BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma J, Liu R, Wang X, Liu Q, Chen Y, Valle RP, Zuo YY, Xia T, Liu S. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano 2015;9:10498-515. [PMID: 26389709 DOI: 10.1021/acsnano.5b04751] [Cited by in Crossref: 258] [Cited by in F6Publishing: 241] [Article Influence: 36.9] [Reference Citation Analysis]
Number Citing Articles
1 Xin Y, Wan B. A label-free quantification method for measuring graphene oxide in biological samples. Anal Chim Acta 2019;1079:103-10. [PMID: 31387700 DOI: 10.1016/j.aca.2019.06.036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
2 Zheng Z, Chen Y, Hong H, Shen Y, Wang Y, Sun J, Wang X. The "Yin and Yang" of Immunomodulatory Magnesium-Enriched Graphene Oxide Nanoscrolls Decorated Biomimetic Scaffolds in Promoting Bone Regeneration. Adv Healthc Mater 2021;10:e2000631. [PMID: 33166076 DOI: 10.1002/adhm.202000631] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
3 Volkov Y, Mcintyre J, Prina-mello A. Graphene toxicity as a double-edged sword of risks and exploitable opportunities: a critical analysis of the most recent trends and developments. 2D Mater 2017;4:022001. [DOI: 10.1088/2053-1583/aa5476] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 7.4] [Reference Citation Analysis]
4 Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018;130:90-112. [PMID: 30149885 DOI: 10.1016/j.addr.2018.06.023] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
5 Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Seminars in Immunology 2017;34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Cited by in Crossref: 120] [Cited by in F6Publishing: 114] [Article Influence: 24.0] [Reference Citation Analysis]
6 Qu Y, Sun F, He F, Yu C, Lv J, Zhang Q, Liang D, Yu C, Wang J, Zhang X, Xu A, Wu J. Glycyrrhetinic acid-modified graphene oxide mediated siRNA delivery for enhanced liver-cancer targeting therapy. Eur J Pharm Sci 2019;139:105036. [PMID: 31446078 DOI: 10.1016/j.ejps.2019.105036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
7 Ma J, Li R, Liu Y, Qu G, Liu J, Guo W, Song H, Li X, Liu Y, Xia T, Yan B, Liu S. Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portal-of-Entry. Small 2017;13:1603830. [DOI: 10.1002/smll.201603830] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
8 Xia T, Zhu Y, Mu L, Zhang ZF, Liu S. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl Sci Rev 2016;3:416-29. [PMID: 28649460 DOI: 10.1093/nsr/nww064] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
9 Yu H, Wang B, Zhou S, Zhu M, Chen W, Chen H, Li X, Liang S, Wang M, Zheng L, Zhao L, Chai Z, Feng W. Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery. Nano Today 2021;38:101151. [DOI: 10.1016/j.nantod.2021.101151] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
10 Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano 2020;14:6383-406. [PMID: 32519842 DOI: 10.1021/acsnano.0c03697] [Cited by in Crossref: 277] [Cited by in F6Publishing: 226] [Article Influence: 138.5] [Reference Citation Analysis]
11 Wu Q, Jiang B, Weng Y, Liu J, Li S, Hu Y, Yang K, Liang Z, Zhang L, Zhang Y. 3-Carboxybenzoboroxole Functionalized Polyethylenimine Modified Magnetic Graphene Oxide Nanocomposites for Human Plasma Glycoproteins Enrichment under Physiological Conditions. Anal Chem 2018;90:2671-7. [DOI: 10.1021/acs.analchem.7b04451] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
12 Domanico M, Fukuto A, Tran LM, Bustamante J, Edwards PC, Pinkerton KE, Thomasy SM, Van Winkle LS. Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium. NanoImpact 2022;26:100404. [DOI: 10.1016/j.impact.2022.100404] [Reference Citation Analysis]
13 Ovais M, Guo M, Chen C. Tailoring Nanomaterials for Targeting Tumor-Associated Macrophages. Adv Mater 2019;31:e1808303. [PMID: 30883982 DOI: 10.1002/adma.201808303] [Cited by in Crossref: 134] [Cited by in F6Publishing: 117] [Article Influence: 44.7] [Reference Citation Analysis]
14 Liu Y, Peng J, Wang S, Xu M, Gao M, Xia T, Weng J, Xu A, Liu S. Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. NPG Asia Mater 2018;10:e458-e458. [DOI: 10.1038/am.2017.225] [Cited by in Crossref: 42] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
15 Ma J, Liu X, Yang Y, Qiu J, Dong Z, Ren Q, Zuo YY, Xia T, Chen W, Liu S. Binding of Benzo[a]pyrene Alters the Bioreactivity of Fine Biochar Particles toward Macrophages Leading to Deregulated Macrophagic Defense and Autophagy. ACS Nano 2021;15:9717-31. [PMID: 34124884 DOI: 10.1021/acsnano.1c00324] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
16 Wu Y, Guo Y, Song H, Liu W, Yang Y, Liu Y, Sang N, Zuo YY, Liu S. Oxygen content determines the bio-reactivity and toxicity profiles of carbon black particles. Ecotoxicology and Environmental Safety 2018;150:207-14. [DOI: 10.1016/j.ecoenv.2017.12.044] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
17 Zhang T, Li Y, Zhao X, Li W, Sun X, Li J, Lu R. A novel recyclable absorption material with boronate affinity. Separation and Purification Technology 2021;272:118880. [DOI: 10.1016/j.seppur.2021.118880] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Zhu J, Xu M, Wang F, Gao M, Zhang Z, Xu Y, Chen W, Liu S. Low-dose exposure to graphene oxide significantly increases the metal toxicity to macrophages by altering their cellular priming state. Nano Res 2018;11:4111-22. [DOI: 10.1007/s12274-018-1996-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
19 Koyyada A, Orsu P. Safety and toxicity concerns of graphene and its composites. Analytical Applications of Graphene for Comprehensive Analytical Chemistry. Elsevier; 2020. pp. 327-53. [DOI: 10.1016/bs.coac.2020.08.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
20 Gao J, Sanchez-purra M, Huang H, Wang S, Chen Y, Yu X, Luo Q, Hamad-schifferli K, Liu S. Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. Sci China Chem 2017;60:1219-29. [DOI: 10.1007/s11426-017-9088-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 6.6] [Reference Citation Analysis]
21 Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021;50:11381-485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Pumera M. Graphene Oxide Stimulates Cells to Ruffle and Shed Plasma Membranes. Chem 2016;1:189-90. [DOI: 10.1016/j.chempr.2016.07.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Lebre F, Hanlon D, Boland JB, Coleman J, Lavelle EC. Exfoliation in Endotoxin‐Free Albumin Generates Pristine Graphene with Reduced Inflammatory Properties. Adv Biosys 2018;2:1800102. [DOI: 10.1002/adbi.201800102] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
24 Erf GF, Falcon DM, Sullivan KS, Bourdo SE. T lymphocytes dominate local leukocyte infiltration in response to intradermal injection of functionalized graphene-based nanomaterial. J Appl Toxicol 2017;37:1317-24. [PMID: 28621440 DOI: 10.1002/jat.3492] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
25 Jin SS, He DQ, Luo D, Wang Y, Yu M, Guan B, Fu Y, Li ZX, Zhang T, Zhou YH, Wang CY, Liu Y. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration. ACS Nano 2019;13:6581-95. [PMID: 31125522 DOI: 10.1021/acsnano.9b00489] [Cited by in Crossref: 100] [Cited by in F6Publishing: 81] [Article Influence: 33.3] [Reference Citation Analysis]
26 Mukherjee SP, Lozano N, Kucki M, Del Rio-Castillo AE, Newman L, Vázquez E, Kostarelos K, Wick P, Fadeel B. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production. PLoS One 2016;11:e0166816. [PMID: 27880838 DOI: 10.1371/journal.pone.0166816] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 8.7] [Reference Citation Analysis]
27 Cui X, Xu S, Wang X, Chen C. The nano-bio interaction and biomedical applications of carbon nanomaterials. Carbon 2018;138:436-50. [DOI: 10.1016/j.carbon.2018.07.069] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 8.8] [Reference Citation Analysis]
28 Lu K, Dong S, Petersen EJ, Niu J, Chang X, Wang P, Lin S, Gao S, Mao L. Biological Uptake, Distribution, and Depuration of Radio-Labeled Graphene in Adult Zebrafish: Effects of Graphene Size and Natural Organic Matter. ACS Nano 2017;11:2872-85. [PMID: 28240869 DOI: 10.1021/acsnano.6b07982] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 13.6] [Reference Citation Analysis]
29 Pelin M, Fusco L, Martín C, Sosa S, Frontiñán-Rubio J, González-Domínguez JM, Durán-Prado M, Vázquez E, Prato M, Tubaro A. Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale 2018;10:11820-30. [PMID: 29920573 DOI: 10.1039/c8nr02933d] [Cited by in Crossref: 51] [Cited by in F6Publishing: 23] [Article Influence: 17.0] [Reference Citation Analysis]
