BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu Q, Ensign LM, Boylan NJ, Schön A, Gong X, Yang JC, Lamb NW, Cai S, Yu T, Freire E, Hanes J. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo. ACS Nano 2015;9:9217-27. [PMID: 26301576 DOI: 10.1021/acsnano.5b03876] [Cited by in Crossref: 278] [Cited by in F6Publishing: 254] [Article Influence: 39.7] [Reference Citation Analysis]
Number Citing Articles
1 Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2016;240:165-90. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Cited by in Crossref: 119] [Cited by in F6Publishing: 110] [Article Influence: 17.0] [Reference Citation Analysis]
2 Selli D, Valentin CD. Ab Initio Investigation of Polyethylene Glycol Coating of TiO2 Surfaces. J Phys Chem C Nanomater Interfaces 2016;120:29190-201. [PMID: 28058086 DOI: 10.1021/acs.jpcc.6b09554] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
3 Araújo F, das Neves J, Martins JP, Granja PL, Santos HA, Sarmento B. Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Progress in Materials Science 2017;89:306-44. [DOI: 10.1016/j.pmatsci.2017.05.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
4 Samaridou E, Kalamidas N, Santalices I, Crecente-Campo J, Alonso MJ. Tuning the PEG surface density of the PEG-PGA enveloped Octaarginine-peptide Nanocomplexes. Drug Deliv Transl Res 2020;10:241-58. [PMID: 31646443 DOI: 10.1007/s13346-019-00678-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
5 Imperiale JC, Schlachet I, Lewicki M, Sosnik A, Biglione MM. Oral Pharmacokinetics of a Chitosan-Based Nano- Drug Delivery System of Interferon Alpha. Polymers (Basel) 2019;11:E1862. [PMID: 31718060 DOI: 10.3390/polym11111862] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Rossi S, Vigani B, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the mucus-interacting approach for vaginal drug delivery: from mucoadhesive to mucus-penetrating nanoparticles. Expert Opinion on Drug Delivery 2019;16:777-81. [DOI: 10.1080/17425247.2019.1645117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
7 Kim SK, Jeon C, Lee GH, Koo J, Cho SH, Han S, Shin MH, Sim JY, Hahn SK. Hyaluronate-Gold Nanoparticle/Glucose Oxidase Complex for Highly Sensitive Wireless Noninvasive Glucose Sensors. ACS Appl Mater Interfaces 2019;11:37347-56. [PMID: 31502433 DOI: 10.1021/acsami.9b13874] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
8 Taipaleenmäki EM, Mouritzen SA, Schattling PS, Zhang Y, Städler B. Mucopenetrating micelles with a PEG corona. Nanoscale 2017;9:18438-48. [DOI: 10.1039/c7nr06821b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
9 de Oliveira Junior ER, Santos LCR, Salomão MA, Nascimento TL, de Almeida Ribeiro Oliveira G, Lião LM, Lima EM. Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Deliv Transl Res 2020;10:1688-99. [PMID: 32613550 DOI: 10.1007/s13346-020-00816-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021;129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Reference Citation Analysis]
11 Tian C, Asghar S, Wu Y, Kambere Amerigos D, Chen Z, Zhang M, Yin L, Huang L, Ping Q, Xiao Y. N-acetyl-L-cysteine functionalized nanostructured lipid carrier for improving oral bioavailability of curcumin: preparation, in vitro and in vivo evaluations. Drug Deliv 2017;24:1605-16. [PMID: 29063815 DOI: 10.1080/10717544.2017.1391890] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
12 Rahdar A, Hajinezhad MR, Sivasankarapillai VS, Askari F, Noura M, Kyzas GZ. Synthesis, characterization, and intraperitoneal biochemical studies of zinc oxide nanoparticles in Rattus norvegicus. Appl Phys A 2020;126. [DOI: 10.1007/s00339-020-03535-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Hu Y, Zhao Z, Harmon T, Pentel PR, Ehrich M, Zhang C. Paradox of PEGylation in fabricating hybrid nanoparticle-based nicotine vaccines. Biomaterials 2018;182:72-81. [PMID: 30107271 DOI: 10.1016/j.biomaterials.2018.08.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
14 Trincado V, Gala RP, Morales JO. Buccal and Sublingual Vaccines: A Review on Oral Mucosal Immunization and Delivery Systems. Vaccines (Basel) 2021;9:1177. [PMID: 34696284 DOI: 10.3390/vaccines9101177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Changalvaie B, Han S, Moaseri E, Scaletti F, Truong L, Caplan R, Cao A, Bouchard R, Truskett TM, Sokolov KV, Johnston KP. Indocyanine Green J Aggregates in Polymersomes for Near-Infrared Photoacoustic Imaging. ACS Appl Mater Interfaces 2019;11:46437-50. [PMID: 31804795 DOI: 10.1021/acsami.9b14519] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
16 Zhao K, Gao Z, Song D, Zhang P, Cui J. Assembly of catechol-modified polymer brushes for drug delivery. Polym Chem 2022;13:373-8. [DOI: 10.1039/d1py00947h] [Reference Citation Analysis]
17 Joyner K, Song D, Hawkins RF, Silcott RD, Duncan GA. A rational approach to form disulfide linked mucin hydrogels. Soft Matter 2019;15:9632-9. [DOI: 10.1039/c9sm01715a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
18 Pinto MP, Arce M, Yameen B, Vilos C. Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine (Lond) 2017;12:59-72. [PMID: 27876436 DOI: 10.2217/nnm-2016-0307] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
19 Dong C, Liu Z, Liu J, Wu C, Neumann F, Wang H, Schäfer-korting M, Kleuser B, Chang J, Li W, Ma N, Haag R. A Highly Photostable Hyperbranched Polyglycerol-Based NIR Fluorescence Nanoplatform for Mitochondria-Specific Cell Imaging. Adv Healthcare Mater 2016;5:2214-26. [DOI: 10.1002/adhm.201600212] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
20 Savadkouhi N, Mazarei Z, Esmaeelzadeh M, Salehi P, Rafati H. Novel PEGylated derivatives of α-tocopherol for nanocarrier formulations; synthesis, characterization and in vitro cytotoxicity against MCF-7 breast cancer cells. Bioorg Med Chem Lett 2021;40:127907. [PMID: 33689872 DOI: 10.1016/j.bmcl.2021.127907] [Reference Citation Analysis]
21 Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. Adv Mater 2021;:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Reference Citation Analysis]
22 Wu L, Wang L, Liu X, Bai Y, Wu R, Li X, Mao Y, Zhang L, Zheng Y, Gong T, Zhang Z, Huang Y. Milk-derived exosomes exhibit versatile effects for improved oral drug delivery. Acta Pharmaceutica Sinica B 2021. [DOI: 10.1016/j.apsb.2021.12.015] [Reference Citation Analysis]
23 Benzaqui M, Semino R, Carn F, Tavares SR, Menguy N, Giménez-marqués M, Bellido E, Horcajada P, Berthelot T, Kuzminova AI, Dmitrenko ME, Penkova AV, Roizard D, Serre C, Maurin G, Steunou N. Covalent and Selective Grafting of Polyethylene Glycol Brushes at the Surface of ZIF-8 for the Processing of Membranes for Pervaporation. ACS Sustainable Chem Eng 2019;7:6629-39. [DOI: 10.1021/acssuschemeng.8b05587] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 9.7] [Reference Citation Analysis]
24 Santalices I, Torres D, Lozano MV, Arroyo-Jiménez MM, Alonso MJ, Santander-Ortega MJ. Influence of the surface properties of nanocapsules on their interaction with intestinal barriers. Eur J Pharm Biopharm 2018;133:203-13. [PMID: 30268595 DOI: 10.1016/j.ejpb.2018.09.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
25 Lamson NG, Berger A, Fein KC, Whitehead KA. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat Biomed Eng 2020;4:84-96. [PMID: 31686002 DOI: 10.1038/s41551-019-0465-5] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 21.0] [Reference Citation Analysis]
26 Mamadou G, Charrueau C, Dairou J, Limas Nzouzi N, Eto B, Ponchel G. Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems. Int J Pharm 2017;521:150-5. [PMID: 28216465 DOI: 10.1016/j.ijpharm.2017.02.036] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
27 Leal J, Peng X, Liu X, Arasappan D, Wylie DC, Schwartz SH, Fullmer JJ, McWilliams BC, Smyth HDC, Ghosh D. Peptides as surface coatings of nanoparticles that penetrate human cystic fibrosis sputum and uniformly distribute in vivo following pulmonary delivery. J Control Release 2020;322:457-69. [PMID: 32243979 DOI: 10.1016/j.jconrel.2020.03.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
28 Anderski J, Mahlert L, Sun J, Birnbaum W, Mulac D, Schreiber S, Herrmann F, Kuckling D, Langer K. Light-responsive nanoparticles based on new polycarbonate polymers as innovative drug delivery systems for photosensitizers in PDT. Int J Pharm 2019;557:182-91. [PMID: 30584908 DOI: 10.1016/j.ijpharm.2018.12.040] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
29 Reboredo C, González-Navarro CJ, Martínez-Oharriz C, Martínez-López AL, Irache JM. Preparation and evaluation of PEG-coated zein nanoparticles for oral drug delivery purposes. Int J Pharm 2021;597:120287. [PMID: 33524523 DOI: 10.1016/j.ijpharm.2021.120287] [Reference Citation Analysis]
30 Pocock K, Delon LC, Khatri A, Prestidge C, Gibson R, Barbe C, Thierry B. Uptake of silica particulate drug carriers in an intestine-on-a-chip: towards a better in vitro model of nanoparticulate carrier and mucus interactions. Biomater Sci 2019;7:2410-20. [PMID: 30920576 DOI: 10.1039/c9bm00058e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
31 Zhang P, Xia J, Luo S. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery. Materials (Basel) 2018;11:E623. [PMID: 29670013 DOI: 10.3390/ma11040623] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
32 Yan Y, Zhou K, Xiong H, Miller JB, Motea EA, Boothman DA, Liu L, Siegwart DJ. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials 2017;118:84-93. [PMID: 27974266 DOI: 10.1016/j.biomaterials.2016.12.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
33 Zhu Y, Poma A, Rizzello L, Gouveia VM, Ruiz-Perez L, Battaglia G, Williams CK. Metabolically Active, Fully Hydrolysable Polymersomes. Angew Chem Int Ed Engl 2019;58:4581-6. [PMID: 30720233 DOI: 10.1002/anie.201814320] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
