electron‐Donating Efficiency of Aza‐BODIPY‐Based Nanoplatforms for Hypoxic‐Tumor Photodynamic Therapy. Small Methods 2020;4:2000013. [DOI: 10.1002/smtd.202000013] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
136 Wang J, Zhang H, Xiao X, Liang D, Liang X, Mi L, Wang J, Liu J. Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors. Acta Biomater 2020;107:260-71. [PMID: 32147471 DOI: 10.1016/j.actbio.2020.03.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
137 Li G, Zhang X, Zhao W, Zhao W, Li F, Xiao K, Yu Q, Liu S, Zhao Q. Stable and Well-Organized Near-Infrared Platinum(II)–Acetylide-Based Metallacycles-Mediated Cancer Phototherapy. ACS Appl Mater Interfaces 2020;12:20180-90. [DOI: 10.1021/acsami.0c01695] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
138 Chen J, Wen K, Chen H, Jiang S, Wu X, Lv L, Peng A, Zhang S, Huang H. Achieving High-Performance Photothermal and Photodynamic Effects upon Combining D-A Structure and Nonplanar Conformation. Small 2020;16:e2000909. [PMID: 32249500 DOI: 10.1002/smll.202000909] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
139 Liu Y, Lee TH, Lee SH, Li J, Lee WK, Yoon I. Mitochondria‐Targeted Water‐Soluble Organic Nanoparticles of Chlorin Derivatives for Biocompatible Photodynamic Therapy. ChemNanoMat 2020;6:610-7. [DOI: 10.1002/cnma.201900664] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
140 Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. International Journal of Pharmaceutics 2020;580:119219. [DOI: 10.1016/j.ijpharm.2020.119219] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
141 Wang H, Pan X, Wang X, Wang W, Huang Z, Gu K, Liu S, Zhang F, Shen H, Yuan Q, Ma J, Yuan W, Liu H. Degradable Carbon-Silica Nanocomposite with Immunoadjuvant Property for Dual-Modality Photothermal/Photodynamic Therapy. ACS Nano 2020;14:2847-59. [PMID: 31909977 DOI: 10.1021/acsnano.9b06168] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 21.3] [Reference Citation Analysis]
142 Wang Y, Kai H, Ishida M, Gokulnath S, Mori S, Murayama T, Muranaka A, Uchiyama M, Yasutake Y, Fukatsu S, Notsuka Y, Yamaoka Y, Hanafusa M, Yoshizawa M, Kim G, Kim D, Furuta H. Synthesis of a Black Dye with Absorption Capabilities Across the Visible-to-Near-Infrared Region: A MO-Mixing Approach via Heterometal Coordination of Expanded Porphyrinoid. J Am Chem Soc 2020;142:6807-13. [DOI: 10.1021/jacs.0c01824] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
143 Wang J, Wu X, Shen P, Wang J, Shen Y, Shen Y, Webster TJ, Deng J. Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment. Int J Nanomedicine 2020;15:1903-14. [PMID: 32256067 DOI: 10.2147/IJN.S239751] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 23.3] [Reference Citation Analysis]
144 Hester SC, Kuriakose M, Nguyen CD, Mallidi S. Role of Ultrasound and Photoacoustic Imaging in Photodynamic Therapy for Cancer. Photochem Photobiol 2020;96:260-79. [PMID: 31919853 DOI: 10.1111/php.13217] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
145 He Z, Zhao L, Zhang Q, Chang M, Li C, Zhang H, Lu Y, Chen Y. An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer. Adv Funct Mater 2020;30:1910301. [DOI: 10.1002/adfm.201910301] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
146 Gong Q, Xing J, Huang Y, Wu A, Yu J, Zhang Q. Perylene Diimide Oligomer Nanoparticles with Ultrahigh Photothermal Conversion Efficiency for Cancer Theranostics. ACS Appl Bio Mater 2020;3:1607-15. [DOI: 10.1021/acsabm.9b01187] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
147 Wei Z, Zhu B, Cai Y, Yan D, Lou Y, Guo Z, Deng P. Near‐Infrared‐Absorbing Diketopyrrolopyrrole‐Based Semiconducting Polymer Nanoparticles for Photothermal Therapy. Part Part Syst Charact 2020;37:1900433. [DOI: 10.1002/ppsc.201900433] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
148 Sun W, Liu X, Ma L, Lu Z. Tumor Targeting Gene Vector for Visual Tracking of Bcl-2 siRNA Transfection and Anti-Tumor Therapy. ACS Appl Mater Interfaces 2020;12:10193-201. [DOI: 10.1021/acsami.0c00652] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
149 Wang Q, Xu J, Geng R, Cai J, Li J, Xie C, Tang W, Shen Q, Huang W, Fan Q. High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. Biomaterials 2020;231:119671. [DOI: 10.1016/j.biomaterials.2019.119671] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 17.7] [Reference Citation Analysis]
150 Zhou H, Yang H, Wang G, Gao A, Yuan Z. Recent Advances of Plasmonic Gold Nanoparticles in Optical Sensing and Therapy. CPD 2020;25:4861-76. [DOI: 10.2174/1381612826666191219130033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
151 Lv X, Zhang J, Yang D, Shao J, Wang W, Zhang Q, Dong X. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J Mater Chem B 2020;8:10700-11. [DOI: 10.1039/d0tb02177f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
152 Yang Z, Xu W, Wang J, Liu L, Chu Y, Wang Y, Hu Y, Yi T, Hua J. Diketopyrrolopyrrole-based multifunctional ratiometric fluorescent probe and γ-glutamyltranspeptidase-triggered activatable photosensitizer for tumor therapy. J Mater Chem C 2020;8:8183-90. [DOI: 10.1039/d0tc01836h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
153 Wu R, Wang H, Hai L, Wang T, Hou M, He D, He X, Wang K. A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chinese Chemical Letters 2020;31:189-92. [DOI: 10.1016/j.cclet.2019.05.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
154 Feng G, Zhang G, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev 2020;49:8179-234. [DOI: 10.1039/d0cs00671h] [Cited by in Crossref: 190] [Cited by in F6Publishing: 203] [Article Influence: 63.3] [Reference Citation Analysis]
155 Mu X, Lu Y, Wu F, Wei Y, Ma H, Zhao Y, Sun J, Liu S, Zhou X, Li Z. Supramolecular Nanodiscs Self-Assembled from Non-Ionic Heptamethine Cyanine for Imaging-Guided Cancer Photothermal Therapy. Adv Mater 2020;32:e1906711. [PMID: 31773830 DOI: 10.1002/adma.201906711] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 19.7] [Reference Citation Analysis]