30 Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020;94:1915-39. [DOI: 10.1007/s00204-020-02717-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
31 Alphandéry E. Nano dimensions/adjuvants in COVID-19 vaccines. J Mater Chem B 2022. [PMID: 35166754 DOI: 10.1039/d1tb02408f] [Reference Citation Analysis]
32 Zheng H, Ma R, Gao M, Tian X, Li Y, Zeng L, Li R. Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Science Bulletin 2018;63:133-42. [DOI: 10.1016/j.scib.2017.12.012] [Cited by in Crossref: 52] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
33 Pandit S, De M. Roles of Edges and Surfaces of Graphene Oxide in Molecular Recognition of Proteins: Implications for Enzymatic Inhibition of α-Chymotrypsin. ACS Appl Nano Mater 2020;3:3829-38. [DOI: 10.1021/acsanm.0c00543] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
34 Mahdavi R, Belgheisi G, Haghbin-Nazarpak M, Omidi M, Khojasteh A, Solati-Hashjin M. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. J Mater Sci Mater Med 2020;31:97. [PMID: 33135110 DOI: 10.1007/s10856-020-06430-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Ema M, Gamo M, Honda K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul Toxicol Pharmacol 2017;85:7-24. [PMID: 28161457 DOI: 10.1016/j.yrtph.2017.01.011] [Cited by in Crossref: 94] [Cited by in F6Publishing: 72] [Article Influence: 18.8] [Reference Citation Analysis]
36 Saravanabhavan SS, Rethinasabapathy M, Zsolt S, Kalambettu AB, Elumalai S, Janakiraman M, Huh YS, Natesan B. Graphene oxide functionalized with chitosan based nanoparticles as a carrier of siRNA in regulating Bcl-2 expression on Saos-2 & MG-63 cancer cells and its inflammatory response on bone marrow derived cells from mice. Materials Science and Engineering: C 2019;99:1459-68. [DOI: 10.1016/j.msec.2019.02.047] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
37 Fojtů M, Teo WZ, Pumera M. Environmental impact and potential health risks of 2D nanomaterials. Environ Sci : Nano 2017;4:1617-33. [DOI: 10.1039/c7en00401j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
38 Dalgėdienė I, Lučiūnaitė A, Žvirblienė A. Activation of Macrophages by Oligomeric Proteins of Different Size and Origin. Mediators Inflamm 2018;2018:7501985. [PMID: 30581370 DOI: 10.1155/2018/7501985] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
39 Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021;6:4209-42. [PMID: 33997503 DOI: 10.1016/j.bioactmat.2021.04.021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
40 Wang X, Sun B, Liu S, Xia T. Structure Activity Relationships of Engineered Nanomaterials in inducing NLRP3 Inflammasome Activation and Chronic Lung Fibrosis. NanoImpact 2017;6:99-108. [PMID: 28480337 DOI: 10.1016/j.impact.2016.08.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
41 Zhao C, Tang Z, Yan J, Fang J, Wang H, Cai Z. Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis. Science of The Total Environment 2017;592:357-65. [DOI: 10.1016/j.scitotenv.2017.03.035] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 9.4] [Reference Citation Analysis]
42 Rodrigues AF, Newman L, Lozano N, Mukherjee SP, Fadeel B, Bussy C, Kostarelos K. A blueprint for the synthesis and characterisation of thin graphene oxide with controlled lateral dimensions for biomedicine. 2D Mater 2018;5:035020. [DOI: 10.1088/2053-1583/aac05c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
43 Williams DF. Specifications for Innovative, Enabling Biomaterials Based on the Principles of Biocompatibility Mechanisms. Front Bioeng Biotechnol 2019;7:255. [PMID: 31649926 DOI: 10.3389/fbioe.2019.00255] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
44 Bernabò N, Fontana A, Sanchez MR, Valbonetti L, Capacchietti G, Zappacosta R, Greco L, Marchisio M, Lanuti P, Ercolino E, Barboni B. Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model. Carbon 2018;129:428-37. [DOI: 10.1016/j.carbon.2017.12.042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
45 Costa PM, Mei K, Kreuzer M, Li Y, Neveen HA, Grant V, Festy F, Pollard SM, Al-jamal KT. Selective toxicity of functionalised graphene oxide to patients-derived glioblastoma stem cells and minimal toxicity to non-cancerous brain tissue cells. 2D Mater 2020;7:045002. [DOI: 10.1088/2053-1583/ab9a0f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Yang X, Yang Q, Zheng G, Han S, Zhao F, Hu Q, Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environmental Toxicology 2018. [DOI: 10.1002/tox.22695] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
47 Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021;175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
48 Xu L, Dai Y, Wang Z, Zhao J, Li F, White JC, Xing B. Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Part Fibre Toxicol 2018;15:45. [PMID: 30424790 DOI: 10.1186/s12989-018-0279-8] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
49 Zhao C, Tang Z, Xie P, Lin K, Chung ACK, Cai Z. Immunotoxic Potential of Bisphenol F Mediated through Lipid Signaling Pathways on Macrophages. Environ Sci Technol 2019;53:11420-8. [PMID: 31453682 DOI: 10.1021/acs.est.8b07314] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
50 Lee BC, Lee JY, Kim J, Yoo JM, Kang I, Kim JJ, Shin N, Kim DJ, Choi SW, Kim D, Hong BH, Kang KS. Graphene quantum dots as anti-inflammatory therapy for colitis. Sci Adv 2020;6:eaaz2630. [PMID: 32494673 DOI: 10.1126/sciadv.aaz2630] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
51 Li T, Gao L, Zhang B, Nie G, Xie Z, Zhang H, Ågren H. Material-based engineering of bacteria for cancer diagnosis and therapy. Applied Materials Today 2021;25:101212. [DOI: 10.1016/j.apmt.2021.101212] [Reference Citation Analysis]
52 Guo M, Zhao L, Liu J, Wang X, Yao H, Chang X, Liu Y, Liu J, You M, Ren J, Wang F, Wang L, Wang Y, Liu H, Li Y, Zhao Y, Cai R, Chen C. The Underlying Function and Structural Organization of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for Local Immunomodulation. Nano Lett 2021;21:6005-13. [PMID: 34242035 DOI: 10.1021/acs.nanolett.1c01048] [Reference Citation Analysis]
53 Wang X, Peng G, Chen M, Zhao M, He Y, Jiang Y, Zhang X, Qin Y, Lin S. Reduced graphene oxide composites and its real-life application potential for in-situ crude oil removal. Chemosphere 2020;249:126141. [DOI: 10.1016/j.chemosphere.2020.126141] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
54 Pei X, Jiang C, Chen W. Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO2 nanocomposites: The synergistic effect. Environmental Pollution 2019;255:113211. [DOI: 10.1016/j.envpol.2019.113211] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
55 Nirmal NK, Awasthi KK, John PJ. Hepatotoxicity of graphene oxide in Wistar rats. Environ Sci Pollut Res Int 2021;28:46367-76. [PMID: 32632678 DOI: 10.1007/s11356-020-09953-0] [Reference Citation Analysis]
56 Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Int J Mol Sci 2019;20:E247. [PMID: 30634552 DOI: 10.3390/ijms20020247] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
57 Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential Cytotoxicity of Different Sizes of Graphene Oxide Nanoparticles in Leydig (TM3) and Sertoli (TM4) Cells. Nanomaterials (Basel) 2019;9:E139. [PMID: 30678270 DOI: 10.3390/nano9020139] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
58 Bordoni V, Reina G, Orecchioni M, Furesi G, Thiele S, Gardin C, Zavan B, Cuniberti G, Bianco A, Rauner M, Delogu LG. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale 2019;11:19408-21. [PMID: 31386739 DOI: 10.1039/c9nr03975a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
59 Yang S, Zhang Y, Lu S, Yang L, Yu S, Yang H. CaCO 3 -Encapsulated Au Nanoparticles Modulate Macrophages toward M1-like Phenotype. ACS Appl Bio Mater 2021;4:3214-23. [DOI: 10.1021/acsabm.0c01608] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Pei X, Zhang T, Zhong J, Chen Z, Jiang C, Chen W. Substoichiometric titanium oxide Ti2O3 exhibits greater efficiency in enhancing hydrolysis of 1,1,2,2-tetrachloroethane than TiO2 nanomaterials. Sci Total Environ 2021;774:145705. [PMID: 33609816 DOI: 10.1016/j.scitotenv.2021.145705] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Vranic S, Rodrigues AF, Buggio M, Newman L, White MRH, Spiller DG, Bussy C, Kostarelos K. Live Imaging of Label-Free Graphene Oxide Reveals Critical Factors Causing Oxidative-Stress-Mediated Cellular Responses. ACS Nano 2018;12:1373-89. [PMID: 29286639 DOI: 10.1021/acsnano.7b07734] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