34 Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, Li W, Liu X, Peng H, Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 2021;13:10748-64. [DOI: 10.1039/d1nr02065j] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Kamiya Y, Yamaki T, Omori S, Uchida M, Ohtake K, Kimura M, Yamazaki H, Natsume H. Improved Intranasal Retentivity and Transnasal Absorption Enhancement by PEGylated Poly-l-ornithine. Pharmaceuticals (Basel) 2018;11:E9. [PMID: 29370117 DOI: 10.3390/ph11010009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
36 Sánchez-Rubio F, Soria-Meneses PJ, Jurado-Campos A, Bartolomé-García J, Gómez-Rubio V, Soler AJ, Arroyo-Jimenez MM, Santander-Ortega MJ, Plaza-Oliver M, Lozano MV, Garde JJ, Fernández-Santos MR. Nanotechnology in reproduction: Vitamin E nanoemulsions for reducing oxidative stress in sperm cells. Free Radic Biol Med 2020;160:47-56. [PMID: 32768571 DOI: 10.1016/j.freeradbiomed.2020.07.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li N, Duan Z, Wang L, Guo C, Zhang H, Gu Z, Gong Q, Luo K. An Amphiphilic PEGylated Peptide Dendron-Gemcitabine Prodrug-Based Nanoagent for Cancer Therapy. Macromol Rapid Commun 2021;42:e2100111. [PMID: 33871122 DOI: 10.1002/marc.202100111] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Liu XJ, Li L, Liu XJ, Li Y, Zhao CY, Wang RQ, Zhen YS. Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma. Int J Nanomedicine 2017;12:5255-69. [PMID: 28769562 DOI: 10.2147/IJN.S139507] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
39 Hejjaji EMA, Smith AM, Morris GA. Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int J Biol Macromol 2018;120:1610-7. [PMID: 30282010 DOI: 10.1016/j.ijbiomac.2018.09.185] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
40 Nunes R, Araújo F, Tavares J, Sarmento B, das Neves J. Surface modification with polyethylene glycol enhances colorectal distribution and retention of nanoparticles. Eur J Pharm Biopharm 2018;130:200-6. [PMID: 29960016 DOI: 10.1016/j.ejpb.2018.06.029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
41 Taipaleenmäki E, Städler B. Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration. Macromol Biosci 2020;20:e1900342. [PMID: 32045102 DOI: 10.1002/mabi.201900342] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
42 Dancy JG, Wadajkar AS, Schneider CS, Mauban JRH, Goloubeva OG, Woodworth GF, Winkles JA, Kim AJ. Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue. J Control Release 2016;238:139-48. [PMID: 27460683 DOI: 10.1016/j.jconrel.2016.07.034] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
43 Deng C, Zhang Q, He P, Zhou B, He K, Sun X, Lei G, Gong T, Zhang Z. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun 2021;12:2174. [PMID: 33846342 DOI: 10.1038/s41467-021-22454-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Kang YJ, Holley CK, Abidian MR, Madhankumar AB, Connor J, Majd S. Tumor Targeted Delivery of an Anti-Cancer Therapeutic: An In Vitro and In Vivo Evaluation. Adv Healthc Mater 2021;10:e2001261. [PMID: 33191612 DOI: 10.1002/adhm.202001261] [Reference Citation Analysis]
45 Wang X, Fu L, Lin W, Zhang W, Pei Q, Zheng X, Liu S, Zhang T, Xie Z. Vaginal delivery of mucus-penetrating organic nanoparticles for photothermal therapy against cervical intraepithelial neoplasia in mice. J Mater Chem B 2019;7:4528-37. [DOI: 10.1039/c9tb00984a] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
46 Taipaleenmäki E, Christensen G, Brodszkij E, Mouritzen SA, Gal N, Madsen S, Hedemann MS, Knudsen TA, Jensen HM, Christiansen SL, Sparsø FV, Städler B. Mucopenetrating polymer – Lipid hybrid nanovesicles as subunits in alginate beads as an oral formulation. Journal of Controlled Release 2020;322:470-85. [DOI: 10.1016/j.jconrel.2020.03.047] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
47 Ghitman J, Stan R, Ghebaur A, Cecoltan S, Vasile E, Iovu H. Novel PEG-Modified Hybrid PLGA-Vegetable Oils Nanostructured Carriers for Improving Performances of Indomethacin Delivery. Polymers (Basel) 2018;10:E579. [PMID: 30966613 DOI: 10.3390/polym10060579] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
48 Kalkowski J, Liu C, Leon-Plata P, Szymusiak M, Zhang P, Irving T, Shang W, Bilsel O, Liu Y. In Situ Measurements of Polymer Micellization Kinetics with Millisecond Temporal Resolution. Macromolecules 2019;52:3151-7. [PMID: 31588150 DOI: 10.1021/acs.macromol.8b02257] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
49 Zandanel C, Ponchel G, Noiray M, Vauthier C. Nanoparticles facing the gut barrier: Retention or mucosal absorption? Mechanisms and dependency to nanoparticle characteristics. Int J Pharm 2021;609:121147. [PMID: 34600059 DOI: 10.1016/j.ijpharm.2021.121147] [Reference Citation Analysis]
50 Campbell S, Smeets N. Drug Delivery: Localized and Systemic Therapeutic Strategies with Polymer Systems. In: Jafar Mazumder MA, Sheardown H, Al-ahmed A, editors. Functional Polymers. Cham: Springer International Publishing; 2019. pp. 1079-134. [DOI: 10.1007/978-3-319-95987-0_32] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
51 Jeong Y, Shin H, Kwon J, Lee S. Cisplatin-Encapsulated Polymeric Nanoparticles with Molecular Geometry-Regulated Colloidal Properties and Controlled Drug Release. ACS Appl Mater Interfaces 2018;10:23617-29. [DOI: 10.1021/acsami.8b06905] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
52 Liu C, Kou Y, Zhang X, Dong W, Cheng H, Mao S. Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex. International Journal of Pharmaceutics 2019;554:36-47. [DOI: 10.1016/j.ijpharm.2018.10.068] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
53 García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 2018;124:107-24. [PMID: 29117511 DOI: 10.1016/j.addr.2017.11.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
54 Albisa A, Piacentini E, Arruebo M, Sebastian V, Giorno L. Sustainable Production of Drug-Loaded Particles by Membrane Emulsification. ACS Sustainable Chem Eng 2018;6:6663-74. [DOI: 10.1021/acssuschemeng.8b00401] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
55 Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021;13:1615. [PMID: 34683908 DOI: 10.3390/pharmaceutics13101615] [Reference Citation Analysis]
56 Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, Hu P, Hu H. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release 2019;300:52-63. [PMID: 30825476 DOI: 10.1016/j.jconrel.2019.02.039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
57 Huai Y, Hossen MN, Wilhelm S, Bhattacharya R, Mukherjee P. Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug Chem 2019;30:2247-63. [PMID: 31408324 DOI: 10.1021/acs.bioconjchem.9b00448] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
58 Sun H, Guo X, Zeng S, Wang Y, Hou J, Yang D, Zhou S. A multifunctional liposomal nanoplatform co-delivering hydrophobic and hydrophilic doxorubicin for complete eradication of xenografted tumors. Nanoscale 2019;11:17759-72. [DOI: 10.1039/c9nr04669k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
59 Nguyen XD, Jeon HJ, Park DH, Huh J, Go JS. Flow-induced synthesis of polystyrene–block–poly(ethylene glycol) vesicles on the interface of a laminated microflow. J Micromech Microeng 2019;29:045003. [DOI: 10.1088/1361-6439/ab0237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Sun X, Yu K, Zhou Y, Dong S, Hu W, Sun Y, Li Y, Xie J, Lee RJ, Sun F, Ma Y, Wang S, Kim BYS, Wang Y, Yang Z, Jiang W, Li Y, Teng L. Self-Assembled pH-Sensitive Polymeric Nanoparticles for the Inflammation-Targeted Delivery of Cu/Zn-Superoxide Dismutase. ACS Appl Mater Interfaces 2021;13:18152-64. [PMID: 33764751 DOI: 10.1021/acsami.1c03589] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Butnarasu C, Barbero N, Pacheco D, Petrini P, Visentin S. Mucin binding to therapeutic molecules: The case of antimicrobial agents used in cystic fibrosis. International Journal of Pharmaceutics 2019;564:136-44. [DOI: 10.1016/j.ijpharm.2019.04.032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
62 Mašek J, Lubasová D, Lukáč R, Turánek-knotigová P, Kulich P, Plocková J, Mašková E, Procházka L, Koudelka Š, Sasithorn N, Gombos J, Bartheldyová E, Hubatka F, Raška M, Miller AD, Turánek J. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles - important step towards effective mucosal vaccines. Journal of Controlled Release 2017;249:183-95. [DOI: 10.1016/j.jconrel.2016.07.036] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
63 Wang JL, Du XJ, Yang JX, Shen S, Li HJ, Luo YL, Iqbal S, Xu CF, Ye XD, Cao J, Wang J. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials 2018;182:104-13. [PMID: 30114562 DOI: 10.1016/j.biomaterials.2018.08.022] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
64 Anderski J, Mahlert L, Mulac D, Langer K. Mucus-penetrating nanoparticles: Promising drug delivery systems for the photodynamic therapy of intestinal cancer. European Journal of Pharmaceutics and Biopharmaceutics 2018;129:1-9. [DOI: 10.1016/j.ejpb.2018.05.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
65 Wu L, Liu M, Shan W, Zhu X, Li L, Zhang Z, Huang Y. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. Journal of Controlled Release 2017;262:273-83. [DOI: 10.1016/j.jconrel.2017.07.045] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
66 Kelly SH, Wu Y, Varadhan AK, Curvino EJ, Chong AS, Collier JH. Enabling sublingual peptide immunization with molecular self-assemblies. Biomaterials 2020;241:119903. [PMID: 32143059 DOI: 10.1016/j.biomaterials.2020.119903] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
67 Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev 2020;156:80-118. [PMID: 32980449 DOI: 10.1016/j.addr.2020.09.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