156 Biswas S, Kumar M, Levine AM, Jimenez I, Ulijn RV, Braunschweig AB. Visible-light photooxidation in water by 1 O 2 -generating supramolecular hydrogels. Chem Sci 2020;11:4239-45. [DOI: 10.1039/c9sc06481h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
157 Langlois A, Mason GT, Nguyen MHL, Rezapour M, Karsenti PL, Marquardt D, Rondeau-Gagné S. Photophysical and Optical Properties of Semiconducting Polymer Nanoparticles Prepared from Hyaluronic Acid and Polysorbate 80. ACS Omega 2019;4:22591-600. [PMID: 31909343 DOI: 10.1021/acsomega.9b03402] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
158 Yin C, Li X, Wen G, Yang B, Zhang Y, Chen X, Zhao P, Li S, Li R, Wang L, Lee CS, Bian L. Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. Biomaterials 2020;232:119684. [PMID: 31901503 DOI: 10.1016/j.biomaterials.2019.119684] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 15.3] [Reference Citation Analysis]
159 Patil Y, Misra R. Metal Functionalized Diketopyrrolopyrroles: A Promising Class of Materials for Optoelectronic Applications. Chem Rec 2020;20:596-603. [PMID: 31833617 DOI: 10.1002/tcr.201900061] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
160 Han D, Ma M, Han Y, Cui Z, Liang Y, Liu X, Li Z, Zhu S, Wu S. Eco-friendly Hybrids of Carbon Quantum Dots Modified MoS 2 for Rapid Microbial Inactivation by Strengthened Photocatalysis. ACS Sustainable Chem Eng 2020;8:534-42. [DOI: 10.1021/acssuschemeng.9b06045] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
161 Li X, Liu L, Li S, Wan Y, Chen JX, Tian S, Huang Z, Xiao YF, Cui X, Xiang C, Tan Q, Zhang XH, Guo W, Liang XJ, Lee CS. Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano 2019;13:12901-11. [PMID: 31682416 DOI: 10.1021/acsnano.9b05383] [Cited by in Crossref: 116] [Cited by in F6Publishing: 121] [Article Influence: 29.0] [Reference Citation Analysis]
162 Guan Q, Zhou LL, Li YA, Li WY, Wang S, Song C, Dong YB. Nanoscale Covalent Organic Framework for Combinatorial Antitumor Photodynamic and Photothermal Therapy. ACS Nano 2019;13:13304-16. [PMID: 31689082 DOI: 10.1021/acsnano.9b06467] [Cited by in Crossref: 160] [Cited by in F6Publishing: 164] [Article Influence: 40.0] [Reference Citation Analysis]
163 Wang X, Yu Y, Cheng K, Yang W, Liu Y, Peng H. Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometric sensing and in photodynamic therapy. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3924-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
164 Zhang C, Wu J, Liu W, Zheng X, Wang P. Natural-Origin Hypocrellin-HSA Assembly for Highly Efficient NIR Light-Responsive Phototheranostics against Hypoxic Tumors. ACS Appl Mater Interfaces 2019;11:44989-98. [DOI: 10.1021/acsami.9b18345] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
165 Du W, Chong Y, Hu X, Wang Y, Zhu Y, Chen J, Li X, Zhang Q, Wang G, Jiang J, Liang G. Increasing Photothermal Efficacy by Simultaneous Intra‐ and Intermolecular Fluorescence Quenching. Adv Funct Mater 2019;30:1908073. [DOI: 10.1002/adfm.201908073] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
166 Chen Z, Liu G, Zhang X, Sui J, Dong X, Yu W, Song C. Synthesis of multifunctional rare-earth fluoride/Ag nanowire nanocomposite for efficient therapy of cancer. Materials Science and Engineering: C 2019;104:109940. [DOI: 10.1016/j.msec.2019.109940] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
167 Tao T, Zhao J, Chen H, Mao S, Yu J, Huang W. Precisely controlling fluorescence enhancement and high-contrast colorimetric assay in OFF-ON fluoride sensing based on a diketopyrrolopyrrole boronate ester. Dyes and Pigments 2019;170:107638. [DOI: 10.1016/j.dyepig.2019.107638] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
168 Cheng Q, Li Z, Sun Y, Zhang X. Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors. NPG Asia Mater 2019;11. [DOI: 10.1038/s41427-019-0164-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
169 Chen D, Tang Y, Zhu J, Zhang J, Song X, Wang W, Shao J, Huang W, Chen P, Dong X. Photothermal-pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. Biomaterials 2019;221:119422. [DOI: 10.1016/j.biomaterials.2019.119422] [Cited by in Crossref: 77] [Cited by in F6Publishing: 84] [Article Influence: 19.3] [Reference Citation Analysis]
170 Ferroni C, Del Rio A, Martini C, Manoni E, Varchi G. Light-Induced Therapies for Prostate Cancer Treatment. Front Chem 2019;7:719. [PMID: 31737599 DOI: 10.3389/fchem.2019.00719] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
171 Washington KE, Du J, Kularatne RN, Calubaquib EL, Soltantabar P, Biewer MC, Stefan MC. Diketopyrrolopyrrole and benzodithiophene based near infrared-emitting small molecule for imaging applications. Synthetic Metals 2019;256:116123. [DOI: 10.1016/j.synthmet.2019.116123] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
172 Chang Z, Liu F, Wang L, Deng M, Zhou C, Sun Q, Chu J. Near-infrared dyes, nanomaterials and proteins. Chinese Chemical Letters 2019;30:1856-82. [DOI: 10.1016/j.cclet.2019.08.034] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
173 Qi J, Li J, Liu R, Li Q, Zhang H, Lam JW, Kwok RT, Liu D, Ding D, Tang BZ. Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. Chem 2019;5:2657-77. [DOI: 10.1016/j.chempr.2019.07.015] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 16.3] [Reference Citation Analysis]
174 Zhang S, Li Q, Yang N, Shi Y, Ge W, Wang W, Huang W, Song X, Dong X. Phase‐Change Materials Based Nanoparticles for Controlled Hypoxia Modulation and Enhanced Phototherapy. Adv Funct Mater 2019;29:1906805. [DOI: 10.1002/adfm.201906805] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 18.8] [Reference Citation Analysis]
175 Tian R, Sun W, Li M, Long S, Li M, Fan J, Guo L, Peng X. Development of a novel anti-tumor theranostic platform: a near-infrared molecular upconversion sensitizer for deep-seated cancer photodynamic therapy. Chem Sci 2019;10:10106-12. [PMID: 32055365 DOI: 10.1039/c9sc04034j] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
176 Zhang MK, Ye JJ, Li CX, Xia Y, Wang ZY, Feng J, Zhang XZ. Cytomembrane-Mediated Transport of Metal Ions with Biological Specificity. Adv Sci (Weinh) 2019;6:1900835. [PMID: 31508286 DOI: 10.1002/advs.201900835] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