62 Dong L, Yang J, Chhowalla M, Loh KP. Synthesis and reduction of large sized graphene oxide sheets. Chem Soc Rev 2017;46:7306-16. [DOI: 10.1039/c7cs00485k] [Cited by in Crossref: 148] [Cited by in F6Publishing: 10] [Article Influence: 29.6] [Reference Citation Analysis]
63 Mukherjee SP, Kostarelos K, Fadeel B. Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: Size-Independent NLRP3 Inflammasome Activation. Adv Healthc Mater 2018;7. [PMID: 29266859 DOI: 10.1002/adhm.201700815] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 10.8] [Reference Citation Analysis]
64 Song S, Xia H, Guo M, Wang S, Zhang S, Ma P, Jin Y. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021;28:752-66. [PMID: 33860719 DOI: 10.1080/10717544.2021.1909175] [Reference Citation Analysis]
65 Cicuéndez M, Casarrubios L, Barroca N, Silva D, Feito MJ, Diez-Orejas R, Marques PAAP, Portolés MT. Benefits in the Macrophage Response Due to Graphene Oxide Reduction by Thermal Treatment. Int J Mol Sci 2021;22:6701. [PMID: 34206699 DOI: 10.3390/ijms22136701] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Qian W, Wang Z, He D, Huang X, Su J. Ornidazole-loaded graphene paper for combined antibacterial materials. Journal of Saudi Chemical Society 2018;22:581-7. [DOI: 10.1016/j.jscs.2017.10.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
67 Wu Y, Wang F, Wang S, Ma J, Xu M, Gao M, Liu R, Chen W, Liu S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale 2018;10:14637-50. [PMID: 30028471 DOI: 10.1039/c8nr02798f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
68 Wu Y, Feng W, Liu R, Xia T, Liu S. Graphene Oxide Causes Disordered Zonation Due to Differential Intralobular Localization in the Liver. ACS Nano 2020;14:877-90. [PMID: 31891481 DOI: 10.1021/acsnano.9b08127] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
69 Rodrigues AF, Newman L, Jasim D, Mukherjee SP, Wang J, Vacchi IA, Ménard-Moyon C, Bianco A, Fadeel B, Kostarelos K, Bussy C. Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safe-by-Design. Adv Sci (Weinh) 2020;7:1903200. [PMID: 32596109 DOI: 10.1002/advs.201903200] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
70 Diez-Orejas R, Feito MJ, Cicuéndez M, Rojo JM, Portolés MT. Differential effects of graphene oxide nanosheets on Candida albicans phagocytosis by murine peritoneal macrophages. J Colloid Interface Sci 2018;512:665-73. [PMID: 29107917 DOI: 10.1016/j.jcis.2017.10.104] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
71 Yin J, Chen S, Song Y, Wang H. Fluorescent imaging of cytoplasmic nucleolin in live cells by a functionalized-engineered aptamer. Chem Commun (Camb) 2020;56:14171-4. [PMID: 33156312 DOI: 10.1039/d0cc06347a] [Reference Citation Analysis]
72 Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials (Basel) 2019;9:E737. [PMID: 31086043 DOI: 10.3390/nano9050737] [Cited by in Crossref: 97] [Cited by in F6Publishing: 57] [Article Influence: 32.3] [Reference Citation Analysis]
73 Russo V, El Khatib M, Prencipe G, Varona AC, Citeroni MR, Mauro A, Berardinelli P, Faydaver M, Haidar Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Liverani L, Boccaccini AR, Barboni B. Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration. Cells 2022;11:266. [DOI: 10.3390/cells11020266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Wang M, Zhao J, Xiong H, Lu H, Jiang H, Wang X. Advance of nano anticancer therapies targeted on tumor-associated macrophages. Coordination Chemistry Reviews 2021;446:214126. [DOI: 10.1016/j.ccr.2021.214126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Sun B, Zhang Y, Chen W, Wang K, Zhu L. Concentration Dependent Effects of Bovine Serum Albumin on Graphene Oxide Colloidal Stability in Aquatic Environment. Environ Sci Technol 2018;52:7212-9. [DOI: 10.1021/acs.est.7b06218] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 7.8] [Reference Citation Analysis]
76 Su Y, Yang G, Lu K, Petersen EJ, Mao L. Colloidal properties and stability of aqueous suspensions of few-layer graphene: Importance of graphene concentration. Environ Pollut 2017;220:469-77. [PMID: 27720543 DOI: 10.1016/j.envpol.2016.09.089] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
77 Sun X, Shao H, Xiang K, Yan Y, Yu X, Li D, Wu W, Zhou L, So K, Ren Y, Ramakrishna S, Li A, He L. Poly(dopamine)-modified carbon nanotube multilayered film and its effects on macrophages. Carbon 2017;113:176-91. [DOI: 10.1016/j.carbon.2016.11.040] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 5.2] [Reference Citation Analysis]
78 Cheng SJ, Chiu HY, Kumar PV, Hsieh KY, Yang JW, Lin YR, Shen YC, Chen GY. Simultaneous drug delivery and cellular imaging using graphene oxide. Biomater Sci 2018;6:813-9. [PMID: 29417098 DOI: 10.1039/c7bm01192j] [Cited by in Crossref: 35] [Cited by in F6Publishing: 12] [Article Influence: 8.8] [Reference Citation Analysis]
79 Fathy RM, Mahfouz AY. Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities. J Nanostruct Chem 2021;11:301-21. [DOI: 10.1007/s40097-020-00369-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
80 Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017;117:1826-914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Cited by in Crossref: 281] [Cited by in F6Publishing: 204] [Article Influence: 56.2] [Reference Citation Analysis]
81 Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv Healthc Mater 2021;10:e2001414. [PMID: 33103370 DOI: 10.1002/adhm.202001414] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 21.0] [Reference Citation Analysis]
82 Zhang Q, Liu X, Meng H, Liu S, Zhang C. Reduction pathway-dependent cytotoxicity of reduced graphene oxide. Environ Sci : Nano 2018;5:1361-71. [DOI: 10.1039/c8en00242h] [Cited by in Crossref: 14] [Article Influence: 3.5] [Reference Citation Analysis]
83 Liu W, Luo H, Wei Q, Liu J, Wu J, Zhang Y, Chen L, Ren W, Shao L. Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioact Mater 2022;9:92-104. [PMID: 34820558 DOI: 10.1016/j.bioactmat.2021.07.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
84 Suh M, Lee DS. Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics. Nucl Med Mol Imaging 2018;52:407-19. [PMID: 30538772 DOI: 10.1007/s13139-018-0550-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
85 Chen Y, Wu Y, Sun B, Liu S, Liu H. Two-Dimensional Nanomaterials for Cancer Nanotheranostics. Small 2017;13:1603446. [DOI: 10.1002/smll.201603446] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 16.6] [Reference Citation Analysis]
86 Zhu JY, Zhang MK, Ding XG, Qiu WX, Yu WY, Feng J, Zhang XZ. Virus-Inspired Nanogenes Free from Man-Made Materials for Host-Specific Transfection and Bio-Aided MR Imaging. Adv Mater 2018;30:e1707459. [PMID: 29675900 DOI: 10.1002/adma.201707459] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
87 d’Amora M, Lamberti A, Fontana M, Giordani S. Toxicity assessment of laser-induced graphene by zebrafish during development. J Phys Mater 2020;3:034008. [DOI: 10.1088/2515-7639/ab9522] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
88 Liu J, Hou J, Liu S, Li J, Zhou M, Sun J, Wang R. Graphene Oxide Functionalized Double-Layered Patch with Anti-Adhesion Ability for Abdominal Wall Defects. Int J Nanomedicine 2021;16:3803-18. [PMID: 34113101 DOI: 10.2147/IJN.S312074] [Reference Citation Analysis]
89 Ji Y, Wang Y, Shen D, Kang Q, Ma J, Chen L. Revisiting the cellular toxicity of benzo[a]pyrene from the view of nanoclusters: size- and nanoplastic adsorption-dependent bioavailability. Nanoscale 2021;13:1016-28. [PMID: 33393578 DOI: 10.1039/d0nr06747d] [Reference Citation Analysis]
90 Cebadero-domínguez O, Ferrández-gómez B, Sánchez-ballester S, Moreno J, Jos A, Cameán A. In vitro toxicity evaluation of graphene oxide and reduced graphene oxide on Caco-2 cells. Toxicology Reports 2022;9:1130-8. [DOI: 10.1016/j.toxrep.2022.05.010] [Reference Citation Analysis]
91 Liu S, Mou S, Zhou C, Guo L, Zhong A, Yang J, Yuan Q, Wang J, Sun J, Wang Z. Off-the-Shelf Biomimetic Graphene Oxide–Collagen Hybrid Scaffolds Wrapped with Osteoinductive Extracellular Matrix for the Repair of Cranial Defects in Rats. ACS Appl Mater Interfaces 2018;10:42948-58. [DOI: 10.1021/acsami.8b11071] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