68 Fukuda I, Mochizuki S, Sakurai K. Competition of PEG coverage density and con-A recognition in mannose/PEG bearing nanoparticles. Colloids and Surfaces B: Biointerfaces 2016;146:642-8. [DOI: 10.1016/j.colsurfb.2016.05.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
69 Almeida APB, Damaceno GBR, Carneiro AF, Bohr A, Gonçalves HR, Valadares MC, Nascimento TL, Lima EM. Mucopenetrating lipoplexes modified with PEG and hyaluronic acid for CD44-targeted local siRNA delivery to the lungs. J Biomater Appl 2019;34:617-30. [PMID: 31357900 DOI: 10.1177/0885328219863291] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
70 Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC, Schuster BS, Henning A, Ensign LM, Lee E, Adstamongkonkul P, Simons BW, Wang SS, Gong X, Yu T, Boyle MP, Suk JS, Hanes J. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv 2017;3:e1601556. [PMID: 28435870 DOI: 10.1126/sciadv.1601556] [Cited by in Crossref: 114] [Cited by in F6Publishing: 94] [Article Influence: 22.8] [Reference Citation Analysis]
71 Sun X, Zhang G, Du R, Xu R, Zhu D, Qian J, Bai G, Yang C, Zhang Z, Zhang X, Zou D, Wu Z. A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy. Biomaterials 2019;194:151-60. [DOI: 10.1016/j.biomaterials.2018.12.004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
72 Iverson E, Kaler L, Agostino EL, Song D, Duncan GA, Scull MA. Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses 2020;12:E1425. [PMID: 33322395 DOI: 10.3390/v12121425] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
73 Zhong C, Zhao X, Wang L, Li Y, Zhao Y. Facile synthesis of biocompatible MoSe 2 nanoparticles for efficient targeted photothermal therapy of human lung cancer. RSC Adv 2017;7:7382-91. [DOI: 10.1039/c6ra27384j] [Cited by in Crossref: 18] [Article Influence: 3.6] [Reference Citation Analysis]
74 Zierden HC, Josyula A, Shapiro RL, Hsueh HT, Hanes J, Ensign LM. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery. Trends Mol Med 2021;27:436-50. [PMID: 33414070 DOI: 10.1016/j.molmed.2020.12.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
75 Mantaj J, Abu-Shams T, Enlo-Scott Z, Swedrowska M, Vllasaliu D. Role of the Basement Membrane as an Intestinal Barrier to Absorption of Macromolecules and Nanoparticles. Mol Pharm 2018;15:5802-8. [PMID: 30380896 DOI: 10.1021/acs.molpharmaceut.8b01053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
76 Zhou Y, Li L, Li S, Li S, Zhao M, Zhou Q, Gong X, Yang J, Chang J. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale 2019;11:13126-38. [DOI: 10.1039/c9nr02350j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
77 Kłodzińska SN, Wan F, Jumaa H, Sternberg C, Rades T, Nielsen HM. Utilizing nanoparticles for improving anti-biofilm effects of azithromycin: A head-to-head comparison of modified hyaluronic acid nanogels and coated poly (lactic-co-glycolic acid) nanoparticles. Journal of Colloid and Interface Science 2019;555:595-606. [DOI: 10.1016/j.jcis.2019.08.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
78 Li C, Chen X, Liu H, Fang J, Zhou X. In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters. Nano Res 2018;11:4697-707. [DOI: 10.1007/s12274-018-2052-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
79 Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Advanced Drug Delivery Reviews 2016;106:256-76. [DOI: 10.1016/j.addr.2016.07.007] [Cited by in Crossref: 218] [Cited by in F6Publishing: 182] [Article Influence: 36.3] [Reference Citation Analysis]
80 He Z, Santos JL, Tian H, Huang H, Hu Y, Liu L, Leong KW, Chen Y, Mao H. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials 2017;130:28-41. [DOI: 10.1016/j.biomaterials.2017.03.028] [Cited by in Crossref: 134] [Cited by in F6Publishing: 117] [Article Influence: 26.8] [Reference Citation Analysis]
81 McDaniel DK, Jo A, Ringel-Scaia VM, Coutermarsh-Ott S, Rothschild DE, Powell MD, Zhang R, Long TE, Oestreich KJ, Riffle JS, Davis RM, Allen IC. TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments. Nanomedicine 2017;13:1255-66. [PMID: 28040495 DOI: 10.1016/j.nano.2016.12.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
82 Priwitaningrum DL, Jentsch J, Bansal R, Rahimian S, Storm G, Hennink WE, Prakash J. Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo. Int J Pharm 2020;585:119535. [PMID: 32534162 DOI: 10.1016/j.ijpharm.2020.119535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
83 Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020;12:E616. [PMID: 32630625 DOI: 10.3390/pharmaceutics12070616] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
84 Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin Exp Allergy 2016;46:1033-42. [PMID: 27404025 DOI: 10.1111/cea.12771] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
85 Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021;332:312-36. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
86 Federico C, Sun J, Muz B, Alhallak K, Cosper PF, Muhammad N, Jeske A, Hinger A, Markovina S, Grigsby P, Schwarz JK, Azab AK. Localized Delivery of Cisplatin to Cervical Cancer Improves Its Therapeutic Efficacy and Minimizes Its Side Effect Profile. Int J Radiat Oncol Biol Phys 2021;109:1483-94. [PMID: 33253820 DOI: 10.1016/j.ijrobp.2020.11.052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
87 Li Z, Luo G, Hu WP, Hua JL, Geng S, Chu PK, Zhang J, Wang H, Yu XF. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew Chem Int Ed Engl 2020;59:20568-76. [PMID: 32666703 DOI: 10.1002/anie.202008379] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
88 Birhan YS, Hailemeskel BZ, Mekonnen TW, Hanurry EY, Darge HF, Andrgie AT, Chou HY, Lai JY, Hsiue GH, Tsai HC. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. Int J Pharm 2019;567:118486. [PMID: 31260783 DOI: 10.1016/j.ijpharm.2019.118486] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
89 Liu M, Wu L, Zhu X, Shan W, Li L, Cui Y, Huang Y. Core–shell stability of nanoparticles plays an important role for overcoming the intestinal mucus and epithelium barrier. J Mater Chem B 2016;4:5831-41. [DOI: 10.1039/c6tb01199c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv and Transl Res 2019;9:721-34. [DOI: 10.1007/s13346-019-00631-4] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 14.7] [Reference Citation Analysis]
91 Taherali F, Varum F, Basit AW. A slippery slope: On the origin, role and physiology of mucus. Advanced Drug Delivery Reviews 2018;124:16-33. [DOI: 10.1016/j.addr.2017.10.014] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 15.5] [Reference Citation Analysis]
92 Moreno Raja M, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, Huang Y. Polymeric Nanomaterials. Nanocarriers for Drug Delivery. Elsevier; 2019. pp. 557-653. [DOI: 10.1016/b978-0-12-814033-8.00018-7] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
93 Zhang Y, Li M, Du G, Chen X, Sun X. Advancedoral vaccine delivery strategies for improving the immunity. Adv Drug Deliv Rev 2021;177:113928. [PMID: 34411689 DOI: 10.1016/j.addr.2021.113928] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Liang Q, Xiang H, Li X, Luo C, Ma X, Zhao W, Chen J, Tian Z, Li X, Song X. Development of Rifapentine-Loaded PLGA-Based Nanoparticles: In vitro Characterisation and in vivo Study in Mice. Int J Nanomedicine 2020;15:7491-507. [PMID: 33116484 DOI: 10.2147/IJN.S257758] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Labouta HI, Gomez-garcia MJ, Sarsons CD, Nguyen T, Kennard J, Ngo W, Terefe K, Iragorri N, Lai P, Rinker KD, Cramb DT. Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model. RSC Adv 2018;8:7697-708. [DOI: 10.1039/c7ra13438j] [Cited by in Crossref: 19] [Article Influence: 4.8] [Reference Citation Analysis]
96 Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021;170:83-112. [PMID: 33400957 DOI: 10.1016/j.addr.2020.12.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
97 Feng X, Wang Q, Liao Y, Zhou X, Wang Y, Liu W, Zhang G. A synthetic urinary probe-coated nanoparticles sensitive to fibroblast activation protein α for solid tumor diagnosis. Int J Nanomedicine 2017;12:5359-72. [PMID: 28794628 DOI: 10.2147/IJN.S139039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
98 Albisa A, Piacentini E, Sebastian V, Arruebo M, Santamaria J, Giorno L. Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation. Pharm Res 2017;34:1296-308. [PMID: 28342057 DOI: 10.1007/s11095-017-2146-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
99 Jøraholmen MW, Basnet P, Acharya G, Škalko-Basnet N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur J Pharm Biopharm 2017;113:132-9. [PMID: 28087379 DOI: 10.1016/j.ejpb.2016.12.029] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
100 Conte C, Dal Poggetto G, J Swartzwelter B, Esposito D, Ungaro F, Laurienzo P, Boraschi D, Quaglia F. Surface Exposure of PEG and Amines on Biodegradable Nanoparticles as a Strategy to Tune Their Interaction with Protein-Rich Biological Media. Nanomaterials (Basel) 2019;9:E1354. [PMID: 31547212 DOI: 10.3390/nano9101354] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016;103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
102 Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 2017;46:7438-68. [PMID: 29071327 DOI: 10.1039/c7cs00316a] [Cited by in Crossref: 197] [Cited by in F6Publishing: 41] [Article Influence: 49.3] [Reference Citation Analysis]
103 Zhang C, Mastorakos P, Sobral M, Berry S, Song E, Nance E, Eberhart CG, Hanes J, Suk JS. Strategies to enhance the distribution of nanotherapeutics in the brain. J Control Release 2017;267:232-9. [PMID: 28739449 DOI: 10.1016/j.jconrel.2017.07.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