177 Li S, Deng Q, Li X, Huang Y, Li X, Liu F, Wang H, Qing W, Liu Z, Lee C. Bis-diketopyrrolopyrrole conjugated polymer nanoparticles as photothermic nanoagonist for specific and synergistic glioblastoma therapy. Biomaterials 2019;216:119252. [DOI: 10.1016/j.biomaterials.2019.119252] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
178 Zhu W, Liu X, Tan L, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Yeung KWK, Wu S. AgBr Nanoparticles in Situ Growth on 2D MoS 2 Nanosheets for Rapid Bacteria-Killing and Photodisinfection. ACS Appl Mater Interfaces 2019;11:34364-75. [DOI: 10.1021/acsami.9b12629] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
179 Han W, Zhang S, Deng R, Du Y, Qian J, Zheng X, Xu B, Xie Z, Yan F, Tian W. Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Sci China Mater 2020;63:136-46. [DOI: 10.1007/s40843-019-9477-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
180 Huang X, Gu R, Li J, Yang N, Cheng Z, Si W, Chen P, Huang W, Dong X. Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. Sci China Chem 2020;63:55-64. [DOI: 10.1007/s11426-019-9531-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
181 Yang Y, Chen J, Yang Y, Xie Z, Song L, Zhang P, Liu C, Liu J. A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas. Nanoscale 2019;11:7754-60. [PMID: 30949651 DOI: 10.1039/c9nr00552h] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 8.3] [Reference Citation Analysis]
182 Yamagata T. Developments on the Studies of Diketopyrrolopyrrole. J Synth Org Chem Jpn 2019;77:843-844. [DOI: 10.5059/yukigoseikyokaishi.77.843] [Reference Citation Analysis]
183 Zhao M, Xie M, Guo J, Feng W, Xu Y, Liu X, Liu S, Zhao Q. Facile Phototherapeutic Nanoplatform by Integrating a Multifunctional Polymer and MnO2 for Enhancing Tumor Synergistic Therapy. Adv Healthc Mater 2019;8:e1900414. [PMID: 31168955 DOI: 10.1002/adhm.201900414] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
184 Gao K, Tu W, Yu X, Ahmad F, Zhang X, Wu W, An X, Chen X, Li W. W-doped TiO2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors. Theranostics 2019;9:5214-26. [PMID: 31410211 DOI: 10.7150/thno.33574] [Cited by in Crossref: 19] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
185 Xu Y, Zhao M, Wu L, Li F, Li M, Xie M, Liu S, Huang W, Zhao Q. Rational Design of Efficient Organic Phototherapeutic Agents via Perturbation Theory for Enhancing Anticancer Therapeutics. ChemMedChem 2019;14:1378-83. [PMID: 31210412 DOI: 10.1002/cmdc.201900302] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
186 Lin X, Fang Y, Tao Z, Gao X, Wang T, Zhao M, Wang S, Liu Y. Tumor-Microenvironment-Induced All-in-One Nanoplatform for Multimodal Imaging-Guided Chemical and Photothermal Therapy of Cancer. ACS Appl Mater Interfaces 2019;11:25043-53. [PMID: 31265228 DOI: 10.1021/acsami.9b07643] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
187 Zhang T, Ma C, Sun T, Xie Z. Unadulterated BODIPY nanoparticles for biomedical applications. Coordination Chemistry Reviews 2019;390:76-85. [DOI: 10.1016/j.ccr.2019.04.001] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 15.0] [Reference Citation Analysis]
188 Luo Y, Xu D, Gao X, Xiong J, Jiang B, Zhang Y, Wang Y, Tang Y, Chen C, Qiao H, Li H, Zou J. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy. Biochemical and Biophysical Research Communications 2019;514:1147-53. [DOI: 10.1016/j.bbrc.2019.05.074] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
189 Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P. Photosensitizers for Photodynamic Therapy. Adv Healthc Mater 2019;8:e1900132. [PMID: 31067008 DOI: 10.1002/adhm.201900132] [Cited by in Crossref: 349] [Cited by in F6Publishing: 366] [Article Influence: 87.3] [Reference Citation Analysis]
190 Cao J, Chi J, Xia J, Zhang Y, Han S, Sun Y. Iodinated Cyanine Dyes for Fast Near-Infrared-Guided Deep Tissue Synergistic Phototherapy. ACS Appl Mater Interfaces 2019;11:25720-9. [DOI: 10.1021/acsami.9b07694] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 12.8] [Reference Citation Analysis]
191 Zhu H, Xie C, Chen P, Pu K. Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Curr Med Chem 2019;26:1389-405. [PMID: 28933283 DOI: 10.2174/0929867324666170921103152] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
192 Gao C, Jian J, Lin Z, Yu Y, Jiang B, Chen H, Shen X. Hypericin-Loaded Carbon Nanohorn Hybrid for Combined Photodynamic and Photothermal Therapy in Vivo. Langmuir 2019. [DOI: 10.1021/acs.langmuir.9b00624] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
193 Men X, Yuan Z. Multifunctional conjugated polymer nanoparticles for photoacoustic-based multimodal imaging and cancer photothermal therapy. J Innov Opt Health Sci 2019;12:1930001. [DOI: 10.1142/s1793545819300015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
194 Hu X, Tang Y, Hu Y, Lu F, Lu X, Wang Y, Li J, Li Y, Ji Y, Wang W, Ye D, Fan Q, Huang W. Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy. Theranostics 2019;9:4168-81. [PMID: 31281539 DOI: 10.7150/thno.34390] [Cited by in Crossref: 64] [Cited by in F6Publishing: 73] [Article Influence: 16.0] [Reference Citation Analysis]
195 Domokos A, Aronow SD, Tang T, Shevchenko NE, Tantillo DJ, Dudnik AS. Synthesis and Optoelectronic Properties of New Methoxy-Substituted Diketopyrrolopyrrole Polymers. ACS Omega 2019;4:9427-33. [PMID: 31460033 DOI: 10.1021/acsomega.9b01125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
196 Yao D, Yang S, Wang Y, Bian K, Yang W, Wang D, Zhang B. An ALP-activatable and mitochondria-targeted probe for prostate cancer-specific bimodal imaging and aggregation-enhanced photothermal therapy. Nanoscale. 2019;11:6307-6314. [PMID: 30882834 DOI: 10.1039/c9nr00913b] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
197 Wu F, Chen L, Yue L, Wang K, Cheng K, Chen J, Luo X, Zhang T. Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Appl Mater Interfaces 2019;11:21408-16. [DOI: 10.1021/acsami.9b06866] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 17.0] [Reference Citation Analysis]