92 Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. Journal of Controlled Release 2016;226:217-28. [DOI: 10.1016/j.jconrel.2016.02.015] [Cited by in Crossref: 152] [Cited by in F6Publishing: 120] [Article Influence: 25.3] [Reference Citation Analysis]
93 Zhu J, Xu M, Gao M, Zhang Z, Xu Y, Xia T, Liu S. Graphene Oxide Induced Perturbation to Plasma Membrane and Cytoskeletal Meshwork Sensitize Cancer Cells to Chemotherapeutic Agents. ACS Nano 2017;11:2637-51. [PMID: 28208020 DOI: 10.1021/acsnano.6b07311] [Cited by in Crossref: 84] [Cited by in F6Publishing: 80] [Article Influence: 16.8] [Reference Citation Analysis]
94 Wang Z, Li Q, Xu L, Ma J, Wang Y, Wei B, Wu W, Liu S. Ageing alters the physicochemical properties of silver nanoparticles and consequently compromises their acute toxicity in mammals. Ecotoxicol Environ Saf 2020;196:110487. [PMID: 32229327 DOI: 10.1016/j.ecoenv.2020.110487] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Li J, Wang X, Mei KC, Chang CH, Jiang J, Liu X, Liu Q, Guiney LM, Hersam MC, Liao YP, Meng H, Xia T. Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today 2021;37:101061. [PMID: 34055032 DOI: 10.1016/j.nantod.2020.101061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
96 Liu L, Li H, Wang J, Zhang J, Liang XJ, Guo W, Gu Z. Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 2022;183:114136. [PMID: 35143894 DOI: 10.1016/j.addr.2022.114136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Graphene Oxide⁻Platinum Nanoparticle Nanocomposites: A Suitable Biocompatible Therapeutic Agent for Prostate Cancer. Polymers (Basel) 2019;11:E733. [PMID: 31018506 DOI: 10.3390/polym11040733] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
98 Ou L, Lin H, Song Y, Tan G, Gui X, Li J, Chen X, Deng Z, Lin S. Efficient miRNA Inhibitor with GO-PEI Nanosheets for Osteosarcoma Suppression by Targeting PTEN. Int J Nanomedicine 2020;15:5131-46. [PMID: 32764941 DOI: 10.2147/IJN.S257084] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Mukherjee SP, Bottini M, Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front Immunol 2017;8:673. [PMID: 28659915 DOI: 10.3389/fimmu.2017.00673] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
100 Tegou E, Magana M, Katsogridaki AE, Ioannidis A, Raptis V, Jordan S, Chatzipanagiotou S, Chatzandroulis S, Ornelas C, Tegos GP. Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials 2016;89:38-55. [DOI: 10.1016/j.biomaterials.2016.02.030] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
101 Sack S, Zucker B, Yecheskel Y, Zucker I. The role of size, charge, and cholesterol of cell membrane models in interactions with graphene oxide. J Hazard Mater 2022;432:128661. [PMID: 35305415 DOI: 10.1016/j.jhazmat.2022.128661] [Reference Citation Analysis]
102 Achawi S, Pourchez J, Feneon B, Forest V. Graphene-Based Materials In Vitro Toxicity and Their Structure-Activity Relationships: A Systematic Literature Review. Chem Res Toxicol 2021;34:2003-18. [PMID: 34424669 DOI: 10.1021/acs.chemrestox.1c00243] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
103 Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chem 2019;21:4887-918. [DOI: 10.1039/c9gc02266j] [Cited by in Crossref: 18] [Article Influence: 6.0] [Reference Citation Analysis]
104 Chen J, Lu L, Zhang C, Zhu X, Zhuang S. Endothelial dysfunction and transcriptome aberration in mouse aortas induced by black phosphorus quantum dots and nanosheets. Nanoscale 2021;13:9018-30. [PMID: 33978034 DOI: 10.1039/d1nr01965a] [Reference Citation Analysis]
105 Palmieri V, Perini G, De Spirito M, Papi M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. Nanoscale Horiz 2019;4:273-90. [DOI: 10.1039/c8nh00318a] [Cited by in Crossref: 48] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
106 Chen Y, Pandit S, Rahimi S, Mijakovic I. Interactions Between Graphene‐Based Materials and Biological Surfaces: A Review of Underlying Molecular Mechanisms. Adv Materials Inter 2021;8:2101132. [DOI: 10.1002/admi.202101132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
107 Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Song Y, Sun Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00087-7] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
108 Li J, Wang X, Chang CH, Jiang J, Liu Q, Liu X, Liao YP, Ma T, Meng H, Xia T. Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes. Small 2021;:e2102545. [PMID: 34363305 DOI: 10.1002/smll.202102545] [Reference Citation Analysis]
109 Chen Y, Yang Y, Xu B, Wang S, Li B, Ma J, Gao J, Zuo YY, Liu S. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis. J Environ Sci (China) 2017;62:100-14. [PMID: 29289281 DOI: 10.1016/j.jes.2017.08.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
110 Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal‐Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small 2021;17:2007073. [DOI: 10.1002/smll.202007073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
111 Purnamasari W, Budiastanti TA, Aminatun A, Rahmah U, Sumarsih S, Chang J, Fahmi MZ. Naproxen release behaviour from graphene oxide/cellulose acetate composite nanofibers. RSC Adv 2022;12:8019-29. [DOI: 10.1039/d1ra09293f] [Reference Citation Analysis]
112 Xiaoli F, Yaqing Z, Ruhui L, Xuan L, Aijie C, Yanli Z, Chen H, Lili C, Longquan S. Graphene oxide disrupted mitochondrial homeostasis through inducing intracellular redox deviation and autophagy-lysosomal network dysfunction in SH-SY5Y cells. J Hazard Mater 2021;416:126158. [PMID: 34492938 DOI: 10.1016/j.jhazmat.2021.126158] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 2016;13:57. [PMID: 27799056 DOI: 10.1186/s12989-016-0168-y] [Cited by in Crossref: 270] [Cited by in F6Publishing: 230] [Article Influence: 45.0] [Reference Citation Analysis]
114 Miao X, Leng X, Zhang Q. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research. Int J Mol Sci 2017;18:E336. [PMID: 28178185 DOI: 10.3390/ijms18020336] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 13.2] [Reference Citation Analysis]
115 Xue D, Chen E, Zhong H, Zhang W, Wang S, Joomun MU, Yao T, Tan Y, Lin S, Zheng Q, Pan Z. Immunomodulatory properties of graphene oxide for osteogenesis and angiogenesis. Int J Nanomedicine 2018;13:5799-810. [PMID: 30310282 DOI: 10.2147/IJN.S170305] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
116 Song SJ, Shin YC, Lee HU, Kim B, Han DW, Lim D. Dose- and Time-Dependent Cytotoxicity of Layered Black Phosphorus in Fibroblastic Cells. Nanomaterials (Basel) 2018;8:E408. [PMID: 29882820 DOI: 10.3390/nano8060408] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
117 Fusco L, Orecchioni M, Reina G, Bordoni V, Fuoco C, Gurcan C, Guo S, Zoccheddu M, Collino F, Zavan B, Treossi E, Yilmazer A, Palermo V, Bianco A, Delogu LG. Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NanoImpact 2021;23:100330. [DOI: 10.1016/j.impact.2021.100330] [Reference Citation Analysis]
118 Qi Y, Yan X, Xia T, Liu S. Use of macrophage as a Trojan horse for cancer nanotheranostics. Materials & Design 2021;198:109388. [DOI: 10.1016/j.matdes.2020.109388] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
119 Lu Z, Xu L, He N, Huang F, Xu T, Li L, Zhang Y, Zhang L. Cy5.5-MSA-G250 nanoparticles (CMGNPs) induce M1 polarity of RAW264. 7 macrophage cells via TLR4-dependent manner. Chinese Chemical Letters 2019;30:1320-4. [DOI: 10.1016/j.cclet.2019.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
120 Yang X, Zhang Y, Lai W, Xiang Z, Tu B, Li D, Nan X, Chen C, Hu Z, Fang Q. Proteomic profiling of RAW264.7 macrophage cells exposed to graphene oxide: insights into acute cellular responses. Nanotoxicology 2019;13:35-49. [DOI: 10.1080/17435390.2018.1530389] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
121 Patil R, Bahadur P, Tiwari S. Dispersed graphene materials of biomedical interest and their toxicological consequences. Adv Colloid Interface Sci 2020;275:102051. [PMID: 31753296 DOI: 10.1016/j.cis.2019.102051] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
122 Soltani R, Guo S, Bianco A, Ménard‐moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. Adv Therap 2020;3:2000051. [DOI: 10.1002/adtp.202000051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
123 Chen P, Yan L. Physical principles of graphene cellular interactions: computational and theoretical accounts. J Mater Chem B 2017;5:4290-306. [DOI: 10.1039/c6tb03310e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 3.6] [Reference Citation Analysis]