104 Wang M, Ruan L, Zheng T, Wang D, Zhou M, Lu H, Gao J, Chen J, Hu Y. A surface convertible nanoplatform with enhanced mitochondrial targeting for tumor photothermal therapy. Colloids Surf B Biointerfaces 2020;189:110854. [PMID: 32086023 DOI: 10.1016/j.colsurfb.2020.110854] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
105 Shrestha N, Xu Y, Prévost JRC, McCartney F, Brayden D, Frédérick R, Beloqui A, Préat V. Impact of PEGylation on antibody-loaded nanoparticulate drug delivery system on treatment of inflammatory bowel disease. Acta Biomater 2021:S1742-7061(21)00822-9. [PMID: 34923097 DOI: 10.1016/j.actbio.2021.12.015] [Reference Citation Analysis]
106 Poovi G, Damodharan N. Development of tamoxifen-loaded surface-modified nanostructured lipid carrier using experimental design: in vitro and ex vivo characterisation. IET Nanobiotechnol 2020;14:261-74. [PMID: 32463016 DOI: 10.1049/iet-nbt.2019.0276] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
107 Haddadzadegan S, Dorkoosh F, Bernkop-schnurch A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2021.114097] [Reference Citation Analysis]
108 He Z, Liu Z, Tian H, Hu Y, Liu L, Leong KW, Mao H, Chen Y. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale 2018;10:3307-19. [DOI: 10.1039/c7nr08047f] [Cited by in Crossref: 37] [Cited by in F6Publishing: 7] [Article Influence: 9.3] [Reference Citation Analysis]
109 Silva-Abreu M, Miralles E, Kamma-Lorger CS, Espina M, García ML, Calpena AC. Stabilization by Nano Spray Dryer of Pioglitazone Polymeric Nanosystems: Development, In Vivo, Ex Vivo and Synchrotron Analysis. Pharmaceutics 2021;13:1751. [PMID: 34834165 DOI: 10.3390/pharmaceutics13111751] [Reference Citation Analysis]
110 Coutinho C, Sarmento B, das Neves J. Targeted microbicides for preventing sexual HIV transmission. J Control Release 2017;266:119-28. [PMID: 28951320 DOI: 10.1016/j.jconrel.2017.09.030] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
111 Wilkosz N, Łazarski G, Kovacik L, Gargas P, Nowakowska M, Jamróz D, Kepczynski M. Molecular Insight into Drug-Loading Capacity of PEG-PLGA Nanoparticles for Itraconazole. J Phys Chem B 2018;122:7080-90. [PMID: 29927603 DOI: 10.1021/acs.jpcb.8b03742] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
112 Yin Y, Jeong N, Minjarez R, Robbins CA, Carlson KH, Tong T. Contrasting Behaviors between Gypsum and Silica Scaling in the Presence of Antiscalants during Membrane Distillation. Environ Sci Technol 2021;55:5335-46. [DOI: 10.1021/acs.est.0c07190] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
113 Zhu Y, Poma A, Rizzello L, Gouveia VM, Ruiz‐perez L, Battaglia G, Williams CK. Metabolically Active, Fully Hydrolysable Polymersomes. Angew Chem 2019;131:4629-34. [DOI: 10.1002/ange.201814320] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
114 Wang J, Yang Y, Yu M, Hu G, Gan Y, Gao H, Shi X. Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels. Journal of the Mechanics and Physics of Solids 2018;112:431-57. [DOI: 10.1016/j.jmps.2017.12.014] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
115 Friedl JD, Steinbring C, Zaichik S, Le NN, Bernkop-Schnürch A. Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface. Nanomedicine (Lond) 2020;15:1829-41. [PMID: 32781886 DOI: 10.2217/nnm-2020-0127] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 Yang C, Gao S, Dagnæs-hansen F, Jakobsen M, Kjems J. Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo. ACS Appl Mater Interfaces 2017;9:12203-16. [DOI: 10.1021/acsami.6b16556] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 11.8] [Reference Citation Analysis]
117 Lalloz A, Bolzinger MA, Faivre J, Latreille PL, Garcia Ac A, Rakotovao C, Rabanel JM, Hildgen P, Banquy X, Briançon S. Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol. Int J Pharm 2018;553:120-31. [PMID: 30316003 DOI: 10.1016/j.ijpharm.2018.09.046] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
118 Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016;99:28-51. [PMID: 26456916 DOI: 10.1016/j.addr.2015.09.012] [Cited by in Crossref: 1372] [Cited by in F6Publishing: 1233] [Article Influence: 196.0] [Reference Citation Analysis]
119 Conte C, Mastrotto F, Taresco V, Tchoryk A, Quaglia F, Stolnik S, Alexander C. Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments. J Control Release 2018;277:126-41. [PMID: 29534890 DOI: 10.1016/j.jconrel.2018.03.011] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
120 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
121 Wang X, Liu S, Guan Y, Ding J, Ma C, Xie Z. Vaginal drug delivery approaches for localized management of cervical cancer. Adv Drug Deliv Rev 2021;174:114-26. [PMID: 33857555 DOI: 10.1016/j.addr.2021.04.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
122 Schattling P, Taipaleenmäki E, Zhang Y, Städler B. A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration. Macromol Biosci 2017;17. [PMID: 28675773 DOI: 10.1002/mabi.201700060] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
123 Ha M, Nam SH, Sim K, Chong S, Kim J, Kim Y, Lee Y, Nam J. Highly Efficient Photothermal Therapy with Cell-Penetrating Peptide-Modified Bumpy Au Triangular Nanoprisms using Low Laser Power and Low Probe Dose. Nano Lett 2021;21:731-9. [DOI: 10.1021/acs.nanolett.0c04386] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
124 Mohanty RP, Liu X, Kim JY, Peng X, Bhandari S, Leal J, Arasappan D, Wylie DC, Dong T, Ghosh D. Identification of peptide coatings that enhance diffusive transport of nanoparticles through the tumor microenvironment. Nanoscale 2019;11:17664-81. [PMID: 31536061 DOI: 10.1039/c9nr05783h] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
125 Sánchez-López E, Esteruelas G, Ortiz A, Espina M, Prat J, Muñoz M, Cano A, Calpena AC, Ettcheto M, Camins A, Alsafi Z, Souto EB, García ML, Pujol M. Dexibuprofen Biodegradable Nanoparticles: One Step Closer towards a Better Ocular Interaction Study. Nanomaterials (Basel) 2020;10:E720. [PMID: 32290252 DOI: 10.3390/nano10040720] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
126 De Leo V, Milano F, Agostiano A, Catucci L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers (Basel) 2021;13:1027. [PMID: 33810273 DOI: 10.3390/polym13071027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
127 McCright JC, Maisel K. Engineering drug delivery systems to overcome mucosal barriers for immunotherapy and vaccination. Tissue Barriers 2020;8:1695476. [PMID: 31775577 DOI: 10.1080/21688370.2019.1695476] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
128 Chai G, Hassan A, Meng T, Lou L, Ma J, Simmers R, Zhou L, Rubin BK, Zhou QT, Longest PW, Hindle M, Xu Q. Dry powder aerosol containing muco-inert particles for excipient enhanced growth pulmonary drug delivery. Nanomedicine 2020;29:102262. [PMID: 32623017 DOI: 10.1016/j.nano.2020.102262] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
129 Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. Int Rev Cell Mol Biol 2018;341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
130 Nelson KM, Irvin-Choy N, Hoffman MK, Gleghorn JP, Day ES. Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Adv Drug Deliv Rev 2021;170:425-38. [PMID: 33002575 DOI: 10.1016/j.addr.2020.09.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
131 Machado Cruz R, Santos-martinez MJ, Tajber L. Impact of polyethylene glycol polymers on the physicochemical properties and mucoadhesivity of itraconazole nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2019;144:57-67. [DOI: 10.1016/j.ejpb.2019.09.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
132 Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, Guo S, Hovgaard L, Yang M, Gan Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018;151:13-23. [DOI: 10.1016/j.biomaterials.2017.10.022] [Cited by in Crossref: 93] [Cited by in F6Publishing: 82] [Article Influence: 23.3] [Reference Citation Analysis]
133 Anani T, Brannen A, Panizzi P, Duin EC, David AE. Quantitative, real-time in vivo tracking of magnetic nanoparticles using multispectral optoacoustic tomography (MSOT) imaging. J Pharm Biomed Anal 2020;178:112951. [PMID: 31718983 DOI: 10.1016/j.jpba.2019.112951] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
134 Schuster BS, Allan DB, Kays JC, Hanes J, Leheny RL. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales. J Control Release 2017;260:124-33. [PMID: 28578189 DOI: 10.1016/j.jconrel.2017.05.035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Tomasetti L, Breunig M. Preventing Obstructions of Nanosized Drug Delivery Systems by the Extracellular Matrix. Adv Healthc Mater 2018;7. [PMID: 29121453 DOI: 10.1002/adhm.201700739] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
136 Ma X, Zhou P, Kugelmass A, Toskic D, Warner M, Lee L, Fogaren T, Godara A, Wang M, Li Y, Yang L, Xu Q, Comenzo RL. A novel xenograft mouse model for testing approaches targeting human kappa light-chain diseases. Gene Ther 2019;26:187-97. [PMID: 30926963 DOI: 10.1038/s41434-019-0070-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
137 Ueda K, Iwai T, Sunazuka Y, Chen Z, Kato N, Higashi K, Moribe K. Effect of molecular weight of hypromellose on mucin diffusion and oral absorption behavior of fenofibrate nanocrystal. International Journal of Pharmaceutics 2019;564:39-47. [DOI: 10.1016/j.ijpharm.2019.04.033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
138 Nagi JS, Skorenko K, Bernier W, Jones WE, Doiron AL. Near Infrared-Activated Dye-Linked ZnO Nanoparticles Release Reactive Oxygen Species for Potential Use in Photodynamic Therapy. Materials (Basel) 2019;13:E17. [PMID: 31861462 DOI: 10.3390/ma13010017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Santalices I, Vázquez-Vázquez C, Santander-Ortega MJ, Lozano V, Araújo F, Sarmento B, Shrestha N, Préat V, Chenlo M, Alvarez CV, Benetti F, Cuñarro J, Tovar S, Torres D, Alonso MJ. A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Deliv Transl Res 2021;11:524-45. [PMID: 33575972 DOI: 10.1007/s13346-021-00920-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
