BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Long D, Liu T, Tan L, Shi H, Liang P, Tang S, Wu Q, Yu J, Dou J, Meng X. Multisynergistic Platform for Tumor Therapy by Mild Microwave Irradiation-Activated Chemotherapy and Enhanced Ablation. ACS Nano 2016;10:9516-28. [PMID: 27689440 DOI: 10.1021/acsnano.6b04749] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Tang T, Xu X, Wang Z, Tian J, Yang Y, Ou C, Bao H, Liu T. Cu2ZnSnS4 nanocrystals for microwave thermal and microwave dynamic combination tumor therapy. Chem Commun (Camb) 2019;55:13148-51. [PMID: 31617549 DOI: 10.1039/c9cc07762f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
2 Xiang H, Chen Y. Energy‐Converting Nanomedicine. Small 2019;15:1805339. [DOI: 10.1002/smll.201805339] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 16.7] [Reference Citation Analysis]
3 Zhou H, Gong Y, Liu Y, Huang A, Zhu X, Liu J, Yuan G, Zhang L, Wei J, Liu J. Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer's disease. Biomaterials 2020;237:119822. [DOI: 10.1016/j.biomaterials.2020.119822] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 12.5] [Reference Citation Analysis]
4 Li W, Zhang S, Xing D, Qin H. Pulsed Microwave-Induced Thermoacoustic Shockwave for Precise Glioblastoma Therapy with the Skin and Skull Intact. Small 2022;:e2201342. [PMID: 35585690 DOI: 10.1002/smll.202201342] [Reference Citation Analysis]
5 Zhai S, Hu X, Ji Z, Qin H, Wang Z, Hu Y, Xing D. Pulsed Microwave-Pumped Drug-Free Thermoacoustic Therapy by Highly Biocompatible and Safe Metabolic Polyarginine Probes. Nano Lett 2019;19:1728-35. [DOI: 10.1021/acs.nanolett.8b04723] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
6 Chen X, Fu C, Wang Y, Wu Q, Meng X, Xu K. Mitochondria-targeting nanoparticles for enhanced microwave ablation of cancer. Nanoscale 2018;10:15677-85. [PMID: 30091769 DOI: 10.1039/c8nr03927e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
7 Fu C, Zhou H, Tan L, Huang Z, Wu Q, Ren X, Ren J, Meng X. Microwave-Activated Mn-Doped Zirconium Metal-Organic Framework Nanocubes for Highly Effective Combination of Microwave Dynamic and Thermal Therapies Against Cancer. ACS Nano 2018;12:2201-10. [PMID: 29286623 DOI: 10.1021/acsnano.7b08868] [Cited by in Crossref: 95] [Cited by in F6Publishing: 82] [Article Influence: 23.8] [Reference Citation Analysis]
8 Gou S, Yang J, Ma Y, Zhang X, Zu M, Kang T, Liu S, Ke B, Xiao B. Multi-responsive nanococktails with programmable targeting capacity for imaging-guided mitochondrial phototherapy combined with chemotherapy. J Control Release 2020;327:371-83. [PMID: 32810527 DOI: 10.1016/j.jconrel.2020.08.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
9 Li T, Wu Q, Wang W, Chen Z, Tan L, Yu J, Fu C, Ren X, Liang P, Ren J, Ma L, Meng X. MOF-derived nano-popcorns synthesized by sonochemistry as efficient sensitizers for tumor microwave thermal therapy. Biomaterials 2020;234:119773. [DOI: 10.1016/j.biomaterials.2020.119773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
10 Wu Q, Li M, Tan L, Yu J, Chen Z, Su L, Ren X, Fu C, Ren J, Li L, Cao F, Liang P, Zhang Y, Meng X. A tumor treatment strategy based on biodegradable BSA@ZIF-8 for simultaneously ablating tumors and inhibiting infection. Nanoscale Horiz 2018;3:606-15. [PMID: 32254113 DOI: 10.1039/c8nh00113h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 4.8] [Reference Citation Analysis]
11 Busquets MA, Estelrich J. Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discov Today 2020;25:1431-43. [PMID: 32492486 DOI: 10.1016/j.drudis.2020.05.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Bao W, Liu X, Lv Y, Lu GH, Li F, Zhang F, Liu B, Li D, Wei W, Li Y. Nanolongan with Multiple On-Demand Conversions for Ferroptosis-Apoptosis Combined Anticancer Therapy. ACS Nano 2019;13:260-73. [PMID: 30616348 DOI: 10.1021/acsnano.8b05602] [Cited by in Crossref: 99] [Cited by in F6Publishing: 85] [Article Influence: 33.0] [Reference Citation Analysis]