124 Consiglio G, Di Pietro P, D'Urso L, Forte G, Grasso G, Sgarlata C, Cossement D, Snyders R, Satriano C. Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface. J Colloid Interface Sci 2017;506:532-42. [PMID: 28756320 DOI: 10.1016/j.jcis.2017.07.080] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
125 Shueibi O, Zhou Z, Wang X, Yi B, He X, Zhang Y. Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomed Phys Eng Express 2019;5:025002. [DOI: 10.1088/2057-1976/aaf53a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
126 Fusco L, Garrido M, Martín C, Sosa S, Ponti C, Centeno A, Alonso B, Zurutuza A, Vázquez E, Tubaro A, Prato M, Pelin M. Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale 2020;12:610-22. [PMID: 31829371 DOI: 10.1039/c9nr06815e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
127 Zheng R, Tao L, Jian H, Chang Y, Cheng Y, Feng Y, Zhang H. NLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matter. Ecotoxicol Environ Saf 2018;163:612-9. [PMID: 30092543 DOI: 10.1016/j.ecoenv.2018.07.076] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 14.5] [Reference Citation Analysis]
128 Cacaci M, Martini C, Guarino C, Torelli R, Bugli F, Sanguinetti M. Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device. Adv Exp Med Biol 2020;1282:21-35. [PMID: 31468360 DOI: 10.1007/5584_2019_434] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
129 Qin X, Liu J, Xu Y, Li B, Cheng J, Wu X, Zhang J, Liu Z, Ning R, Li Y, Zhang Y, Sun Y, Lu JJ. Mesoporous Bi-Containing Radiosensitizer Loading with DOX to Repolarize Tumor-Associated Macrophages and Elicit Immunogenic Tumor Cell Death to Inhibit Tumor Progression. ACS Appl Mater Interfaces 2020;12:31225-34. [DOI: 10.1021/acsami.0c08074] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
130 Burgum MJ, Clift MJD, Evans SJ, Hondow N, Tarat A, Jenkins GJ, Doak SH. Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. J Nanobiotechnology 2021;19:24. [PMID: 33468168 DOI: 10.1186/s12951-021-00769-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater 2018;7:e1800525. [PMID: 30073803 DOI: 10.1002/adhm.201800525] [Cited by in Crossref: 96] [Cited by in F6Publishing: 82] [Article Influence: 24.0] [Reference Citation Analysis]
132 Ou L, Sun T, Liu M, Zhang Y, Zhou Z, Zhan X, Lu L, Zhao Q, Lai R, Shao L. Efficient miRNA Inhibitor Delivery with Graphene Oxide-Polyethylenimine to Inhibit Oral Squamous Cell Carcinoma. Int J Nanomedicine 2020;15:1569-83. [PMID: 32210552 DOI: 10.2147/IJN.S220057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Jia PP, Sun T, Junaid M, Yang L, Ma YB, Cui ZS, Wei DP, Shi HF, Pei DS. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ Pollut 2019;247:595-606. [PMID: 30708322 DOI: 10.1016/j.envpol.2019.01.072] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 16.0] [Reference Citation Analysis]
134 Byeon JH, Park JH. Easy on-demand single-pass self-assembly and modification to fabricate gold@graphene-based anti-inflammatory nanoplatforms. Sci Rep 2016;6:34890. [PMID: 27708402 DOI: 10.1038/srep34890] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
135 Ma J, He P, Zhao C, Ren Q, Dong Z, Qiu J, Jing Y, Liu S, Du Y. A Designed α-GalCer Analog Promotes Considerable Th1 Cytokine Response by Activating the CD1d-iNKT Axis and CD11b-Positive Monocytes/Macrophages. Adv Sci (Weinh) 2020;7:2000609. [PMID: 32714765 DOI: 10.1002/advs.202000609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
136 Saleem J, Wang L, Chen C. Immunological effects of graphene family nanomaterials. NanoImpact 2017;5:109-18. [DOI: 10.1016/j.impact.2017.01.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
137 Wang SX, Lu YB, Wang XX, Wang Y, Song YJ, Wang X, Nyamgerelt M. Graphene and graphene-based materials in axonal repair of spinal cord injury. Neural Regen Res 2022;17:2117-25. [PMID: 35259817 DOI: 10.4103/1673-5374.335822] [Reference Citation Analysis]
138 Hu Q, Jiao B, Shi X, Valle RP, Zuo YY, Hu G. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film. Nanoscale 2015;7:18025-9. [PMID: 26482703 DOI: 10.1039/c5nr05401j] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
139 Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 2021;14:85. [PMID: 34059100 DOI: 10.1186/s13045-021-01096-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
140 Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. Journal of Controlled Release 2021;330:945-62. [DOI: 10.1016/j.jconrel.2020.10.067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
141 Qi Y, Liu Y, Xia T, Xu A, Liu S, Chen W. The biotransformation of graphene oxide in lung fluids significantly alters its inherent properties and bioactivities toward immune cells. NPG Asia Mater 2018;10:385-96. [DOI: 10.1038/s41427-018-0039-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
142 Li R, Guiney LM, Chang CH, Mansukhani ND, Ji Z, Wang X, Liao YP, Jiang W, Sun B, Hersam MC, Nel AE, Xia T. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano 2018;12:1390-402. [PMID: 29328670 DOI: 10.1021/acsnano.7b07737] [Cited by in Crossref: 147] [Cited by in F6Publishing: 133] [Article Influence: 36.8] [Reference Citation Analysis]
143 Yunus MA, Ramli MM, Osman NH, Mohamed R. Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Arch Immunol Ther Exp (Warsz) 2021;69:20. [PMID: 34327598 DOI: 10.1007/s00005-021-00625-6] [Reference Citation Analysis]
144 Raslan A, Saenz Del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm 2020;580:119226. [PMID: 32179151 DOI: 10.1016/j.ijpharm.2020.119226] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 18.5] [Reference Citation Analysis]
145 Chen M, Chen S, He C, Mo S, Wang X, Liu G, Zheng N. Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging. Nano Res 2017;10:1234-48. [DOI: 10.1007/s12274-016-1349-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
146 Xuan Y, Li L, Ma M, Cao J, Zhang Z. Hierarchical Intrafibrillarly Mineralized Collagen Membrane Promotes Guided Bone Regeneration and Regulates M2 Macrophage Polarization. Front Bioeng Biotechnol 2022;9:781268. [DOI: 10.3389/fbioe.2021.781268] [Reference Citation Analysis]
147 Hoyle C, Rivers-Auty J, Lemarchand E, Vranic S, Wang E, Buggio M, Rothwell NJ, Allan SM, Kostarelos K, Brough D. Small, Thin Graphene Oxide Is Anti-inflammatory Activating Nuclear Factor Erythroid 2-Related Factor 2 via Metabolic Reprogramming. ACS Nano 2018;12:11949-62. [PMID: 30444603 DOI: 10.1021/acsnano.8b03642] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
148 Xia T. Multifunctional nanotherapeutics for treatment of ocular disease. Ann Eye Sci 2017;2:22. [PMID: 30123872 DOI: 10.21037/aes.2017.03.06] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
149 Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Zhang Q, Lv J, Wu J. Advances on graphene-based nanomaterials for biomedical applications. Mater Sci Eng C Mater Biol Appl 2018;90:764-80. [PMID: 29853147 DOI: 10.1016/j.msec.2018.05.018] [Cited by in Crossref: 57] [Cited by in F6Publishing: 35] [Article Influence: 14.3] [Reference Citation Analysis]
150 Xu C, Hong H, Lee Y, Park KS, Sun M, Wang T, Aikins ME, Xu Y, Moon JJ. Efficient Lymph Node-Targeted Delivery of Personalized Cancer Vaccines with Reactive Oxygen Species-Inducing Reduced Graphene Oxide Nanosheets. ACS Nano 2020;14:13268-78. [PMID: 32902245 DOI: 10.1021/acsnano.0c05062] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 13.5] [Reference Citation Analysis]
151 Mendes RG, Mandarino A, Koch B, Meyer AK, Bachmatiuk A, Hirsch C, Gemming T, Schmidt OG, Liu Z, Rümmeli MH. Size and time dependent internalization of label-free nano-graphene oxide in human macrophages. Nano Res 2017;10:1980-95. [DOI: 10.1007/s12274-016-1385-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
152 Kapitanova KS, Naumenko VA, Garanina AS, Melnikov PA, Abakumov MA, Alieva IB. Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer Immunotherapy. Biochemistry (Mosc) 2019;84:729-45. [PMID: 31509725 DOI: 10.1134/S0006297919070058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
153 Cui X, Wan B, Yang Y, Xin Y, Xie Y, Guo L, Mantell LL. Carbon Nanomaterials Stimulate HMGB1 Release From Macrophages and Induce Cell Migration and Invasion. Toxicological Sciences 2019;172:398-410. [DOI: 10.1093/toxsci/kfz190] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
154 Mao L, Hu M, Pan B, Xie Y, Petersen EJ. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol 2016;13:7. [PMID: 26864058 DOI: 10.1186/s12989-016-0120-1] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 8.7] [Reference Citation Analysis]