140 Mohammadabadi A, Huynh RN, Wadajkar AS, Lapidus RG, Kim AJ, Raub CB, Frenkel V. Pulsed focused ultrasound lowers interstitial fluid pressure and increases nanoparticle delivery and penetration in head and neck squamous cell carcinoma xenograft tumors. Phys Med Biol 2020;65:125017. [PMID: 32460260 DOI: 10.1088/1361-6560/ab9705] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
141 Lusi V, Moore TL, Laurino F, Coclite A, Perreira R, Ferreira M, Rizzuti I, Palomba R, Zunino P, Duocastella M, Mizrahy S, Peer D, Decuzzi P. A tissue chamber chip for assessing nanoparticle mobility in the extravascular space. Biomed Microdevices 2019;21:41. [PMID: 30955101 DOI: 10.1007/s10544-019-0398-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
142 Wang W, Yan X, Li Q, Chen Z, Wang Z, Hu H. Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. Nanomedicine: Nanotechnology, Biology and Medicine 2020;29:102277. [DOI: 10.1016/j.nano.2020.102277] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
143 Chen L, Chen D, Jiang Y, Zhang J, Yu J, Dufort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY‐Based Donor/Donor–Acceptor System: Towards Highly Efficient Long‐Wavelength‐Excitable Near‐IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem 2019;131:7082-6. [DOI: 10.1002/ange.201902077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
144 Inose T, Oikawa T, Tokunaga M, Yamauchi N, Nakashima K, Kato C, Hatoyama K, Kamei T, Gonda K, Kobayashi Y. Development of composite nanoparticles composed of silica-coated nanorods and single nanometer-sized gold particles toward a novel X-ray contrast agent. Materials Science and Engineering: B 2020;262:114716. [DOI: 10.1016/j.mseb.2020.114716] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Iqbal S, Du X, Wang J, Li H, Yuan Y, Wang J. Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis. Nano Res 2018;11:2872-84. [DOI: 10.1007/s12274-017-1918-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
146 Kolte A, Patil S, Lesimple P, Hanrahan JW, Misra A. PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int J Pharm 2017;524:382-96. [PMID: 28391040 DOI: 10.1016/j.ijpharm.2017.03.094] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
147 Ji Z, Xie Z, Zhang Z, Gong T, Sun X. Engineering intravaginal vaccines to overcome mucosal and epithelial barriers. Biomaterials 2017;128:8-18. [PMID: 28285195 DOI: 10.1016/j.biomaterials.2017.03.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
148 Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Adv Healthcare Mater 2018;7:1701035. [DOI: 10.1002/adhm.201701035] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 14.4] [Reference Citation Analysis]
149 Pacheco DP, Butnarasu CS, Briatico Vangosa F, Pastorino L, Visai L, Visentin S, Petrini P. Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery. J Mater Chem B 2019;7:4940-52. [PMID: 31411620 DOI: 10.1039/c9tb00957d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
150 Nekolla K, Kick K, Sellner S, Mildner K, Zahler S, Zeuschner D, Krombach F, Rehberg M. Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo. Small 2016;12:2641-51. [PMID: 27028603 DOI: 10.1002/smll.201600071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
151 Witten J, Ribbeck K. The particle in the spider's web: transport through biological hydrogels. Nanoscale 2017;9:8080-95. [PMID: 28580973 DOI: 10.1039/c6nr09736g] [Cited by in Crossref: 58] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
152 Ogawa K, Katsumi H, Takata K, Nomura D, Moroto Y, Kitamura H, Takaki C, Morishita M, Yamamoto A. Orthogonal characterization and pharmacokinetic studies of polylactide-polyethyleneglycol polymeric nanoparticles with different physicochemical properties. Int J Pharm 2021;608:121120. [PMID: 34560212 DOI: 10.1016/j.ijpharm.2021.121120] [Reference Citation Analysis]
153 Tang W, Zhang Y, Zhu G. Pulmonary delivery of mucosal nanovaccines. Nanoscale 2021. [PMID: 34918733 DOI: 10.1039/d1nr06512b] [Reference Citation Analysis]
154 Ball RL, Bajaj P, Whitehead KA. Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Sci Rep 2018;8:2178. [PMID: 29391566 DOI: 10.1038/s41598-018-20632-6] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 9.3] [Reference Citation Analysis]
155 Santander-Ortega MJ, Plaza-Oliver M, Rodríguez-Robledo V, Castro-Vázquez L, Villaseca-González N, González-Fuentes J, Cano EL, Marcos P, Lozano MV, Arroyo-Jiménez MM. PEGylated Nanoemulsions for Oral Delivery: Role of the Inner Core on the Final Fate of the Formulation. Langmuir 2017;33:4269-79. [PMID: 28391698 DOI: 10.1021/acs.langmuir.7b00351] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
156 Wu H, Chen Z, Qi S, Bai B, Ye J, Wu D, Shen J, Kang F, Yu G. Evaluation of the stability of cucurbit[8]uril-based ternary host-guest complexation in physiological environment and the fabrication of a supramolecular theranostic nanomedicine. J Nanobiotechnology 2021;19:330. [PMID: 34670552 DOI: 10.1186/s12951-021-01076-z] [Reference Citation Analysis]
157 Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 2017;532:555-72. [PMID: 28917986 DOI: 10.1016/j.ijpharm.2017.09.018] [Cited by in Crossref: 119] [Cited by in F6Publishing: 98] [Article Influence: 23.8] [Reference Citation Analysis]
158 Witten J, Samad T, Ribbeck K. Selective permeability of mucus barriers. Curr Opin Biotechnol 2018;52:124-33. [PMID: 29674157 DOI: 10.1016/j.copbio.2018.03.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
159 Sugumaran A, Mathialagan V. Colloidal Nanocarriers as Versatile Targeted Delivery Systems for Cervical Cancer. Curr Pharm Des 2020;26:5174-87. [PMID: 32586249 DOI: 10.2174/1381612826666200625110950] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
160 Plaza-Oliver M, Cano EL, Arroyo-Jimenez MM, Gámez M, Lozano-López MV, Santander-Ortega MJ. Taking Particle Tracking into Practice by Novel Software and Screening Approach: Case-Study of Oral Lipid Nanocarriers. Pharmaceutics 2021;13:370. [PMID: 33802226 DOI: 10.3390/pharmaceutics13030370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
161 Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. Environment International 2016;94:8-23. [DOI: 10.1016/j.envint.2016.05.001] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 10.5] [Reference Citation Analysis]
162 Zhou H, Fan Z, Li PY, Deng J, Arhontoulis DC, Li CY, Bowne WB, Cheng H. Dense and Dynamic Polyethylene Glycol Shells Cloak Nanoparticles from Uptake by Liver Endothelial Cells for Long Blood Circulation. ACS Nano 2018;12:10130-41. [PMID: 30117736 DOI: 10.1021/acsnano.8b04947] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 17.5] [Reference Citation Analysis]
163 Carlson TL, Lock JY, Carrier RL. Engineering the Mucus Barrier. Annu Rev Biomed Eng 2018;20:197-220. [PMID: 29865871 DOI: 10.1146/annurev-bioeng-062117-121156] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
164 das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021;:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Reference Citation Analysis]
165 Le TS, Takahashi M, Isozumi N, Miyazato A, Hiratsuka Y, Matsumura K, Taguchi T, Maenosono S. Quick and Mild Isolation of Intact Lysosomes Using Magnetic–Plasmonic Hybrid Nanoparticles. ACS Nano. [DOI: 10.1021/acsnano.1c08474] [Reference Citation Analysis]
166 Sadio A, Amaral AL, Nunes R, Ricardo S, Sarmento B, Almeida R, Tsukamoto H, das Neves J. A Mouse Intra-Intestinal Infusion Model and its Application to the Study of Nanoparticle Distribution. Front Physiol 2016;7:579. [PMID: 27965585 DOI: 10.3389/fphys.2016.00579] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
167 Pagels RF, Edelstein J, Tang C, Prud’homme RK. Controlling and Predicting Nanoparticle Formation by Block Copolymer Directed Rapid Precipitations. Nano Lett 2018;18:1139-44. [DOI: 10.1021/acs.nanolett.7b04674] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 13.5] [Reference Citation Analysis]
168 Huang CJ, Chu SH, Li CH, Lee TR. Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia. Colloids Surf B Biointerfaces 2016;145:291-300. [PMID: 27208443 DOI: 10.1016/j.colsurfb.2016.05.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
169 He H, Jiang S, Xie Y, Lu Y, Qi J, Dong X, Zhao W, Yin Z, Wu W. Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horiz 2018;3:397-407. [DOI: 10.1039/c8nh00010g] [Cited by in Crossref: 25] [Cited by in F6Publishing: 3] [Article Influence: 6.3] [Reference Citation Analysis]
170 Barbero N, Coletti M, Catalano F, Visentin S. Exploring gold nanoparticles interaction with mucins: A spectroscopic-based study. International Journal of Pharmaceutics 2018;535:438-43. [DOI: 10.1016/j.ijpharm.2017.11.026] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
171 Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, Raffin Pohlmann A, Nicoli S. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018;10:E34. [PMID: 29543755 DOI: 10.3390/pharmaceutics10010034] [Cited by in Crossref: 106] [Cited by in F6Publishing: 89] [Article Influence: 26.5] [Reference Citation Analysis]
172 Huang X, Chisholm J, Zhuang J, Xiao Y, Duncan G, Chen X, Suk JS, Hanes J. Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci U S A 2017;114:E6595-602. [PMID: 28739953 DOI: 10.1073/pnas.1705407114] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 10.8] [Reference Citation Analysis]