198 Wang Q, Dai Y, Xu J, Cai J, Niu X, Zhang L, Chen R, Shen Q, Huang W, Fan Q. All‐in‐One Phototheranostics: Single Laser Triggers NIR‐II Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. Adv Funct Mater 2019;29:1901480. [DOI: 10.1002/adfm.201901480] [Cited by in Crossref: 204] [Cited by in F6Publishing: 206] [Article Influence: 51.0] [Reference Citation Analysis]
199 Gao S, Wei G, Zhang S, Zheng B, Xu J, Chen G, Li M, Song S, Fu W, Xiao Z, Lu W. Albumin tailoring fluorescence and photothermal conversion effect of near-infrared-II fluorophore with aggregation-induced emission characteristics. Nat Commun 2019;10:2206. [PMID: 31101816 DOI: 10.1038/s41467-019-10056-9] [Cited by in Crossref: 137] [Cited by in F6Publishing: 145] [Article Influence: 34.3] [Reference Citation Analysis]
200 Yang G, Tian J, Chen C, Jiang D, Xue Y, Wang C, Gao Y, Zhang W. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem Sci 2019;10:5766-72. [PMID: 31293763 DOI: 10.1039/c9sc00985j] [Cited by in Crossref: 73] [Cited by in F6Publishing: 75] [Article Influence: 18.3] [Reference Citation Analysis]
201 Mao C, Xiang Y, Liu X, Zheng Y, Yeung KWK, Cui Z, Yang X, Li Z, Liang Y, Zhu S, Wu S. Local Photothermal/Photodynamic Synergistic Therapy by Disrupting Bacterial Membrane To Accelerate Reactive Oxygen Species Permeation and Protein Leakage. ACS Appl Mater Interfaces 2019;11:17902-14. [DOI: 10.1021/acsami.9b05787] [Cited by in Crossref: 92] [Cited by in F6Publishing: 94] [Article Influence: 23.0] [Reference Citation Analysis]
202 Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019;48:2053-108. [PMID: 30259015 DOI: 10.1039/c8cs00618k] [Cited by in Crossref: 1334] [Cited by in F6Publishing: 1406] [Article Influence: 333.5] [Reference Citation Analysis]
203 Sun Q, He F, Bi H, Wang Z, Sun C, Li C, Xu J, Yang D, Wang X, Gai S, Yang P. An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light. Chemical Engineering Journal 2019;362:679-91. [DOI: 10.1016/j.cej.2019.01.095] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 15.5] [Reference Citation Analysis]
204 Wang P, Wu W, Gao R, Zhu H, Wang J, Du R, Li X, Zhang C, Cao S, Xiang R. Engineered Cell-Assisted Photoactive Nanoparticle Delivery for Image-Guided Synergistic Photodynamic/Photothermal Therapy of Cancer. ACS Appl Mater Interfaces 2019;11:13935-44. [DOI: 10.1021/acsami.9b00022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
205 Girma WM, Dehvari K, Ling YC, Chang JY. Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy. Mater Sci Eng C Mater Biol Appl 2019;101:179-89. [PMID: 31029311 DOI: 10.1016/j.msec.2019.03.074] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
206 Liu S, Zhou X, Zhang H, Ou H, Lam JWY, Liu Y, Shi L, Ding D, Tang BZ. Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. J Am Chem Soc 2019;141:5359-68. [PMID: 30865831 DOI: 10.1021/jacs.8b13889] [Cited by in Crossref: 321] [Cited by in F6Publishing: 334] [Article Influence: 80.3] [Reference Citation Analysis]
207 Li W, Wang L, Tang H, Cao D. Diketopyrrolopyrrole-based fluorescent probes for detection and bioimaging: Current progresses and perspectives. Dyes and Pigments 2019;162:934-50. [DOI: 10.1016/j.dyepig.2018.11.023] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
208 Xiang H, Chen Y. Energy‐Converting Nanomedicine. Small 2019;15:1805339. [DOI: 10.1002/smll.201805339] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 15.5] [Reference Citation Analysis]
209 Kumar V, Kukkar D, Hashemi B, Kim K, Deep A. Advanced Functional Structure-Based Sensing and Imaging Strategies for Cancer Detection: Possibilities, Opportunities, Challenges, and Prospects. Adv Funct Mater 2019;29:1807859. [DOI: 10.1002/adfm.201807859] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
210 Adetunji Moses O, Khan MI, Fang Q, Qin L, Rehman ZU, Zhang Y, Deng Feng C, Ma Y, Tang X, Wu C, Adam ML, Huang D, Liu H, Song L. PVP intercalated metallic WSe2 as NIR photothermal agents for efficient tumor ablation. Nanotechnology 2019;30:065102. [PMID: 30543196 DOI: 10.1088/1361-6528/aaf151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
211 Hu D, Chen Z, Sheng Z, Gao D, Yan F, Ma T, Zheng H, Hong M. A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale 2018;10:17283-92. [PMID: 30198041 DOI: 10.1039/c8nr05548c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 10.5] [Reference Citation Analysis]
212 Sun J, Xu W, Li L, Fan B, Peng X, Qu B, Wang L, Li T, Li S, Zhang R. Ultrasmall endogenous biopolymer nanoparticles for magnetic resonance/photoacoustic dual-modal imaging-guided photothermal therapy. Nanoscale 2018;10:10584-95. [PMID: 29808892 DOI: 10.1039/c8nr01215f] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
213 Miao X, Hu W, He T, Tao H, Wang Q, Chen R, Jin L, Zhao H, Lu X, Fan Q, Huang W. Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy. Chem Sci 2019;10:3096-102. [PMID: 30996892 DOI: 10.1039/c8sc04840a] [Cited by in Crossref: 82] [Cited by in F6Publishing: 86] [Article Influence: 20.5] [Reference Citation Analysis]
214 Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. A Water‐Soluble, NIR‐Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angew Chem 2019;131:1652-6. [DOI: 10.1002/ange.201810541] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
215 Wei Z, Liang P, Xie J, Song C, Tang C, Wang Y, Yin X, Cai Y, Han W, Dong X. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem Sci 2019;10:2778-84. [PMID: 30996997 DOI: 10.1039/c8sc04123g] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 17.5] [Reference Citation Analysis]
216 Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. A Water‐Soluble, NIR‐Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angew Chem Int Ed 2019;58:1638-42. [DOI: 10.1002/anie.201810541] [Cited by in Crossref: 167] [Cited by in F6Publishing: 173] [Article Influence: 41.8] [Reference Citation Analysis]
217 Wang Q, Xia B, Xu J, Niu X, Cai J, Shen Q, Wang W, Huang W, Fan Q. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Mater Chem Front 2019;3:650-5. [DOI: 10.1039/c9qm00036d] [Cited by in Crossref: 87] [Cited by in F6Publishing: 88] [Article Influence: 21.8] [Reference Citation Analysis]