155 Liao C, Li Y, Tjong SC. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci 2018;19:E3564. [PMID: 30424535 DOI: 10.3390/ijms19113564] [Cited by in Crossref: 107] [Cited by in F6Publishing: 78] [Article Influence: 26.8] [Reference Citation Analysis]
156 Diez-Orejas R, Feito MJ, Cicuéndez M, Casarrubios L, Rojo JM, Portolés MT. Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids Surf B Biointerfaces 2018;171:250-9. [PMID: 30036792 DOI: 10.1016/j.colsurfb.2018.07.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
157 Halamoda-Kenzaoui B, Bremer-Hoffmann S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine 2018;13:5419-31. [PMID: 30271138 DOI: 10.2147/IJN.S168808] [Cited by in Crossref: 36] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
158 Han J, Kim YS, Lim MY, Kim HY, Kong S, Kang M, Choo YW, Jun JH, Ryu S, Jeong HY, Park J, Jeong GJ, Lee JC, Eom GH, Ahn Y, Kim BS. Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS Nano 2018;12:1959-77. [PMID: 29397689 DOI: 10.1021/acsnano.7b09107] [Cited by in Crossref: 109] [Cited by in F6Publishing: 93] [Article Influence: 27.3] [Reference Citation Analysis]
159 Cho YC, Pak PJ, Joo YH, Lee HS, Chung N. In vitro and in vivo comparison of the immunotoxicity of single- and multi-layered graphene oxides with or without pluronic F-127. Sci Rep 2016;6:38884. [PMID: 27941848 DOI: 10.1038/srep38884] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
160 Su J, Du Z, Xiao L, Wei F, Yang Y, Li M, Qiu Y, Liu J, Chen J, Xiao Y. Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Mater Sci Eng C Mater Biol Appl 2020;113:110983. [PMID: 32487397 DOI: 10.1016/j.msec.2020.110983] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
161 Lee B, Lee JY, Kim J, Shin N, Yoo JM, Kang I, Kim J, Lee S, Kim D, Choi SW, Hong BH, Kang K. Oral administration of microbiome-friendly graphene quantum dots as therapy for colitis. 2D Mater 2021;8:025036. [DOI: 10.1088/2053-1583/abe362] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
162 Tufano I, Vecchione R, Netti PA. Methods to Scale Down Graphene Oxide Size and Size Implication in Anti-cancer Applications. Front Bioeng Biotechnol 2020;8:613280. [PMID: 33425877 DOI: 10.3389/fbioe.2020.613280] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Pulingam T, Thong KL, Appaturi JN, Lai CW, Leo BF. Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. Chemosphere 2021;281:130739. [PMID: 34004516 DOI: 10.1016/j.chemosphere.2021.130739] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
164 Liu Y, Zhu S, Gu Z, Chen C, Zhao Y. Toxicity of manufactured nanomaterials. Particuology 2022;69:31-48. [DOI: 10.1016/j.partic.2021.11.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Zhao Y, Liu J, Gao Y, Xu Z, Dai C, Li G, Sun C, Yang Y, Zhang K. Conductive biocomposite hydrogels with multiple biophysical cues regulate schwann cell behaviors. J Mater Chem B 2022. [PMID: 35156678 DOI: 10.1039/d1tb02361f] [Reference Citation Analysis]
166 Zhu W, Wei Z, Han C, Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. Nanomaterials (Basel) 2021;11:3346. [PMID: 34947695 DOI: 10.3390/nano11123346] [Reference Citation Analysis]
167 Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. Nano Res 2019;12:247-64. [PMID: 32218914 DOI: 10.1007/s12274-018-2209-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
168 Da Silva GH, Franqui LS, Petry R, Maia MT, Fonseca LC, Fazzio A, Alves OL, Martinez DST. Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. Front Immunol 2021;12:689519. [PMID: 34149731 DOI: 10.3389/fimmu.2021.689519] [Reference Citation Analysis]
169 Zhu J, Li B, Xu M, Liu R, Xia T, Zhang Z, Xu Y, Liu S. Graphene Oxide Promotes Cancer Metastasis through Associating with Plasma Membrane To Promote TGF-β Signaling-Dependent Epithelial-Mesenchymal Transition. ACS Nano 2020;14:818-27. [PMID: 31877027 DOI: 10.1021/acsnano.9b07891] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
170 Liu S, Zhou C, Mou S, Li J, Zhou M, Zeng Y, Luo C, Sun J, Wang Z, Xu W. Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Materials Science and Engineering: C 2019;105:110137. [DOI: 10.1016/j.msec.2019.110137] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 7.3] [Reference Citation Analysis]
171 Ma Y, Wang J, Wu J, Tong C, Zhang T. Meta-analysis of cellular toxicity for graphene via data-mining the literature and machine learning. Sci Total Environ 2021;793:148532. [PMID: 34328986 DOI: 10.1016/j.scitotenv.2021.148532] [Reference Citation Analysis]
172 Hadizadeh N, Zeidi S, Khodabakhsh H, Zeidi S, Rezaei A, Liang Z, Dashtizad M, Hashemi E. An overview on the reproductive toxicity of graphene derivatives: Highlighting the importance. Nanotechnology Reviews 2022;11:1076-100. [DOI: 10.1515/ntrev-2022-0063] [Reference Citation Analysis]
173 Rhazouani A, Gamrani H, El Achaby M, Aziz K, Gebrati L, Uddin MS, Aziz F. Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of In Vitro and In Vivo Studies. Biomed Res Int 2021;2021:5518999. [PMID: 34222470 DOI: 10.1155/2021/5518999] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 d'Amora M, Alfe M, Gargiulo V, Giordani S. Graphene-Like Layers from Carbon Black: In Vivo Toxicity Assessment. Nanomaterials (Basel) 2020;10:E1472. [PMID: 32727143 DOI: 10.3390/nano10081472] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
175 Chico B, Pérez-maceda BT, San José S, Escudero ML, García-alonso MC, Lozano RM. Corrosion Behaviour and J774A.1 Macrophage Response to Hyaluronic Acid Functionalization of Electrochemically Reduced Graphene Oxide on Biomedical Grade CoCr. Metals 2021;11:1078. [DOI: 10.3390/met11071078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
176 Guo T, Cheng L, Zhao H, Liu Y, Yang Y, Liu J, Wu Q. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine. Sci Rep 2020;10:16933. [PMID: 33037257 DOI: 10.1038/s41598-020-73712-x] [Reference Citation Analysis]
177 Tavakol S, Zahmatkeshan M, Mohammadinejad R, Mehrzadi S, Joghataei MT, Alavijeh MS, Seifalian A. The role of nanotechnology in current COVID-19 outbreak. Heliyon 2021;7:e06841. [PMID: 33880422 DOI: 10.1016/j.heliyon.2021.e06841] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
178 Zhang Y, Ma C, Wang Z, Zhou Q, Sun S, Ma P, Lv L, Jiang X, Wang X, Zhan L. Large-sized graphene oxide synergistically enhances parenchymal hepatocyte IL-6 expression monitored by dynamic imaging. Nanoscale 2020;12:8147-58. [PMID: 32236244 DOI: 10.1039/c9nr10713d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
179 Hilder TA, Gaston N. Interaction of Boron Nitride Nanosheets with Model Cell Membranes. ChemPhysChem 2016;17:1573-8. [DOI: 10.1002/cphc.201600165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
180 Chai D, Hao B, Hu R, Zhang F, Yan J, Sun Y, Huang X, Zhang Q, Jiang H. Delivery of Oridonin and Methotrexate via PEGylated Graphene Oxide. ACS Appl Mater Interfaces 2019;11:22915-24. [PMID: 31252460 DOI: 10.1021/acsami.9b03983] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
181 Hong Q, Huo S, Tang H, Qu X, Yue B. Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Front Bioeng Biotechnol 2021;9:694635. [PMID: 34589470 DOI: 10.3389/fbioe.2021.694635] [Reference Citation Analysis]
182 PramaniK A, Jones S, Gao Y, Sweet C, Vangara A, Begum S, Ray PC. Multifunctional hybrid graphene oxide for circulating tumor cell isolation and analysis. Adv Drug Deliv Rev 2018;125:21-35. [PMID: 29329995 DOI: 10.1016/j.addr.2018.01.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
183 Mukherjee SP, Gupta G, Klöditz K, Wang J, Rodrigues AF, Kostarelos K, Fadeel B. Next‐Generation Sequencing Reveals Differential Responses to Acute versus Long‐Term Exposures to Graphene Oxide in Human Lung Cells. Small 2020;16:1907686. [DOI: 10.1002/smll.201907686] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
184 Drasler B, Kucki M, Delhaes F, Buerki-thurnherr T, Vanhecke D, Korejwo D, Chortarea S, Barosova H, Hirsch C, Petri-fink A, Rothen-rutishauser B, Wick P. Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon 2018;137:125-35. [DOI: 10.1016/j.carbon.2018.05.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
185 Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020;15:7523-51. [PMID: 33116486 DOI: 10.2147/IJN.S271917] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