173 Dal Poggetto G, Troise SS, Conte C, Marchetti R, Moret F, Iadonisi A, Silipo A, Lanzetta R, Malinconico M, Quaglia F, Laurienzo P. Nanoparticles decorated with folate based on a site-selective αCD-rotaxanated PEG- b -PCL copolymer for targeted cancer therapy. Polym Chem 2020;11:3892-903. [DOI: 10.1039/d0py00158a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
174 Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018;17:217-27. [PMID: 29382248 DOI: 10.1080/14760584.2018.1435279] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
175 Xie B, Liu Y, Guo Y, Zhang E, Pu C, He H, Yin T, Tang X. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection. Pharm Res 2018;35:62. [PMID: 29445971 DOI: 10.1007/s11095-018-2357-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
176 Zaichik S, Steinbring C, Jelkmann M, Bernkop-schnürch A. Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage. International Journal of Pharmaceutics 2020;581:119299. [DOI: 10.1016/j.ijpharm.2020.119299] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
177 You S, Kim H, Jung HY, Kim B, Lee EJ, Kim JW, Kim Y. Tuning surface functionalities of sub-10 nm-sized nanocarriers to target outer retina in designing drug delivery agents for intravitreal administration. Biomaterials 2020;255:120188. [PMID: 32652402 DOI: 10.1016/j.biomaterials.2020.120188] [Reference Citation Analysis]
178 Berardi A, Baldelli Bombelli F, Thuenemann EC, Lomonossoff GP. Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. Nanoscale 2019;11:2306-16. [DOI: 10.1039/c8nr09067j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
179 Liu Y, Liu J, Liang J, Zhang M, Li Z, Wang Z, Dang B, Feng N. Mucosal transfer of wheat germ agglutinin modified lipid-polymer hybrid nanoparticles for oral delivery of oridonin. Nanomedicine 2017;13:2219-29. [PMID: 28539275 DOI: 10.1016/j.nano.2017.05.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
180 Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids and Surfaces B: Biointerfaces 2020;196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
181 Yang Y, Tian F, Nie D, Liu Y, Qian K, Yu M, Wang A, Zhang Y, Shi X, Gan Y. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. Sci Adv 2020;6:eaay9937. [PMID: 32083187 DOI: 10.1126/sciadv.aay9937] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
182 Salabat A, Mirhoseini F. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. Journal of Molecular Liquids 2018;268:849-53. [DOI: 10.1016/j.molliq.2018.07.112] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
183 Lian H, He Z, Meng Z. Rational design of hybrid nanomicelles integrating mucosal penetration and P-glycoprotein inhibition for efficient oral delivery of paclitaxel. Colloids Surf B Biointerfaces 2017;155:429-39. [PMID: 28463810 DOI: 10.1016/j.colsurfb.2017.04.045] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
184 Chen Z, Peng Y, Li Y, Xie X, Wei X, Yang G, Zhang H, Li N, Li T, Qin X, Li S, Wu C, You F, Yang H, Liu Y. Aptamer-Dendrimer Functionalized Magnetic Nano-Octahedrons: Theranostic Drug/Gene Delivery Platform for Near-Infrared/Magnetic Resonance Imaging-Guided Magnetochemotherapy. ACS Nano 2021;15:16683-96. [PMID: 34586789 DOI: 10.1021/acsnano.1c06667] [Reference Citation Analysis]
185 Santander-ortega M, Plaza-oliver M, Rodríguez-robledo V, Castro-vázquez L, Villaseca-gonzález N, González-fuentes J, Marcos P, Arroyo-jiménez M, Lozano M. Colloids for drug delivery to the brain. Journal of Drug Delivery Science and Technology 2017;42:193-206. [DOI: 10.1016/j.jddst.2017.07.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
186 Mahlert L, Anderski J, Schoppa T, Mulac D, Sun J, Kuckling D, Langer K. In vitro evaluation of innovative light-responsive nanoparticles for controlled drug release in intestinal PDT. International Journal of Pharmaceutics 2019;565:199-208. [DOI: 10.1016/j.ijpharm.2019.04.077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
187 Le Z, He Z, Liu H, Liu L, Liu Z, Chen Y. Antioxidant Enzymes Sequestered within Lipid-Polymer Hybrid Nanoparticles for the Local Treatment of Inflammatory Bowel Disease. ACS Appl Mater Interfaces 2021;13:55966-77. [PMID: 34792322 DOI: 10.1021/acsami.1c19457] [Reference Citation Analysis]
188 Birk SE, Boisen A, Nielsen LH. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev 2021;174:30-52. [PMID: 33845040 DOI: 10.1016/j.addr.2021.04.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
189 Lock JY, Carlson TL, Carrier RL. Mucus models to evaluate the diffusion of drugs and particles. Adv Drug Deliv Rev 2018;124:34-49. [PMID: 29117512 DOI: 10.1016/j.addr.2017.11.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 12.8] [Reference Citation Analysis]
190 Zhang Z, Chen D, Liu Z, Wang D, Guo J, Zheng J, Qin W, Wu C. Near-Infrared Polymer Dots with Aggregation-Induced Emission for Tumor Imaging. ACS Appl Polym Mater 2020;2:74-9. [DOI: 10.1021/acsapm.9b00977] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
191 Zhang X, Ma Y, Wan J, Yuan J, Wang D, Wang W, Sun X, Meng Q. Biomimetic Nanomaterials Triggered Ferroptosis for Cancer Theranostics. Front Chem 2021;9:768248. [PMID: 34869212 DOI: 10.3389/fchem.2021.768248] [Reference Citation Analysis]
192 Tian H, He Z, Sun C, Yang C, Zhao P, Liu L, Leong KW, Mao HQ, Liu Z, Chen Y. Uniform Core-Shell Nanoparticles with Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin. Adv Healthc Mater 2018;7:e1800285. [PMID: 29984479 DOI: 10.1002/adhm.201800285] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 11.8] [Reference Citation Analysis]
193 Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021;175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Reference Citation Analysis]
194 Song Q, Zheng C, Jia J, Zhao H, Feng Q, Zhang H, Wang L, Zhang Z, Zhang Y. A Probiotic Spore-Based Oral Autonomous Nanoparticles Generator for Cancer Therapy. Adv Mater 2019;31:e1903793. [PMID: 31490587 DOI: 10.1002/adma.201903793] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
195 Winter H, Neufeld MJ, Makotamo L, Sun C, Goforth AM. Synthesis of Radioluminescent CaF2:Ln Core, Mesoporous Silica Shell Nanoparticles for Use in X-ray Based Theranostics. Nanomaterials (Basel) 2020;10:E1447. [PMID: 32722132 DOI: 10.3390/nano10081447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
196 Álvarez-Benedicto E, Farbiak L, Márquez Ramírez M, Wang X, Johnson LT, Mian O, Guerrero ED, Siegwart DJ. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci 2021. [PMID: 34904974 DOI: 10.1039/d1bm01454d] [Reference Citation Analysis]
197 Wu B, Zhang LJ, Zhang CJ, Deng K, Ao YW, Mei H, Zhou W, Wang CX, Yu H, Huang SW. Effect of Poly(ethylene glycol) (PEG) Surface Density on the Fate and Antitumor Efficacy of Redox-Sensitive Hybrid Nanoparticles. ACS Biomater Sci Eng 2020;6:3975-83. [PMID: 33463329 DOI: 10.1021/acsbiomaterials.0c00516] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
198 Rosso A, Andretto V, Chevalier Y, Kryza D, Sidi-Boumedine J, Grenha A, Guerreiro F, Gharsallaoui A, La Padula V, Montembault A, David L, Briançon S, Lollo G. Nanocomposite sponges for enhancing intestinal residence time following oral administration. J Control Release 2021;333:579-92. [PMID: 33838210 DOI: 10.1016/j.jconrel.2021.04.004] [Reference Citation Analysis]
199 Irvin-Choy NS, Nelson KM, Gleghorn JP, Day ES. Design of nanomaterials for applications in maternal/fetal medicine. J Mater Chem B 2020;8:6548-61. [PMID: 32452510 DOI: 10.1039/d0tb00612b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
200 Chen D, Wu IC, Liu Z, Tang Y, Chen H, Yu J, Wu C, Chiu DT. Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem Sci 2017;8:3390-8. [PMID: 28507710 DOI: 10.1039/c7sc00441a] [Cited by in Crossref: 47] [Cited by in F6Publishing: 5] [Article Influence: 9.4] [Reference Citation Analysis]
201 Fang L, Wang L, Yao Y, Zhang J, Wu X, Li X, Wang H, Zhang X, Gong X, Chang J. Micro- and nano-carrier systems: The non-invasive and painless local administration strategies for disease therapy in mucosal tissues. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:153-71. [DOI: 10.1016/j.nano.2016.08.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
202 Bernasconi V, Norling K, Gribonika I, Ong LC, Burazerovic S, Parveen N, Schön K, Stensson A, Bally M, Larson G, Höök F, Lycke N. A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection. Mucosal Immunol 2021;14:523-36. [PMID: 32807838 DOI: 10.1038/s41385-020-0334-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
203 Sims LB, Miller HA, Halwes ME, Steinbach-Rankins JM, Frieboes HB. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases. Eur J Pharm Biopharm 2019;138:37-47. [PMID: 30195726 DOI: 10.1016/j.ejpb.2018.09.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
204 Porfiryeva NN, Semina II, Salakhov IA, Moustafine RI, Khutoryanskiy VV. Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. Nanomedicine 2021;37:102432. [PMID: 34186258 DOI: 10.1016/j.nano.2021.102432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
205 Chiu CY, Chung TW, Chen SY, Ma YH. Effects of PEGylation on capture of dextran-coated magnetic nanoparticles in microcirculation. Int J Nanomedicine 2019;14:4767-80. [PMID: 31308657 DOI: 10.2147/IJN.S204844] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
206 Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2021;7:1765-79. [DOI: 10.1021/acsbiomaterials.0c01291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
207 García-García P, Briffault E, Landin M, Evora C, Diaz-Rodriguez P, Delgado A. Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Deliv Transl Res 2021;11:598-607. [PMID: 33625680 DOI: 10.1007/s13346-021-00926-5] [Reference Citation Analysis]