13 Yang Z, Wang L, Liu Y, Liu S, Tang D, Meng L, Cui B. ZnO capped flower-like porous carbon-Fe3O4 composite as carrier for bi-triggered drug delivery. Mater Sci Eng C Mater Biol Appl 2020;107:110256. [PMID: 31761234 DOI: 10.1016/j.msec.2019.110256] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
14 Wang Z, Zhang Y, Cao B, Ji Z, Luo W, Zhai S, Zhang D, Wang W, Xing D, Hu X. Explosible nanocapsules excited by pulsed microwaves for efficient thermoacoustic-chemo combination therapy. Nanoscale 2019;11:1710-9. [DOI: 10.1039/c8nr08498j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
15 Wu Q, Xia N, Long D, Tan L, Rao W, Yu J, Fu C, Ren X, Li H, Gou L, Liang P, Ren J, Li L, Meng X. Dual-Functional Supernanoparticles with Microwave Dynamic Therapy and Microwave Thermal Therapy. Nano Lett 2019;19:5277-86. [DOI: 10.1021/acs.nanolett.9b01735] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
16 Wu Q, Du Q, Sun X, Niu M, Tan L, Fu C, Ren X, Zheng Y, Liang T, Zhao J, Lv X, Liang P, Yang D, Meng X, Yu J. MnMOF-based microwave-glutathione dual-responsive nano-missile for enhanced microwave Thermo-dynamic chemotherapy of drug-resistant tumors. Chemical Engineering Journal 2022;439:135582. [DOI: 10.1016/j.cej.2022.135582] [Reference Citation Analysis]
17 Hou Q, Zhang K, Chen S, Chen J, Zhang Y, Gong N, Guo W, Fang C, Wang L, Jiang J, Dou J, Liang X, Yu J, Liang P. Physical & Chemical Microwave Ablation (MWA) Enabled by Nonionic MWA Nanosensitizers Repress Incomplete MWA-Arised Liver Tumor Recurrence. ACS Nano 2022. [PMID: 35352557 DOI: 10.1021/acsnano.1c10714] [Reference Citation Analysis]
18 Zhang R, Yan F, Chen Y. Exogenous Physical Irradiation on Titania Semiconductors: Materials Chemistry and Tumor-Specific Nanomedicine. Adv Sci (Weinh) 2018;5:1801175. [PMID: 30581710 DOI: 10.1002/advs.201801175] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
19 Le M, Huang W, Chen K, Lin C, Cai L, Zhang H, Jia Y. Upper critical solution temperature polymeric drug carriers. Chemical Engineering Journal 2022;432:134354. [DOI: 10.1016/j.cej.2021.134354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ma X, Ren X, Guo X, Fu C, Wu Q, Tan L, Li H, Zhang W, Chen X, Zhong H, Meng X. Multifunctional iron-based Metal−Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 2019;214:119223. [DOI: 10.1016/j.biomaterials.2019.119223] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 11.7] [Reference Citation Analysis]
21 Cao Y, Zhou Y, Pan J, Zhong X, Ding J, Jing X, Sun S. A general strategy towards an injectable microwave-sensitive immune hydrogel for combined percutaneous microwave ablation and immunotherapy. Chemical Engineering Journal 2021;422:130111. [DOI: 10.1016/j.cej.2021.130111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
22 Feng L, Wang C, Li C, Gai S, He F, Li R, An G, Zhong C, Dai Y, Yang Z, Yang P. Multifunctional Theranostic Nanoplatform Based on Fe-mTa 2 O 5 @CuS-ZnPc/PCM for Bimodal Imaging and Synergistically Enhanced Phototherapy. Inorg Chem 2018;57:4864-76. [DOI: 10.1021/acs.inorgchem.7b02959] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
23 Gautam M, Poudel K, Yong CS, Kim JO. Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment. Int J Pharm 2018;549:31-49. [PMID: 30053487 DOI: 10.1016/j.ijpharm.2018.07.055] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 9.8] [Reference Citation Analysis]
24 Xu J, Cheng X, Tan L, Fu C, Ahmed M, Tian J, Dou J, Zhou Q, Ren X, Wu Q, Tang S, Zhou H, Meng X, Yu J, Liang P. Microwave Responsive Nanoplatform via P-Selectin Mediated Drug Delivery for Treatment of Hepatocellular Carcinoma with Distant Metastasis. Nano Lett 2019;19:2914-27. [DOI: 10.1021/acs.nanolett.8b05202] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