186 Gazzi A, Fusco L, Orecchioni M, Ferrari S, Franzoni G, Yan JS, Rieckher M, Peng G, Lucherelli MA, Vacchi IA, Chau NDQ, Criado A, Istif A, Mancino D, Dominguez A, Eckert H, Vázquez E, Ros TD, Nicolussi P, Palermo V, Schumacher B, Cuniberti G, Mai Y, Clementi C, Pasquali M, Feng X, Kostarelos K, Yilmazer A, Bedognetti D, Fadeel B, Prato M, Bianco A, Delogu LG. Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. J Phys Mater 2020;3:034009. [DOI: 10.1088/2515-7639/ab9317] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
187 Zhang X, Zhang Z, Zhang S, Li D, Ma W, Ma C, Wu F, Zhao Q, Yan Q, Xing B. Size Effect on the Cytotoxicity of Layered Black Phosphorus and Underlying Mechanisms. Small 2017;13:1701210. [DOI: 10.1002/smll.201701210] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 13.2] [Reference Citation Analysis]
188 Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021;7:3503-29. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Reference Citation Analysis]
189 Li Y, Zhang H, Crespo M, Porwal H, Picot O, Santagiuliana G, Huang Z, Barbieri E, Pugno NM, Peijs T, Bilotti E. In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites. ACS Appl Mater Interfaces 2016;8:24112-22. [DOI: 10.1021/acsami.6b07492] [Cited by in Crossref: 43] [Cited by in F6Publishing: 17] [Article Influence: 7.2] [Reference Citation Analysis]
190 Feng X, Chen L, Guo W, Zhang Y, Lai X, Shao L, Li Y. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater 2018;81:278-92. [PMID: 30273743 DOI: 10.1016/j.actbio.2018.09.057] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
191 Ma J, Guo A, Wang S, Man S, Zhang Y, Liu S, Liu Y. From the lung to the knee joint: Toxicity evaluation of carbon black nanoparticles on macrophages and chondrocytes. Journal of Hazardous Materials 2018;353:329-39. [DOI: 10.1016/j.jhazmat.2018.04.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
192 Liu Y, Qi Y, Yin C, Wang S, Zhang S, Xu A, Chen W, Liu S. Bio-transformation of Graphene Oxide in Lung Fluids Significantly Enhances Its Photothermal Efficacy. Nanotheranostics 2018;2:222-32. [PMID: 29868347 DOI: 10.7150/ntno.25719] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
193 Luo Q, Wirth C, Pentzer E. Efficient sizing of single layer graphene oxide with optical microscopy under ambient conditions. Carbon 2020;157:395-401. [DOI: 10.1016/j.carbon.2019.10.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
194 Chen Y, Xu M, Zhang J, Ma J, Gao M, Zhang Z, Xu Y, Liu S. Genome-Wide DNA Methylation Variations upon Exposure to Engineered Nanomaterials and Their Implications in Nanosafety Assessment. Adv Mater 2017;29. [PMID: 27918113 DOI: 10.1002/adma.201604580] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
195 Fusco L, Avitabile E, Armuzza V, Orecchioni M, Istif A, Bedognetti D, Da Ros T, Delogu LG. Impact of the surface functionalization on nanodiamond biocompatibility: a comprehensive view on human blood immune cells. Carbon 2020;160:390-404. [DOI: 10.1016/j.carbon.2020.01.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
196 Chen P, Yang J, Xiao B, Zhang Y, Liu S, Zhu L. Mechanisms for the impacts of graphene oxide on the developmental toxicity and endocrine disruption induced by bisphenol A on zebrafish larvae. J Hazard Mater 2021;408:124867. [PMID: 33370691 DOI: 10.1016/j.jhazmat.2020.124867] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Rodrigues AF, Newman L, Jasim DA, Vacchi IA, Ménard-Moyon C, Crica LE, Bianco A, Kostarelos K, Bussy C. Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Arch Toxicol 2018;92:3359-79. [PMID: 30259072 DOI: 10.1007/s00204-018-2303-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
198 Ma J, Li R, Qu G, Liu H, Yan B, Xia T, Liu Y, Liu S. Carbon nanotubes stimulate synovial inflammation by inducing systemic pro-inflammatory cytokines. Nanoscale 2016;8:18070-86. [DOI: 10.1039/c6nr06041b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
199 Pan X, Cheng D, Ruan C, Hong Y, Lin C. Development of Graphene‐Based Materials in Bone Tissue Engineaering. Global Challenges. [DOI: 10.1002/gch2.202100107] [Reference Citation Analysis]
200 Ali A, Ovais M, Cui X, Rui Y, Chen C. Safety Assessment of Nanomaterials for Antimicrobial Applications. Chem Res Toxicol 2020;33:1082-109. [DOI: 10.1021/acs.chemrestox.9b00519] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
201 de Luna LAV, Zorgi NE, de Moraes ACM, da Silva DS, Consonni SR, Giorgio S, Alves OL. In vitro immunotoxicological assessment of a potent microbicidal nanocomposite based on graphene oxide and silver nanoparticles. Nanotoxicology 2019;13:189-203. [PMID: 30451576 DOI: 10.1080/17435390.2018.1537410] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
202 Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. J Environ Sci Health B 2021;56:333-56. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Reference Citation Analysis]
203 Nasirzadeh N, Azari MR, Rasoulzadeh Y, Mohammadian Y. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol Ind Health 2019;35:79-87. [DOI: 10.1177/0748233718817180] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
204 Di Santo R, Digiacomo L, Quagliarini E, Capriotti AL, Laganà A, Zenezini Chiozzi R, Caputo D, Cascone C, Coppola R, Pozzi D, Caracciolo G. Personalized Graphene Oxide-Protein Corona in the Human Plasma of Pancreatic Cancer Patients. Front Bioeng Biotechnol 2020;8:491. [PMID: 32523944 DOI: 10.3389/fbioe.2020.00491] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
205 Liu J, Wang L, Shen X, Gao X, Chen Y, Liu H, Liu Y, Yin D, Liu Y, Xu W, Cai R, You M, Guo M, Wang Y, Li J, Li Y, Chen C. Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today 2020;34:100907. [DOI: 10.1016/j.nantod.2020.100907] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
206 Lasocka I, Jastrzębska E, Szulc-Dąbrowska L, Skibniewski M, Pasternak I, Kalbacova MH, Skibniewska EM. The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism. Int J Nanomedicine 2019;14:2281-99. [PMID: 31015759 DOI: 10.2147/IJN.S190928] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
207 Kang H, Jung HJ, Kim SK, Wong DSH, Lin S, Li G, Dravid VP, Bian L. Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages. ACS Nano 2018;12:5978-94. [PMID: 29767957 DOI: 10.1021/acsnano.8b02226] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]
208 Gu Z, Chen SH, Ding Z, Song W, Wei W, Liu S, Ma G, Zhou R. The molecular mechanism of robust macrophage immune responses induced by PEGylated molybdenum disulfide. Nanoscale 2019;11:22293-304. [PMID: 31746904 DOI: 10.1039/c9nr04358f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
209 Xu M, Zhu J, Wang F, Xiong Y, Wu Y, Wang Q, Weng J, Zhang Z, Chen W, Liu S. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation. ACS Nano 2016;10:3267-81. [PMID: 26855010 DOI: 10.1021/acsnano.6b00539] [Cited by in Crossref: 256] [Cited by in F6Publishing: 226] [Article Influence: 42.7] [Reference Citation Analysis]
210 Evariste L, Lagier L, Gonzalez P, Mottier A, Mouchet F, Cadarsi S, Lonchambon P, Daffe G, Chimowa G, Sarrieu C, Ompraret E, Galibert AM, Ghimbeu CM, Pinelli E, Flahaut E, Gauthier L. Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. Nanomaterials (Basel) 2019;9:E584. [PMID: 30970633 DOI: 10.3390/nano9040584] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
211 Bramini M, Chiacchiaretta M, Armirotti A, Rocchi A, Kale DD, Martin C, Vázquez E, Bandiera T, Ferroni S, Cesca F, Benfenati F. An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small 2019;15:1900147. [DOI: 10.1002/smll.201900147] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
212 Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 2021;50:619-57. [PMID: 33206730 DOI: 10.1039/d0cs00150c] [Cited by in Crossref: 32] [Cited by in F6Publishing: 6] [Article Influence: 16.0] [Reference Citation Analysis]
213 Amrollahi-Sharifabadi M, Koohi MK, Zayerzadeh E, Hablolvarid MH, Hassan J, Seifalian AM. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int J Nanomedicine 2018;13:4757-69. [PMID: 30174424 DOI: 10.2147/IJN.S168731] [Cited by in Crossref: 27] [Cited by in F6Publishing: 10] [Article Influence: 6.8] [Reference Citation Analysis]
214 Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F. Synthesis, Characterization, and Toxicity Assessment of Pluronic F127-Functionalized Graphene Oxide on the Embryonic Development of Zebrafish (Danio rerio). Int J Nanomedicine 2020;15:8311-29. [PMID: 33149578 DOI: 10.2147/IJN.S271159] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Mukherjee SP, Bondarenko O, Kohonen P, Andón FT, Brzicová T, Gessner I, Mathur S, Bottini M, Calligari P, Stella L, Kisin E, Shvedova A, Autio R, Salminen-Mankonen H, Lahesmaa R, Fadeel B. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci Rep 2018;8:1115. [PMID: 29348435 DOI: 10.1038/s41598-018-19521-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 8.5] [Reference Citation Analysis]