218 Bao B, Tong L, Xu Y, Zhang J, Zhai X, Su P, Weng L, Wang L. Mussel-inspired functionalization of semiconducting polymer nanoparticles for amplified photoacoustic imaging and photothermal therapy. Nanoscale 2019;11:14727-33. [DOI: 10.1039/c9nr03490k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
219 Qiu Y, Ding D, Sun W, Feng Y, Huang D, Li S, Meng S, Zhao Q, Xue L, Chen H. Hollow mesoporous carbon nanospheres for imaging-guided light-activated synergistic thermo-chemotherapy. Nanoscale 2019;11:16351-61. [DOI: 10.1039/c9nr04802b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
220 Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967-3014. [DOI: 10.1039/c8cs00805a] [Cited by in Crossref: 229] [Cited by in F6Publishing: 242] [Article Influence: 57.3] [Reference Citation Analysis]
221 Zhou S, Yang C, Guo L, Wang Y, Zhang G, Feng L. Water-soluble conjugated polymer with near-infrared absorption for synergistic tumor therapy using photothermal and photodynamic activity. Chem Commun 2019;55:8615-8. [DOI: 10.1039/c9cc03744f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
222 Patil Y, Misra R. Rational molecular design towards NIR absorption: efficient diketopyrrolopyrrole derivatives for organic solar cells and photothermal therapy. J Mater Chem C 2019;7:13020-31. [DOI: 10.1039/c9tc03640g] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
223 Zhao H, Zhao L, Wang Z, Xi W, Dibaba ST, Wang S, Shi L, Sun L. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2019;7:3652-60. [DOI: 10.1039/c9tb00317g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
224 Chen Q, Chen J, He M, Bai Y, Yan H, Zeng N, Liu F, Wen S, Song L, Sheng Z, Liu C, Fang C. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma. Biomater Sci 2019;7:3165-77. [DOI: 10.1039/c9bm00528e] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
225 Zhang C, Wang S, Chen Z, Fan J, Zhong Z, Zhang X. A tungsten nitride-based degradable nanoplatform for dual-modal image-guided combinatorial chemo-photothermal therapy of tumors. Nanoscale 2019;11:2027-36. [DOI: 10.1039/c8nr09064e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
226 Su Y, Lu S, Gao P, Zheng M, Xie Z. BODIPY@carbon dot nanocomposites for enhanced photodynamic activity. Mater Chem Front 2019;3:1747-53. [DOI: 10.1039/c9qm00257j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
227 Ou C, Zhang Y, Pan D, Ding K, Zhang S, Xu W, Wang W, Si W, Yang Z, Dong X. Zinc porphyrin–polydopamine core–shell nanostructures for enhanced photodynamic/photothermal cancer therapy. Mater Chem Front 2019;3:1786-92. [DOI: 10.1039/c9qm00197b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
228 Cai Y, Wei Z, Song C, Tang C, Huang X, Hu Q, Dong X, Han W. Novel acceptor–donor–acceptor structured small molecule-based nanoparticles for highly efficient photothermal therapy. Chem Commun 2019;55:8967-70. [DOI: 10.1039/c9cc04195h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
229 Li C, Lin W, Liu S, Zhang W, Xie Z. Self-destructive PEG–BODIPY nanomaterials for photodynamic and photothermal therapy. J Mater Chem B 2019;7:4655-60. [DOI: 10.1039/c9tb00752k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
230 Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019;48:38-71. [DOI: 10.1039/c8cs00001h] [Cited by in Crossref: 676] [Cited by in F6Publishing: 709] [Article Influence: 169.0] [Reference Citation Analysis]
231 Zou J, Xue L, Yang N, Ren Y, Fan Z, Wang W, Si W, Zhang Y, Huang W, Dong X. A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Mater Chem Front 2019;3:2143-50. [DOI: 10.1039/c9qm00471h] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
232 Xu Y, Zhao M, Zou L, Wu L, Xie M, Yang T, Liu S, Huang W, Zhao Q. Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment. ACS Appl Mater Interfaces 2018;10:44324-35. [PMID: 30508480 DOI: 10.1021/acsami.8b18669] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 9.0] [Reference Citation Analysis]
233 Prasad R, Chauhan DS, Yadav AS, Devrukhkar J, Singh B, Gorain M, Temgire M, Bellare J, Kundu GC, Srivastava R. A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. Nanoscale 2018;10:19082-91. [PMID: 30288516 DOI: 10.1039/c8nr05164j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
234 Huang J, Liu F, Han X, Zhang L, Hu Z, Jiang Q, Wang Z, Ran H, Wang D, Li P. Nanosonosensitizers for Highly Efficient Sonodynamic Cancer Theranostics. Theranostics 2018;8:6178-94. [DOI: 10.7150/thno.29569] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 12.8] [Reference Citation Analysis]
235 Liang P, Huang X, Wang Y, Chen D, Ou C, Zhang Q, Shao J, Huang W, Dong X. Tumor-Microenvironment-Responsive Nanoconjugate for Synergistic Antivascular Activity and Phototherapy. ACS Nano 2018;12:11446-57. [PMID: 30345740 DOI: 10.1021/acsnano.8b06478] [Cited by in Crossref: 96] [Cited by in F6Publishing: 101] [Article Influence: 19.2] [Reference Citation Analysis]
236 Chai S, Kan S, Sun R, Zhou R, Sun Y, Chen W, Yu B. Fabricating polydopamine-coated MoSe2-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy. Int J Nanomedicine 2018;13:7607-21. [PMID: 30510420 DOI: 10.2147/IJN.S181681] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
237 Hua X, Bao Y, Zeng J, Wu F. Ultrasmall All-In-One Nanodots Formed via Carbon Dot-Mediated and Albumin-Based Synthesis: Multimodal Imaging-Guided and Mild Laser-Enhanced Cancer Therapy. ACS Appl Mater Interfaces 2018;10:42077-87. [DOI: 10.1021/acsami.8b16065] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 8.2] [Reference Citation Analysis]
238 Shi H, Wang Y, Huang X, Liang P, Tang Y, Zhang Y, Fu N, Huang W, Dong X. NIR-Absorbing water-soluble conjugated polymer dots for photoacoustic imaging-guided photothermal/photodynamic synergetic cancer therapy. J Mater Chem B 2018;6:7402-10. [PMID: 32254741 DOI: 10.1039/c8tb02349b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
239 Zhang J, Chen J, Ren J, Guo W, Li X, Chen R, Chelora J, Cui X, Wan Y, Liang X, Hao Y, Lee C. Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency. Biomaterials 2018;181:92-102. [DOI: 10.1016/j.biomaterials.2018.07.042] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 11.2] [Reference Citation Analysis]