208 Dave RS, Goostrey TC, Ziolkowska M, Czerny-Holownia S, Hoare T, Sheardown H. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective. J Control Release 2021;336:71-88. [PMID: 34119558 DOI: 10.1016/j.jconrel.2021.06.011] [Reference Citation Analysis]
209 Markwalter CE, Pagels RF, Hejazi AN, Gordon AGR, Thompson AL, Prud’homme RK. Polymeric Nanocarrier Formulations of Biologics Using Inverse Flash NanoPrecipitation. AAPS J 2020;22. [DOI: 10.1208/s12248-019-0405-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
210 Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today 2019;24:1524-38. [PMID: 31102733 DOI: 10.1016/j.drudis.2019.05.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
211 Lu M, Chen F, Cao C, Garvey CJ, Fletcher NL, Houston ZH, Lu H, Lord MS, Thurecht KJ, Stenzel MH. Importance of Polymer Length in Fructose-Based Polymeric Micelles for an Enhanced Biological Activity. Macromolecules 2019;52:477-86. [DOI: 10.1021/acs.macromol.8b02381] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
212 Zhang J, Teng F, Tang S, Zhang Y, Guo Y, Li J, Li Y, Zhang C, Xiong L. The Effect of Polymer Dots During Mammalian Early Embryo Development and Their Biocompatibility on Maternal Health. Macromol Biosci 2020;20:e2000128. [PMID: 32567242 DOI: 10.1002/mabi.202000128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
213 Li J, Qiang H, Yang W, Xu Y, Feng T, Cai H, Wang S, Liu Z, Zhang Z, Zhang J. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J Control Release 2021;341:31-43. [PMID: 34793919 DOI: 10.1016/j.jconrel.2021.11.020] [Reference Citation Analysis]
214 Zhou Q, Dong C, Fan W, Jiang H, Xiang J, Qiu N, Piao Y, Xie T, Luo Y, Li Z, Liu F, Shen Y. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020;240:119902. [PMID: 32105817 DOI: 10.1016/j.biomaterials.2020.119902] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 21.5] [Reference Citation Analysis]
215 Sims LB, Frieboes HB, Steinbach-Rankins JM. Nanoparticle-mediated drug delivery to treat infections in the female reproductive tract: evaluation of experimental systems and the potential for mathematical modeling. Int J Nanomedicine 2018;13:2709-27. [PMID: 29760551 DOI: 10.2147/IJN.S160044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
216 Shan W, Zhu X, Tao W, Cui Y, Liu M, Wu L, Li L, Zheng Y, Huang Y. Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. ACS Appl Mater Interfaces 2016;8:25444-53. [PMID: 27588330 DOI: 10.1021/acsami.6b08183] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 13.2] [Reference Citation Analysis]
217 Ilkar Erdagi S, Yildiz U. Diosgenin-conjugated PCL–MPEG polymeric nanoparticles for the co-delivery of anticancer drugs: design, optimization, in vitro drug release and evaluation of anticancer activity. New J Chem 2019;43:6622-35. [DOI: 10.1039/c9nj00659a] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
218 Yang X, Wang L, Li L, Han M, Tang S, Wang T, Han J, He X, He X, Wang A, Sun K. A novel dendrimer-based complex co-modified with cyclic RGD hexapeptide and penetratin for noninvasive targeting and penetration of the ocular posterior segment. Drug Deliv 2019;26:989-1001. [PMID: 31571502 DOI: 10.1080/10717544.2019.1667455] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
219 Du X, Wang W, Wu C, Jia B, Li W, Qiu L, Jiang P, Wang J, Li YQ. Enzyme-responsive turn-on nanoprobes for in situ fluorescence imaging and localized photothermal treatment of multidrug-resistant bacterial infections. J Mater Chem B 2020;8:7403-12. [PMID: 32658955 DOI: 10.1039/d0tb00750a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
220 Schulz F, Möller J, Lehmkühler F, Smith AJ, Vossmeyer T, Lange H, Grübel G, Schroer MA. Structure and Stability of PEG- and Mixed PEG-Layer-Coated Nanoparticles at High Particle Concentrations Studied In Situ by Small-Angle X-Ray Scattering. Part Part Syst Charact 2018;35:1700319. [DOI: 10.1002/ppsc.201700319] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
221 Fuentes E, Yameen B, Bong SJ, Salvador-morales C, Palomo I, Vilos C. Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:1089-94. [DOI: 10.1016/j.nano.2016.10.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
222 Shi Y, Sun X, Zhang L, Sun K, Li K, Li Y, Zhang Q. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci Rep 2018;8:726. [PMID: 29335533 DOI: 10.1038/s41598-018-19170-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
223 Marasini N, Fu C, Fletcher NL, Subasic C, Er G, Mardon K, Thurecht KJ, Whittaker AK, Kaminskas LM. The Impact of Polymer Size and Cleavability on the Intravenous Pharmacokinetics of PEG-Based Hyperbranched Polymers in Rats. Nanomaterials (Basel) 2020;10:E2452. [PMID: 33302413 DOI: 10.3390/nano10122452] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
224 Li M, Kaminskas LM, Marasini N. Recent advances in nano/microparticle-based oral vaccines. J Pharm Investig 2021;:1-14. [PMID: 34150345 DOI: 10.1007/s40005-021-00537-9] [Reference Citation Analysis]
225 Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY-Based Donor/Donor-Acceptor System: Towards Highly Efficient Long-Wavelength-Excitable Near-IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019;58:7008-12. [PMID: 30912228 DOI: 10.1002/anie.201902077] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 10.7] [Reference Citation Analysis]
226 Arif M, Sharaf M, Samreen, Dong Q, Wang L, Chi Z, Liu CG. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori. J Biomater Sci Polym Ed 2021;32:2423-47. [PMID: 34644235 DOI: 10.1080/09205063.2021.1972559] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
227 Wu T, Chiu H, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-perez N, Guerrini L, Alvarez-puebla RA, Vranješ-đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier; 2018. pp. 1-92. [DOI: 10.1016/b978-0-323-48063-5.00001-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
228 Samkange T, D'souza S, Obikeze K, Dube A. Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin. Journal of Pharmacy and Pharmacology 2019;71:1497-507. [DOI: 10.1111/jphp.13147] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
229 Rabanel JM, Adibnia V, Tehrani SF, Sanche S, Hildgen P, Banquy X, Ramassamy C. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? Nanoscale 2019;11:383-406. [PMID: 30560970 DOI: 10.1039/c8nr04916e] [Cited by in Crossref: 42] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
230 Ghanem R, Laurent V, Roquefort P, Haute T, Ramel S, Le Gall T, Aubry T, Montier T. Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020;13:47. [PMID: 33396283 DOI: 10.3390/pharmaceutics13010047] [Reference Citation Analysis]
231 Guo D, Shi C, Wang L, Ji X, Zhang S, Luo J. A Rationally Designed Micellar Nanocarrier for the Delivery of Hydrophilic Methotrexate in Psoriasis Treatment. ACS Appl Bio Mater 2020;3:4832-46. [PMID: 34136761 DOI: 10.1021/acsabm.0c00342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
232 Wu L, Liu M, Shan W, Cui Y, Zhang Z, Huang Y. Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration. International Journal of Pharmaceutics 2017;520:216-27. [DOI: 10.1016/j.ijpharm.2017.02.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
233 Feng X, Dixon H, Glen‐ravenhill H, Karaosmanoglu S, Li Q, Yan L, Chen X. Smart Nanotechnologies to Target Tumor with Deep Penetration Depth for Efficient Cancer Treatment and Imaging. Adv Therap 2019;2:1900093. [DOI: 10.1002/adtp.201900093] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
234 Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020;22:3. [PMID: 33221968 DOI: 10.1208/s12249-020-01873-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
235 Ho DK, Christmann R, Murgia X, De Rossi C, Frisch S, Koch M, Schaefer UF, Loretz B, Desmaele D, Couvreur P, Lehr CM. Synthesis and Biopharmaceutical Characterization of Amphiphilic Squalenyl Derivative Based Versatile Drug Delivery Platform. Front Chem 2020;8:584242. [PMID: 33195079 DOI: 10.3389/fchem.2020.584242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
236 Li L, Fu S, Chen C, Wang X, Fu C, Wang S, Guo W, Yu X, Zhang X, Liu Z, Qiu J, Liu H. Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy. ACS Nano 2016;10:7094-105. [DOI: 10.1021/acsnano.6b03238] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 12.5] [Reference Citation Analysis]
237 Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016;509:16-27. [PMID: 27188645 DOI: 10.1016/j.ijpharm.2016.05.027] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
238 Helena Macedo M, Baião A, Pinto S, Barros AS, Almeida H, Almeida A, das Neves J, Sarmento B. Mucus-producing 3D cell culture models. Adv Drug Deliv Rev 2021;178:113993. [PMID: 34619286 DOI: 10.1016/j.addr.2021.113993] [Reference Citation Analysis]
239 Wang C, Chen Z, Tang X, Liu X, Na W, Li W, Liu T. Influences of galactose ligand on the uptake of TADF liposomes by HepG2 cells. Photodiagnosis Photodyn Ther 2020;32:102014. [PMID: 32950730 DOI: 10.1016/j.pdpdt.2020.102014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
240 Huckaby JT, Lai SK. PEGylation for enhancing nanoparticle diffusion in mucus. Advanced Drug Delivery Reviews 2018;124:125-39. [DOI: 10.1016/j.addr.2017.08.010] [Cited by in Crossref: 120] [Cited by in F6Publishing: 104] [Article Influence: 30.0] [Reference Citation Analysis]
241 Boya VN, Lovett R, Setua S, Gandhi V, Nagesh PKB, Khan S, Jaggi M, Yallapu MM, Chauhan SC. Probing mucin interaction behavior of magnetic nanoparticles. J Colloid Interface Sci 2017;488:258-68. [PMID: 27837716 DOI: 10.1016/j.jcis.2016.10.090] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
242 Zhou S, Sun Y, Kuang X, Hou S, Yang Y, Wang Z, Liu H. Mitochondria-targeting nanomedicine: An effective and potent strategy against aminoglycosides-induced ototoxicity. European Journal of Pharmaceutical Sciences 2019;126:59-68. [DOI: 10.1016/j.ejps.2018.04.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