25 Wang Z, Gai S, Wang C, Yang G, Zhong C, Dai Y, He F, Yang D, Yang P. Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment. Chemical Engineering Journal 2019;361:117-28. [DOI: 10.1016/j.cej.2018.12.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 35] [Article Influence: 17.3] [Reference Citation Analysis]
26 Bu Y, Cui B, Zhao W, Yang Z. Preparation of multifunctional Fe 3 O 4 @ZnAl 2 O 4 :Eu 3+ @mSiO 2 –APTES drug-carrier for microwave controlled release of anticancer drugs. RSC Adv 2017;7:55489-95. [DOI: 10.1039/c7ra12004d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
27 Li W, Wang X, Zhang S, Hu J, Du Y, Kang X, Xu X, Ying X, You J, Du Y. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle. Biomaterials 2017;131:36-46. [DOI: 10.1016/j.biomaterials.2017.03.048] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
28 Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat Commun 2017;8:357. [PMID: 28842577 DOI: 10.1038/s41467-017-00424-8] [Cited by in Crossref: 536] [Cited by in F6Publishing: 495] [Article Influence: 107.2] [Reference Citation Analysis]
29 Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Adv Mater 2020;32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 25.0] [Reference Citation Analysis]
30 Mao J, Tang S, Hong D, Zhao F, Niu M, Han X, Qi J, Bao H, Jiang Y, Fu C, Long D, Meng X, Su H. Therapeutic efficacy of novel microwave-sensitized mPEG-PLGA@ZrO 2 @(DOX + ILS) drug-loaded microspheres in rabbit VX 2 liver tumours. Nanoscale 2017;9:3429-39. [DOI: 10.1039/c6nr09862b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
31 Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018;6:6685-704. [DOI: 10.1039/c8tb01978a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
32 Chen L, Zhong H, Qi X, Shao H, Xu K. Modified core–shell magnetic mesoporous zirconia nanoparticles formed through a facile “outside-to-inside” way for CT/MRI dual-modal imaging and magnetic targeting cancer chemotherapy. RSC Adv 2019;9:13220-33. [DOI: 10.1039/c9ra01063g] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Cao Y, Zhang H. Recent advances in nano material-based application of liver neoplasms. Smart Materials in Medicine 2021;2:114-23. [DOI: 10.1016/j.smaim.2021.03.001] [Reference Citation Analysis]
34 Subasinghe SAAS, Romero J, Ward CL, Bailey MD, Zehner DR, Mehta PJ, Carniato F, Botta M, Yustein JT, Pautler RG, Allen MJ. Magnetic resonance thermometry using a GdIII-based contrast agent. Chem Commun (Camb) 2021;57:1770-3. [PMID: 33475101 DOI: 10.1039/d0cc06400a] [Reference Citation Analysis]
35 Feng L, Gai S, He F, Dai Y, Zhong C, Yang P, Lin J. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 2017;147:39-52. [DOI: 10.1016/j.biomaterials.2017.09.011] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
36 Ma T, Liu Y, Wu Q, Luo L, Cui Y, Wang X, Chen X, Tan L, Meng X. Quercetin-Modified Metal-Organic Frameworks for Dual Sensitization of Radiotherapy in Tumor Tissues by Inhibiting the Carbonic Anhydrase IX. ACS Nano 2019;13:4209-19. [PMID: 30933559 DOI: 10.1021/acsnano.8b09221] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 16.0] [Reference Citation Analysis]
37 Zhang H, Chen J, Zhu X, Ren Y, Cao F, Zhu L, Hou L, Zhang H, Zhang Z. Ultrasound induced phase-transition and invisible nanobomb for imaging-guided tumor sonodynamic therapy. J Mater Chem B 2018;6:6108-21. [DOI: 10.1039/c8tb01788c] [Cited by in Crossref: 28] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
38 Chen Z, Niu M, Chen G, Wu Q, Tan L, Fu C, Ren X, Zhong H, Xu K, Meng X. Oxygen Production of Modified Core-Shell CuO@ZrO2 Nanocomposites by Microwave Radiation to Alleviate Cancer Hypoxia for Enhanced Chemo-Microwave Thermal Therapy. ACS Nano 2018;12:12721-32. [PMID: 30512923 DOI: 10.1021/acsnano.8b07749] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 13.5] [Reference Citation Analysis]
39 Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
40 Chen Z, Wu Q, Guo W, Niu M, Tan L, Wen N, Zhao L, Fu C, Yu J, Ren X, Liang P, Meng X. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials 2021;276:121016. [PMID: 34274778 DOI: 10.1016/j.biomaterials.2021.121016] [Reference Citation Analysis]