240 Yang X, Shi N, Bai L, Ni Y, Li J, Si W, Li L, Shao J, Huang W, Dong X. Synthesis, characterization and fluorescence imaging property of BODIPY-DPP-based dyad/triad. Dyes and Pigments 2018;157:396-404. [DOI: 10.1016/j.dyepig.2018.04.054] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
241 Yi X, Xu M, Zhou H, Xiong S, Qian R, Chai Z, Zhao L, Yang K. Ultrasmall Hyperbranched Semiconducting Polymer Nanoparticles with Different Radioisotopes Labeling for Cancer Theranostics. ACS Nano 2018;12:9142-51. [PMID: 30180555 DOI: 10.1021/acsnano.8b03514] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
242 Ng CW, Li J, Pu K. Recent Progresses in Phototherapy-Synergized Cancer Immunotherapy. Adv Funct Mater 2018;28:1804688. [DOI: 10.1002/adfm.201804688] [Cited by in Crossref: 175] [Cited by in F6Publishing: 181] [Article Influence: 35.0] [Reference Citation Analysis]
243 Zheng X, Wang L, Liu M, Lei P, Liu F, Xie Z. Nanoscale Mixed-Component Metal–Organic Frameworks with Photosensitizer Spatial-Arrangement-Dependent Photochemistry for Multimodal-Imaging-Guided Photothermal Therapy. Chem Mater 2018;30:6867-76. [DOI: 10.1021/acs.chemmater.8b03043] [Cited by in Crossref: 96] [Cited by in F6Publishing: 97] [Article Influence: 19.2] [Reference Citation Analysis]
244 Zhu H, Cheng P, Chen P, Pu K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci 2018;6:746-65. [PMID: 29485662 DOI: 10.1039/c7bm01210a] [Cited by in Crossref: 199] [Cited by in F6Publishing: 210] [Article Influence: 39.8] [Reference Citation Analysis]
245 Liu G, Zhang S, Shi Y, Huang X, Tang Y, Chen P, Si W, Huang W, Dong X. “Wax-Sealed” Theranostic Nanoplatform for Enhanced Afterglow Imaging-Guided Photothermally Triggered Photodynamic Therapy. Adv Funct Mater 2018;28:1804317. [DOI: 10.1002/adfm.201804317] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 14.2] [Reference Citation Analysis]
246 Zhao M, Xu Y, Xie M, Zou L, Wang Z, Liu S, Zhao Q. Halogenated Aza-BODIPY for Imaging-Guided Synergistic Photodynamic and Photothermal Tumor Therapy. Adv Healthc Mater 2018;7:e1800606. [PMID: 30047582 DOI: 10.1002/adhm.201800606] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
247 Wang Y, Huang X, Tang Y, Zou J, Wang P, Zhang Y, Si W, Huang W, Dong X. A light-induced nitric oxide controllable release nano-platform based on diketopyrrolopyrrole derivatives for pH-responsive photodynamic/photothermal synergistic cancer therapy. Chem Sci 2018;9:8103-9. [PMID: 30542560 DOI: 10.1039/c8sc03386b] [Cited by in Crossref: 77] [Cited by in F6Publishing: 83] [Article Influence: 15.4] [Reference Citation Analysis]
248 Wang J, Xu W, Yang Z, Yan Y, Xie X, Qu N, Wang Y, Wang C, Hua J. New Diketopyrrolopyrrole-Based Ratiometric Fluorescent Probe for Intracellular Esterase Detection and Discrimination of Live and Dead Cells in Different Fluorescence Channels. ACS Appl Mater Interfaces 2018;10:31088-95. [DOI: 10.1021/acsami.8b11365] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
249 Xiao W, Wang P, Ou C, Huang X, Tang Y, Wu M, Si W, Shao J, Huang W, Dong X. 2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy. Biomaterials 2018;183:1-9. [PMID: 30142531 DOI: 10.1016/j.biomaterials.2018.08.034] [Cited by in Crossref: 72] [Cited by in F6Publishing: 78] [Article Influence: 14.4] [Reference Citation Analysis]
250 Lin S, Wang Y, Chen Z, Li L, Zeng J, Dong Q, Wang Y, Chai Z. Biomineralized Enzyme-Like Cobalt Sulfide Nanodots for Synergetic Phototherapy with Tumor Multimodal Imaging Navigation. ACS Sustainable Chem Eng 2018;6:12061-9. [DOI: 10.1021/acssuschemeng.8b02386] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
251 Guan Q, Zhou LL, Li YA, Dong YB. Diiodo-Bodipy-Encapsulated Nanoscale Metal-Organic Framework for pH-Driven Selective and Mitochondria Targeted Photodynamic Therapy. Inorg Chem 2018;57:10137-45. [PMID: 30074794 DOI: 10.1021/acs.inorgchem.8b01316] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
252 Sun H, Lv F, Liu L, Gu Q, Wang S. Conjugated Polymer Materials for Photothermal Therapy. Adv Therap 2018;1:1800057. [DOI: 10.1002/adtp.201800057] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
253 Huang L, Han G. Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics. Small Methods 2018;2:1700370. [PMID: 31872045 DOI: 10.1002/smtd.201700370] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
254 Li Y, Xiong J, Shao Z, Ai Y, Hua R, Luo G, Liang Q. An Asymmetrical Cyanine Dye Nanoparticles for Small Vessel Photoacoustic Imaging In Vivo. ChemNanoMat 2018;4:626-30. [DOI: 10.1002/cnma.201800170] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
255 An R, Gu Z, Sun H, Hu Y, Yan R, Ye D, Liu H. Self-assembly of Fluorescent Dehydroberberine Enhances Mitochondria-Dependent Antitumor Efficacy. Chemistry 2018;24:9812-9. [PMID: 29766578 DOI: 10.1002/chem.201801112] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
256 Zong S, Wang X, Lin W, Liu S, Zhang W. Simple D-A-D Structural Bisbithiophenyl Diketopyrrolopyrrole as Efficient Bioimaging and Photothermal Agents. Bioconjugate Chem 2018;29:2619-27. [DOI: 10.1021/acs.bioconjchem.8b00333] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
257 Wu J, Bremner DH, Niu S, Wu H, Wu J, Wang H, Li H, Zhu L. Functionalized MoS 2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy. Chemical Engineering Journal 2018;342:90-102. [DOI: 10.1016/j.cej.2018.02.052] [Cited by in Crossref: 60] [Cited by in F6Publishing: 45] [Article Influence: 12.0] [Reference Citation Analysis]
258 Pan G, Jia H, Zhu Y, Sun W, Cheng X, Wu F. Cyanine-Containing Polymeric Nanoparticles with Imaging/Therapy-Switchable Capability for Mitochondria-Targeted Cancer Theranostics. ACS Appl Nano Mater 2018;1:2885-97. [DOI: 10.1021/acsanm.8b00527] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
259 Repenko T, Rix A, Haehnle B, Lederle W, De Laporte L, Kuehne AJC. A water-soluble PEGylated RGD-functionalized bisbithiophenyl diketopyrrolopyrrole as a photoacoustic sonophore. Photochem Photobiol Sci 2018;17:617-21. [PMID: 29687129 DOI: 10.1039/c8pp00069g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