243 Lv L, Zhuang YX, Zhang HW, Tian NN, Dang WZ, Wu SY. Capsaicin-loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed Pharmacother 2017;91:999-1005. [PMID: 28525949 DOI: 10.1016/j.biopha.2017.04.097] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
244 Venuta A, Moret F, Dal Poggetto G, Esposito D, Fraix A, Avitabile C, Ungaro F, Malinconico M, Sortino S, Romanelli A, Laurienzo P, Reddi E, Quaglia F. Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm. European Journal of Pharmaceutical Sciences 2018;111:177-85. [DOI: 10.1016/j.ejps.2017.09.048] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
245 Joseph A, Simo GM, Gao T, Alhindi N, Xu N, Graham DJ, Gamble LJ, Nance E. Surfactants influence polymer nanoparticle fate within the brain. Biomaterials 2021;277:121086. [PMID: 34481289 DOI: 10.1016/j.biomaterials.2021.121086] [Reference Citation Analysis]
246 Martínez-López AL, González-Navarro CJ, Vizmanos JL, Irache JM. Zein-based nanocarriers for the oral delivery of insulin. In vivo evaluation in Caenorhabditis elegans. Drug Deliv Transl Res 2021;11:647-58. [PMID: 33515186 DOI: 10.1007/s13346-021-00919-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
247 Guo J, Luan X, Cong Z, Sun Y, Wang L, Mckenna SL, Cahill MR, O'driscoll CM. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. Journal of Controlled Release 2018;286:154-66. [DOI: 10.1016/j.jconrel.2018.07.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
248 Wang Y, Shahi PK, Wang X, Xie R, Zhao Y, Wu M, Roge S, Pattnaik BR, Gong S. In vivo targeted delivery of nucleic acids and CRISPR genome editors enabled by GSH-responsive silica nanoparticles. J Control Release 2021;336:296-309. [PMID: 34174352 DOI: 10.1016/j.jconrel.2021.06.030] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
249 Li HQ, Ye WL, Huan ML, Cheng Y, Liu DZ, Cui H, Liu M, Zhang BL, Mei QB, Zhou SY. Mitochondria and nucleus delivery of active form of 10-hydroxycamptothecin with dual shell to precisely treat colorectal cancer. Nanomedicine (Lond) 2019;14:1011-32. [PMID: 30925116 DOI: 10.2217/nnm-2018-0227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
250 Yin S, Gao Y, Zhang Y, Xu J, Zhu J, Zhou F, Gu X, Wang G, Li J. Reduction/Oxidation-Responsive Hierarchical Nanoparticles with Self-Driven Degradability for Enhanced Tumor Penetration and Precise Chemotherapy. ACS Appl Mater Interfaces 2020;12:18273-91. [DOI: 10.1021/acsami.0c00355] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
251 Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021;176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Reference Citation Analysis]
252 Berrocoso E, Rey-brea R, Fernández-arévalo M, Micó JA, Martín-banderas L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:2623-32. [DOI: 10.1016/j.nano.2017.07.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
253 Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016;240:465-88. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 7.3] [Reference Citation Analysis]
254 Du X, Wang J, Iqbal S, Li H, Cao Z, Wang Y, Du J, Wang J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater Sci 2018;6:642-50. [DOI: 10.1039/c7bm01096f] [Cited by in Crossref: 44] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
255 Lechanteur A, Furst T, Evrard B, Delvenne P, Piel G, Hubert P. Promoting Vaginal Distribution of E7 and MCL-1 siRNA-Silencing Nanoparticles for Cervical Cancer Treatment. Mol Pharm 2017;14:1706-17. [PMID: 28350964 DOI: 10.1021/acs.molpharmaceut.6b01154] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
256 Yu M, Xu L, Tian F, Su Q, Zheng N, Yang Y, Wang J, Wang A, Zhu C, Guo S, Zhang X, Gan Y, Shi X, Gao H. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nat Commun 2018;9:2607. [PMID: 29973592 DOI: 10.1038/s41467-018-05061-3] [Cited by in Crossref: 90] [Cited by in F6Publishing: 70] [Article Influence: 22.5] [Reference Citation Analysis]
257 Markwalter CE, Pagels RF, Hejazi AN, Ristroph KD, Wang J, Chen K, Li J, Prud'homme RK. Sustained release of peptides and proteins from polymeric nanocarriers produced by inverse Flash NanoPrecipitation. J Control Release 2021;334:11-20. [PMID: 33823220 DOI: 10.1016/j.jconrel.2021.04.002] [Reference Citation Analysis]
258 Tan X, Zhang Y, Wang Q, Ren T, Gou J, Guo W, Yin T, He H, Zhang Y, Tang X. Cell-penetrating peptide together with PEG-modified mesostructured silica nanoparticles promotes mucous permeation and oral delivery of therapeutic proteins and peptides. Biomater Sci 2019;7:2934-50. [PMID: 31094367 DOI: 10.1039/c9bm00274j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
259 Zhang C, Chen Z, Li W, Liu X, Tang S, Jiang L, Li M, Peng H, Lian M. Influences of different sugar ligands on targeted delivery of liposomes. J Drug Target 2020;28:789-801. [PMID: 32242754 DOI: 10.1080/1061186X.2020.1744156] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
260 Song J, Ju Y, Amarasena TH, Lin Z, Mettu S, Zhou J, Rahim MA, Ang CS, Cortez-Jugo C, Kent SJ, Caruso F. Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle-Immune Cell Interactions in Human Blood. ACS Nano 2021;15:10025-38. [PMID: 34009935 DOI: 10.1021/acsnano.1c01642] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
261 Alfaifi MY, Shati AA, Elbehairi SEI, Fahmy UA, Alhakamy NA, Md S. Anti-tumor effect of PEG-coated PLGA nanoparticles of febuxostat on A549 non-small cell lung cancer cells. 3 Biotech 2020;10:133. [PMID: 32154046 DOI: 10.1007/s13205-020-2077-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
262 Tan X, Liu X, Zhang Y, Zhang H, Lin X, Pu C, Gou J, He H, Yin T, Zhang Y, Tang X. Silica nanoparticles on the oral delivery of insulin. Expert Opinion on Drug Delivery 2018;15:805-20. [DOI: 10.1080/17425247.2018.1503250] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
263 Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O'driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Advanced Drug Delivery Reviews 2016;106:367-80. [DOI: 10.1016/j.addr.2016.06.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 9.5] [Reference Citation Analysis]
264 Yang P, Xu H, Zhang Z, Yang L, Kuang H, Aguilar ZP. Surface modification affect the biodistribution and toxicity characteristics of iron oxide magnetic nanoparticles in rats. IET nanobiotechnol 2018;12:562-8. [DOI: 10.1049/iet-nbt.2017.0152] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
265 Wright L, Joyce P, Barnes TJ, Prestidge CA. Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomater Sci Eng 2021. [PMID: 34784462 DOI: 10.1021/acsbiomaterials.1c00814] [Reference Citation Analysis]
266 Pannuzzo M, Horta BAC, La Rosa C, Decuzzi P. Predicting the Miscibility and Rigidity of Poly(lactic-co-glycolic acid)/Polyethylene Glycol Blends via Molecular Dynamics Simulations. Macromolecules 2020;53:3643-54. [PMID: 32831403 DOI: 10.1021/acs.macromol.0c00110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
267 Figueira TN, Mendonça DA, Gaspar D, Melo MN, Moscona A, Porotto M, Castanho MARB, Veiga AS. Structure-Stability-Function Mechanistic Links in the Anti-Measles Virus Action of Tocopherol-Derivatized Peptide Nanoparticles. ACS Nano 2018;12:9855-65. [PMID: 30230818 DOI: 10.1021/acsnano.8b01422] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
268 Yang Y, Abdalla S. Scaffolds of Macroporous Tannin Spray With Human-Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2020;8:951. [PMID: 33178667 DOI: 10.3389/fbioe.2020.00951] [Reference Citation Analysis]
269 Zinger A, Cvetkovic C, Sushnitha M, Naoi T, Baudo G, Anderson M, Shetty A, Basu N, Covello J, Tasciotti E, Amit M, Xie T, Taraballi F, Krencik R. Humanized Biomimetic Nanovesicles for Neuron Targeting. Adv Sci (Weinh) 2021;:e2101437. [PMID: 34382379 DOI: 10.1002/advs.202101437] [Reference Citation Analysis]
270 Chen D, Liu J, Wu J, Suk JS. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin Drug Deliv 2021;18:595-606. [PMID: 33218265 DOI: 10.1080/17425247.2021.1854222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
271 Zhang Y, Li H, Wang Q, Hao X, Li H, Sun H, Han L, Zhang Z, Zou Q, Sun X. Rationally Designed Self-Assembling Nanoparticles to Overcome Mucus and Epithelium Transport Barriers for Oral Vaccines against Helicobacter pylori. Adv Funct Mater 2018;28:1802675. [DOI: 10.1002/adfm.201802675] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
272 Linssen RS, Chai G, Ma J, Kummarapurugu AB, van Woensel JBM, Bem RA, Kaler L, Duncan GA, Zhou L, Rubin BK, Xu Q. Neutrophil Extracellular Traps Increase Airway Mucus Viscoelasticity and Slow Mucus Particle Transit. Am J Respir Cell Mol Biol 2021;64:69-78. [PMID: 33095650 DOI: 10.1165/rcmb.2020-0168OC] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
273 Su L, Li R, Khan S, Clanton R, Zhang F, Lin YN, Song Y, Wang H, Fan J, Hernandez S, Butters AS, Akabani G, MacLoughlin R, Smolen J, Wooley KL. Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity. J Am Chem Soc 2018;140:1438-46. [PMID: 29350522 DOI: 10.1021/jacs.7b11462] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 15.5] [Reference Citation Analysis]
274 Rewatkar P, Kumeria T, Popat A. Size, shape and surface charge considerations of orally delivered nanomedicines. Nanotechnology for Oral Drug Delivery. Elsevier; 2020. pp. 143-76. [DOI: 10.1016/b978-0-12-818038-9.00005-3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
275 Xu L, Wang Y, Zhu C, Ren S, Shao Y, Wu L, Li W, Jia X, Hu R, Chen R, Chen Z. Morphological transformation enhances Tumor Retention by Regulating the Self-assembly of Doxorubicin-peptide Conjugates. Theranostics 2020;10:8162-78. [PMID: 32724464 DOI: 10.7150/thno.45088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]