41 Floris B, Sabuzi F, Galloni P, Conte V. The Beneficial Sinergy of MW Irradiation and Ionic Liquids in Catalysis of Organic Reactions. Catalysts 2017;7:261. [DOI: 10.3390/catal7090261] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
42 Li S, Liu Y, Liu X, Lan B, Li W, Guo F. Magnetite Fe3O4 Nanoparticles Enhance Mild Microwave Ablation of Tumor by Activating the IRE1-ASK1-JNK Pathway and Inducing Endoplasmic Reticulum Stress. Int J Nanomedicine 2021;16:6129-40. [PMID: 34511910 DOI: 10.2147/IJN.S312823] [Reference Citation Analysis]
43 Yang Z, Cui B, Bu Y, Wang Y. Preparation of flower-dewdrops Fe3O4/carbon-SiO2 microsphere for microwave-triggered drug delivery. Journal of Alloys and Compounds 2019;775:826-35. [DOI: 10.1016/j.jallcom.2018.10.164] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
44 Yan X, Pan Y, Ji L, Gu J, Hu Y, Xia Y, Li C, Zhou X, Yang D, Yu Y. Multifunctional Metal-Organic Framework as a Versatile Nanoplatform for Aβ Oligomer Imaging and Chemo-Photothermal Treatment in Living Cells. Anal Chem 2021;93:13823-34. [PMID: 34609144 DOI: 10.1021/acs.analchem.1c02459] [Reference Citation Analysis]
45 Feng L, Xie R, Wang C, Gai S, He F, Yang D, Yang P, Lin J. Magnetic Targeting, Tumor Microenvironment-Responsive Intelligent Nanocatalysts for Enhanced Tumor Ablation. ACS Nano 2018;12:11000-12. [PMID: 30339353 DOI: 10.1021/acsnano.8b05042] [Cited by in Crossref: 231] [Cited by in F6Publishing: 217] [Article Influence: 57.8] [Reference Citation Analysis]
46 Su L, Wu Q, Tan L, Huang Z, Fu C, Ren X, Xia N, Chen Z, Ma X, Lan X, Zhang Q, Meng X. High Biocompatible ZIF-8 Coated by ZrO 2 for Chemo-microwave Thermal Tumor Synergistic Therapy. ACS Appl Mater Interfaces 2019;11:10520-31. [DOI: 10.1021/acsami.8b22177] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
47 Yang X, Li L, He D, Hai L, Tang J, Li H, He X, Wang K. A metal-organic framework based nanocomposite with co-encapsulation of Pd@Au nanoparticles and doxorubicin for pH- and NIR-triggered synergistic chemo-photothermal treatment of cancer cells. J Mater Chem B 2017;5:4648-59. [PMID: 32264307 DOI: 10.1039/c7tb00715a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 5] [Article Influence: 5.8] [Reference Citation Analysis]
48 Zhang Y, Guo L, Kong F, Duan L, Li H, Fang C, Zhang K. Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1733. [PMID: 34137183 DOI: 10.1002/wnan.1733] [Reference Citation Analysis]
49 Dou JP, Wu Q, Fu CH, Zhang DY, Yu J, Meng XW, Liang P. Amplified intracellular Ca2+ for synergistic anti-tumor therapy of microwave ablation and chemotherapy. J Nanobiotechnology 2019;17:118. [PMID: 31791353 DOI: 10.1186/s12951-019-0549-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 Li J, Zhang F, Hu Z, Song W, Li G, Liang G, Zhou J, Li K, Cao Y, Luo Z, Cai K. Drug "Pent-Up" in Hollow Magnetic Prussian Blue Nanoparticles for NIR-Induced Chemo-Photothermal Tumor Therapy with Trimodal Imaging. Adv Healthc Mater 2017;6. [PMID: 28464527 DOI: 10.1002/adhm.201700005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
51 Tang S, Fu C, Tan L, Liu T, Mao J, Ren X, Su H, Long D, Chai Q, Huang Z, Chen X, Wang J, Ren J, Meng X. Imaging-guided synergetic therapy of orthotopic transplantation tumor by superselectively arterial administration of microwave-induced microcapsules. Biomaterials 2017;133:144-53. [PMID: 28437625 DOI: 10.1016/j.biomaterials.2017.04.027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
52 Tang S, Zhou H, Wu Q, Fu C, Tan L, Ren X, Huang Z, Chen X, Ren J, Meng X. Porous PLGA microspheres with recruited ions and doxorubicin for triple-combination therapy of larger hepatocellular carcinoma. J Mater Chem B 2017;5:9025-32. [PMID: 32264130 DOI: 10.1039/c7tb01472d] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