260 Zheng X, Wang L, Liu S, Zhang W, Liu F, Xie Z. Nanoparticles of Chlorin Dimer with Enhanced Absorbance for Photoacoustic Imaging and Phototherapy. Adv Funct Mater 2018;28:1706507. [DOI: 10.1002/adfm.201706507] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 16.2] [Reference Citation Analysis]
261 Dong T, Wen K, Chen J, Xie J, Fan W, Ma H, Yang L, Wu X, Xu F, Peng A, Huang H. Significant Enhancement of Photothermal and Photoacoustic Efficiencies for Semiconducting Polymer Nanoparticles through Simply Molecular Engineering. Adv Funct Mater 2018;28:1800135. [DOI: 10.1002/adfm.201800135] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
262 Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev 2018;47:2280-97. [PMID: 29528360 DOI: 10.1039/c7cs00522a] [Cited by in Crossref: 694] [Cited by in F6Publishing: 725] [Article Influence: 138.8] [Reference Citation Analysis]
263 Yang X, Wang D, Shi Y, Zou J, Zhao Q, Zhang Q, Huang W, Shao J, Xie X, Dong X. Black Phosphorus Nanosheets Immobilizing Ce6 for Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 2018;10:12431-40. [PMID: 29564897 DOI: 10.1021/acsami.8b00276] [Cited by in Crossref: 154] [Cited by in F6Publishing: 161] [Article Influence: 30.8] [Reference Citation Analysis]
264 Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic Dye Based Nanoparticles for Cancer Phototheranostics. Small 2018;14:1704247. [DOI: 10.1002/smll.201704247] [Cited by in Crossref: 162] [Cited by in F6Publishing: 170] [Article Influence: 32.4] [Reference Citation Analysis]
265 Chen D, Tang Q, Zou J, Yang X, Huang W, Zhang Q, Shao J, Dong X. pH-Responsive PEG-Doxorubicin-Encapsulated Aza-BODIPY Nanotheranostic Agent for Imaging-Guided Synergistic Cancer Therapy. Adv Healthc Mater 2018;7:e1701272. [PMID: 29334184 DOI: 10.1002/adhm.201701272] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 15.8] [Reference Citation Analysis]
266 Liu Y, Song N, Chen L, Liu S, Xie Z. Synthesis of a Near-Infrared BODIPY Dye for Bioimaging and Photothermal Therapy. Chem Asian J 2018;13:989-95. [DOI: 10.1002/asia.201701727] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
267 Zhang T, Zhang W, Zheng M, Xie Z. Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. Journal of Colloid and Interface Science 2018;514:584-91. [DOI: 10.1016/j.jcis.2017.12.074] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
268 Mao C, Xiang Y, Liu X, Cui Z, Yang X, Li Z, Zhu S, Zheng Y, Yeung KWK, Wu S. Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation To Promote Bacteria-Accompanied Wound Healing. ACS Nano 2018;12:1747-59. [PMID: 29376340 DOI: 10.1021/acsnano.7b08500] [Cited by in Crossref: 220] [Cited by in F6Publishing: 233] [Article Influence: 44.0] [Reference Citation Analysis]
269 Lv Y, Liu M, Zhang Y, Wang X, Zhang F, Li F, Bao WE, Wang J, Zhang Y, Wei W, Ma G, Zhao L, Tian Z. Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging. ACS Nano 2018;12:1350-8. [PMID: 29338190 DOI: 10.1021/acsnano.7b07716] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 14.6] [Reference Citation Analysis]
270 Miao Z, Lv L, Li K, Liu P, Li Z, Yang H, Zhao Q, Chang M, Zhen L, Xu C. Liquid Exfoliation of Colloidal Rhenium Disulfide Nanosheets as a Multifunctional Theranostic Agent for In Vivo Photoacoustic/CT Imaging and Photothermal Therapy. Small 2018;14:1703789. [DOI: 10.1002/smll.201703789] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
271 Sun T, Dou JH, Liu S, Wang X, Zheng X, Wang Y, Pei J, Xie Z. Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Appl Mater Interfaces 2018;10:7919-26. [PMID: 29424524 DOI: 10.1021/acsami.8b01458] [Cited by in Crossref: 148] [Cited by in F6Publishing: 156] [Article Influence: 29.6] [Reference Citation Analysis]
272 Tang Q, Xiao W, Li J, Chen D, Zhang Y, Shao J, Dong X. A fullerene-rhodamine B photosensitizer with pH-activated visible-light absorbance/fluorescence/photodynamic therapy. J Mater Chem B 2018;6:2778-84. [DOI: 10.1039/c8tb00372f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
273 Yan Y, Chen J, Yang Z, Zhang X, Liu Z, Hua J. NIR organic dyes based on phenazine-cyanine for photoacoustic imaging-guided photothermal therapy. J Mater Chem B 2018;6:7420-6. [DOI: 10.1039/c8tb01750f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
274 Cai Q, Xu J, Yang D, Dai Y, Yang G, Zhong C, Gai S, He F, Yang P. Polypyrrole-coated UCNPs@mSiO 2 @ZnO nanocomposite for combined photodynamic and photothermal therapy. J Mater Chem B 2018;6:8148-62. [DOI: 10.1039/c8tb02407c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
275 Zhou L, Jing Y, Liu Y, Liu Z, Gao D, Chen H, Song W, Wang T, Fang X, Qin W, Yuan Z, Dai S, Qiao ZA, Wu C. Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics. Theranostics 2018;8:663-75. [PMID: 29344297 DOI: 10.7150/thno.21927] [Cited by in Crossref: 75] [Cited by in F6Publishing: 82] [Article Influence: 15.0] [Reference Citation Analysis]
276 Sun P, Wang X, Wang G, Deng W, Shen Q, Jiang R, Wang W, Fan Q, Huang W. A perylene diimide zwitterionic polymer for photoacoustic imaging guided photothermal/photodynamic synergistic therapy with single near-infrared irradiation. J Mater Chem B 2018;6:3395-403. [DOI: 10.1039/c8tb00845k] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
277 Chen D, Zhang J, Tang Y, Huang X, Shao J, Si W, Ji J, Zhang Q, Huang W, Dong X. A tumor-mitochondria dual targeted aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy. J Mater Chem B 2018;6:4522-30. [DOI: 10.1039/c8tb01347k] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
278 Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018;6:6685-704. [DOI: 10.1039/c8tb01978a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
279 He H, Zheng X, Liu S, Zheng M, Xie Z, Wang Y, Yu M, Shuai X. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale 2018;10:10991-8. [DOI: 10.1039/c8nr02643b] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 14.0] [Reference Citation Analysis]