216 Zhao R, Cao J, Yang X, Zhang Q, Iqbal MZ, Lu J, Kong X. Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomater Sci 2021;9:4568-90. [PMID: 34113942 DOI: 10.1039/d1bm00508a] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
217 Li WH, Li YM. Chemical Strategies to Boost Cancer Vaccines. Chem Rev 2020;120:11420-78. [PMID: 32914967 DOI: 10.1021/acs.chemrev.9b00833] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
218 Monasterio BG, Alonso B, Sot J, García-arribas AB, Gil-cartón D, Valle M, Zurutuza A, Goñi FM. Coating Graphene Oxide with Lipid Bilayers Greatly Decreases Its Hemolytic Properties. Langmuir 2017;33:8181-91. [DOI: 10.1021/acs.langmuir.7b01552] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
219 Esquivel-Gaon M, Nguyen NHA, Sgroi MF, Pullini D, Gili F, Mangherini D, Pruna AI, Rosicka P, Sevcu A, Castagnola V. In vitro and environmental toxicity of reduced graphene oxide as an additive in automotive lubricants. Nanoscale 2018;10:6539-48. [PMID: 29577120 DOI: 10.1039/c7nr08597d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
220 Shim G, Kim MG, Park JY, Oh YK. Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv Drug Deliv Rev 2016;105:205-27. [PMID: 27085467 DOI: 10.1016/j.addr.2016.04.004] [Cited by in Crossref: 139] [Cited by in F6Publishing: 104] [Article Influence: 23.2] [Reference Citation Analysis]
221 Sun Y, Dai H, Chen S, Xu M, Wang X, Zhang Y, Xu S, Xu A, Weng J, Liu S, Wu L. Graphene oxide regulates cox2 in human embryonic kidney 293T cells via epigenetic mechanisms: dynamic chromosomal interactions. Nanotoxicology 2018;12:117-37. [PMID: 29338479 DOI: 10.1080/17435390.2018.1425498] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
222 Ramezanzadeh B, Bahlakeh G, Mohamadzadeh Moghadam M, Miraftab R. Impact of size-controlled p-phenylenediamine (PPDA)-functionalized graphene oxide nanosheets on the GO-PPDA/Epoxy anti-corrosion, interfacial interactions and mechanical properties enhancement: Experimental and quantum mechanics investigations. Chemical Engineering Journal 2018;335:737-55. [DOI: 10.1016/j.cej.2017.11.019] [Cited by in Crossref: 99] [Cited by in F6Publishing: 34] [Article Influence: 24.8] [Reference Citation Analysis]
223 Yue H, Ma G. Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect. Acta Chimica Sinica 2021;79:1244. [DOI: 10.6023/a21050238] [Reference Citation Analysis]
224 Hassanzadeh P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J Control Release 2020;328:112-26. [PMID: 32882269 DOI: 10.1016/j.jconrel.2020.08.060] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
225 Qin H, Chen J, Li Y, Gao L, Wang J, Qu G, Yang M, Zhou X, Sun Z. Inflammatory response induced by black phosphorus nanosheets in mice and macrophages. Science of The Total Environment 2021;782:146860. [DOI: 10.1016/j.scitotenv.2021.146860] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
226 Poulsen SS, Bengtson S, Williams A, Jacobsen NR, Troelsen JT, Halappanavar S, Vogel U. A transcriptomic overview of lung and liver changes one day after pulmonary exposure to graphene and graphene oxide. Toxicol Appl Pharmacol 2021;410:115343. [PMID: 33227293 DOI: 10.1016/j.taap.2020.115343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
227 Li Y, Liao C, Tjong SC. Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials (Basel) 2019;9:E590. [PMID: 30974820 DOI: 10.3390/nano9040590] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 8.7] [Reference Citation Analysis]
228 Luo Z, Li S, Xu Y, Ren H, Zhang X, Hu G, Huang F, Yue T. Extracting pulmonary surfactants to form inverse micelles on suspended graphene nanosheets. Environ Sci : Nano 2018;5:130-40. [DOI: 10.1039/c7en00843k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
229 Su T, Cheng F, Yan J, Cao J, Luo K, Pu Y, He B. Hierarchical nanocomposites of graphene oxide and PEGylated protoporphyrin as carriers to load doxorubicin hydrochloride for trimodal synergistic therapy. J Mater Chem B 2018;6:4687-96. [DOI: 10.1039/c8tb00733k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
230 Shamaila S, Sajjad AKL, Iqbal A. Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal 2016;294:458-77. [DOI: 10.1016/j.cej.2016.02.109] [Cited by in Crossref: 48] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
231 Tabish TA, Narayan RJ. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater 2021;129:43-56. [PMID: 33965624 DOI: 10.1016/j.actbio.2021.04.054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 18.0] [Reference Citation Analysis]
232 Kang H, Zhang K, Wong DSH, Han F, Li B, Bian L. Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials 2018;178:681-96. [PMID: 29705000 DOI: 10.1016/j.biomaterials.2018.03.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
233 Sun B, Zhang Y, Liu Q, Yan C, Xiao B, Yang J, Liu M, Zhu L. Lateral size dependent colloidal stability of graphene oxide in water: impacts of protein properties and water chemistry. Environ Sci : Nano 2020;7:634-44. [DOI: 10.1039/c9en01040h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
234 Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018;12:10582-620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Cited by in Crossref: 294] [Cited by in F6Publishing: 239] [Article Influence: 73.5] [Reference Citation Analysis]
235 Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. Adv Mater 2021;33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 17.0] [Reference Citation Analysis]
236 Kim J, Kim SW, Yun H, Kim BJ. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Adv 2017;7:30221-8. [DOI: 10.1039/c7ra04015f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 3.8] [Reference Citation Analysis]
237 Chen Z, Yu C, Khan IA, Tang Y, Liu S, Yang M. Toxic effects of different-sized graphene oxide particles on zebrafish embryonic development. Ecotoxicol Environ Saf 2020;197:110608. [PMID: 32305822 DOI: 10.1016/j.ecoenv.2020.110608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
238 Wu K, Zhang X, Yang W, Liu X, Jiao Y, Zhou C. Influence of layer-by-layer assembled electrospun poly (l-lactic acid) nanofiber mats on the bioactivity of endothelial cells. Applied Surface Science 2016;390:838-46. [DOI: 10.1016/j.apsusc.2016.08.178] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
239 Tang Z, Xiao Y, Kong N, Liu C, Chen W, Huang X, Xu D, Ouyang J, Feng C, Wang C, Wang J, Zhang H, Tao W. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharm Sin B 2021;11:3447-64. [PMID: 34900529 DOI: 10.1016/j.apsb.2021.05.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
240 Cao W, He L, Cao W, Huang X, Jia K, Dai J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater 2020;112:14-28. [PMID: 32531395 DOI: 10.1016/j.actbio.2020.06.009] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
241 Achawi S, Feneon B, Pourchez J, Forest V. Structure-Activity Relationship of Graphene-Based Materials: Impact of the Surface Chemistry, Surface Specific Area and Lateral Size on Their In Vitro Toxicity. Nanomaterials (Basel) 2021;11:2963. [PMID: 34835726 DOI: 10.3390/nano11112963] [Reference Citation Analysis]
242 Serrano-Aroca Á, Takayama K, Tuñón-Molina A, Seyran M, Hassan SS, Pal Choudhury P, Uversky VN, Lundstrom K, Adadi P, Palù G, Aljabali AAA, Chauhan G, Kandimalla R, Tambuwala MM, Lal A, Abd El-Aziz TM, Sherchan S, Barh D, Redwan EM, Bazan NG, Mishra YK, Uhal BD, Brufsky A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS Nano 2021;15:8069-86. [PMID: 33826850 DOI: 10.1021/acsnano.1c00629] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 53.0] [Reference Citation Analysis]
243 An W, Zhang Y, Zhang X, Li K, Kang Y, Akhtar S, Sha X, Gao L. Ocular toxicity of reduced graphene oxide or graphene oxide exposure in mouse eyes. Exp Eye Res 2018;174:59-69. [PMID: 29803558 DOI: 10.1016/j.exer.2018.05.024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
244 Di Ianni E, Møller P, Vogel UB, Jacobsen NR. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. Mutat Res Genet Toxicol Environ Mutagen 2021;872:503405. [PMID: 34798932 DOI: 10.1016/j.mrgentox.2021.503405] [Reference Citation Analysis]