53 Chen N, Fu W, Zhou J, Mei L, Yang J, Tian Y, Wang Q, Yin W. Mn2+-doped ZrO2@PDA nanocomposite for multimodal imaging-guided chemo-photothermal combination therapy. Chinese Chemical Letters 2021;32:2405-10. [DOI: 10.1016/j.cclet.2021.02.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Wang J, Wang D, Yan H, Tao L, Wei Y, Li Y, Wang X, Zhao W, Zhang Y, Zhao L, Sun X. An injectable ionic hydrogel inducing high temperature hyperthermia for microwave tumor ablation. J Mater Chem B 2017;5:4110-20. [DOI: 10.1039/c7tb00556c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 4.4] [Reference Citation Analysis]
55 Wu Q, Chen X, Wang P, Wu Q, Qi X, Han X, Chen L, Meng X, Xu K. Delivery of Arsenic Trioxide by Multifunction Nanoparticles To Improve the Treatment of Hepatocellular Carcinoma. ACS Appl Mater Interfaces 2020;12:8016-29. [PMID: 31997633 DOI: 10.1021/acsami.9b22802] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
56 Long D, Niu M, Tan L, Fu C, Ren X, Xu K, Zhong H, Wang J, Li L, Meng X. Ball-in-ball ZrO 2 nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli-responsive chemotherapy of tumors. Nanoscale 2017;9:8834-47. [DOI: 10.1039/c7nr02511d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
57 Zhou H, Fu C, Chen X, Tan L, Yu J, Wu Q, Su L, Huang Z, Cao F, Ren X, Ren J, Liang P, Meng X. Mitochondria-targeted zirconium metal-organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors. Biomater Sci 2018;6:1535-45. [PMID: 29670952 DOI: 10.1039/c8bm00142a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 5] [Article Influence: 5.8] [Reference Citation Analysis]
58 Zhu J, Wang W, Wang X, Zhong L, Song X, Wang W, Zhao Y, Dong X. Multishell Nanoparticles with "Linkage Mechanism" for Thermal Responsive Photodynamic and Gas Synergistic Therapy. Adv Healthc Mater 2021;10:e2002038. [PMID: 33586335 DOI: 10.1002/adhm.202002038] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
59 Zhang H, Li Y, Liu J, Chang C. Nano-Sonosensitized Sonodynamic Nanomedicine Augments Tumor-Selective Catalytic Tumor Eradication. Front Mater 2022;9:908789. [DOI: 10.3389/fmats.2022.908789] [Reference Citation Analysis]
60 Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P. Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol 2017;10:106. [PMID: 28499452 DOI: 10.1186/s13045-017-0470-7] [Cited by in Crossref: 131] [Cited by in F6Publishing: 124] [Article Influence: 26.2] [Reference Citation Analysis]
61 Wu Q, Yu J, Li M, Tan L, Ren X, Fu C, Chen Z, Cao F, Ren J, Li L, Liang P, Zhang Y, Meng X. Nanoengineering of nanorattles for tumor treatment by CT imaging-guided simultaneous enhanced microwave thermal therapy and managing inflammation. Biomaterials 2018;179:122-33. [DOI: 10.1016/j.biomaterials.2018.06.041] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
62 Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, Wang J, Chen H, Ma Y, Li Z, Wang C, Qi Q, Thorsen F, Wang J, Cui J, Li X, Ni S. Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles. ACS Appl Mater Interfaces 2020;12:43408-21. [PMID: 32885649 DOI: 10.1021/acsami.0c12042] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
63 Wu Q, Niu M, Chen X, Tan L, Fu C, Ren X, Ren J, Li L, Xu K, Zhong H, Meng X. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 2018;162:132-43. [DOI: 10.1016/j.biomaterials.2018.02.022] [Cited by in Crossref: 129] [Cited by in F6Publishing: 112] [Article Influence: 32.3] [Reference Citation Analysis]
64 Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials (Basel) 2018;11:E324. [PMID: 29473914 DOI: 10.3390/ma11020324] [Cited by in Crossref: 70] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
65 Zou Y, Zhang W, Zhou H, Fu C, Tan L, Huang Z, Ren X, Ren J, Chen X, Meng X. Zirconium metal-organic framework nanocrystal as microwave sensitizer for enhancement of tumor therapy. Chinese Chemical Letters 2019;30:481-4. [DOI: 10.1016/j.cclet.2018.06.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]