280 Cai Y, Liang P, Si W, Zhao B, Shao J, Huang W, Zhang Y, Zhang Q, Dong X. A selenophene substituted diketopyrrolopyrrole nanotheranostic agent for highly efficient photoacoustic/infrared-thermal imaging-guided phototherapy. Org Chem Front 2018;5:98-105. [DOI: 10.1039/c7qo00755h] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
281 Dai C, Chen Y, Jing X, Xiang L, Yang D, Lin H, Liu Z, Han X, Wu R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano 2017;11:12696-712. [PMID: 29156126 DOI: 10.1021/acsnano.7b07241] [Cited by in Crossref: 235] [Cited by in F6Publishing: 250] [Article Influence: 39.2] [Reference Citation Analysis]
282 Ding K, Zhang Y, Si W, Zhong X, Cai Y, Zou J, Shao J, Yang Z, Dong X. Zinc(II) Metalated Porphyrins as Photothermogenic Photosensitizers for Cancer Photodynamic/Photothermal Synergistic Therapy. ACS Appl Mater Interfaces 2018;10:238-47. [DOI: 10.1021/acsami.7b15583] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
283 Yang J, Cai Y, Zhou Y, Zhang C, Liang P, Zhao B, Shao J, Fu N, Huang W, Dong X. Highly effective thieno[2,3-b]indole-diketopyrrolopyrrole near-infrared photosensitizer for photodynamic/photothermal dual mode therapy. Dyes and Pigments 2017;147:270-82. [DOI: 10.1016/j.dyepig.2017.08.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
284 Zhang G, Dai Y, Wang D, Liu Y, Lu H, Qiu L, Cho K. Synthesis and characterization of thieno-isoindigo derivative-based near-infrared conjugated polymer for ambipolar field-effect transistors and photothermal conversion. Dyes and Pigments 2017;147:175-82. [DOI: 10.1016/j.dyepig.2017.07.073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
285 Liu Y, Song N, Chen L, Xie Z. Triple-BODIPY organic nanoparticles with particular fluorescence emission. Dyes and Pigments 2017;147:241-5. [DOI: 10.1016/j.dyepig.2017.08.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
286 Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018;155:217-35. [PMID: 29190479 DOI: 10.1016/j.biomaterials.2017.11.025] [Cited by in Crossref: 317] [Cited by in F6Publishing: 292] [Article Influence: 52.8] [Reference Citation Analysis]
287 Guo B, Sheng Z, Hu D, Li A, Xu S, Manghnani PN, Liu C, Guo L, Zheng H, Liu B. Molecular Engineering of Conjugated Polymers for Biocompatible Organic Nanoparticles with Highly Efficient Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS Nano 2017;11:10124-34. [PMID: 28892609 DOI: 10.1021/acsnano.7b04685] [Cited by in Crossref: 137] [Cited by in F6Publishing: 149] [Article Influence: 22.8] [Reference Citation Analysis]
288 Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017;117:13566-638. [DOI: 10.1021/acs.chemrev.7b00258] [Cited by in Crossref: 993] [Cited by in F6Publishing: 1059] [Article Influence: 165.5] [Reference Citation Analysis]
289 Du L, Qin H, Ma T, Zhang T, Xing D. In Vivo Imaging-Guided Photothermal/Photoacoustic Synergistic Therapy with Bioorthogonal Metabolic Glycoengineering-Activated Tumor Targeting Nanoparticles. ACS Nano 2017;11:8930-43. [PMID: 28892360 DOI: 10.1021/acsnano.7b03226] [Cited by in Crossref: 129] [Cited by in F6Publishing: 133] [Article Influence: 21.5] [Reference Citation Analysis]
290 Zou J, Yin Z, Ding K, Tang Q, Li J, Si W, Shao J, Zhang Q, Huang W, Dong X. BODIPY Derivatives for Photodynamic Therapy: Influence of Configuration versus Heavy Atom Effect. ACS Appl Mater Interfaces 2017;9:32475-81. [DOI: 10.1021/acsami.7b07569] [Cited by in Crossref: 119] [Cited by in F6Publishing: 124] [Article Influence: 19.8] [Reference Citation Analysis]
291 Luo Y, Wu H, Feng C, Xiao K, Yang X, Liu Q, Lin TY, Zhang H, Walton JH, Ajena Y, Hu Y, Lam KS, Li Y. "One-Pot" Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics. Theranostics 2017;7:3901-14. [PMID: 29109786 DOI: 10.7150/thno.20190] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
292 Liang P, Tang Q, Cai Y, Liu G, Si W, Shao J, Huang W, Zhang Q, Dong X. Self-quenched ferrocenyl diketopyrrolopyrrole organic nanoparticles with amplifying photothermal effect for cancer therapy. Chem Sci 2017;8:7457-63. [PMID: 29163898 DOI: 10.1039/c7sc03351f] [Cited by in Crossref: 67] [Cited by in F6Publishing: 72] [Article Influence: 11.2] [Reference Citation Analysis]
293 Cai Y, Liang P, Tang Q, Si W, Chen P, Zhang Q, Dong X. Diketopyrrolopyrrole-Based Photosensitizers Conjugated with Chemotherapeutic Agents for Multimodal Tumor Therapy. ACS Appl Mater Interfaces 2017;9:30398-405. [DOI: 10.1021/acsami.7b09025] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
294 Qi J, Fang Y, Kwok RTK, Zhang X, Hu X, Lam JWY, Ding D, Tang BZ. Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice. ACS Nano 2017;11:7177-88. [PMID: 28692799 DOI: 10.1021/acsnano.7b03062] [Cited by in Crossref: 179] [Cited by in F6Publishing: 188] [Article Influence: 29.8] [Reference Citation Analysis]
295 Yang X, Xue X, Luo Y, Lin TY, Zhang H, Lac D, Xiao K, He Y, Jia B, Lam KS, Li Y. Sub-100nm, long tumor retention SN-38-loaded photonic micelles for tri-modal cancer therapy. J Control Release 2017;261:297-306. [PMID: 28700898 DOI: 10.1016/j.jconrel.2017.07.014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
296 Shim G, Kim D, Kim J, Suh MS, Kim YK, Oh YK. Bacteriomimetic poly-γ-glutamic acid surface coating for hemocompatibility and safety of nanomaterials. Nanotoxicology 2017;11:762-70. [PMID: 28685628 DOI: 10.1080/17435390.2017.1353155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
297 Zhang Y, Yu J, Kahkoska AR, Gu Z. Photoacoustic Drug Delivery. Sensors (Basel) 2017;17:E1400. [PMID: 28617354 DOI: 10.3390/s17061400] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
298 Yang Z, Song J, Dai Y, Chen J, Wang F, Lin L, Liu Y, Zhang F, Yu G, Zhou Z, Fan W, Huang W, Fan Q, Chen X. Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy. Theranostics 2017;7:2177-85. [PMID: 28740543 DOI: 10.7150/thno.20545] [Cited by in Crossref: 58] [Cited by in F6Publishing: 66] [Article Influence: 9.7] [Reference Citation Analysis]
299 Liu W, Liu K, Zhao Y, Zhao S, Luo S, Tian Y, Teng Z, Wang S, Lu G. T 1 -Weighted MR/CT dual-modality imaging-guided photothermal therapy using gadolinium-functionalized triangular gold nanoprism. RSC Adv 2017;7:15702-8. [DOI: 10.1039/c7ra01101f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]