BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cortés E, Besteiro LV, Alabastri A, Baldi A, Tagliabue G, Demetriadou A, Narang P. Challenges in Plasmonic Catalysis. ACS Nano 2020. [PMID: 33314905 DOI: 10.1021/acsnano.0c08773] [Cited by in Crossref: 86] [Cited by in F6Publishing: 90] [Article Influence: 43.0] [Reference Citation Analysis]
Number Citing Articles
1 Pustovalov VK. Multi-temperature modeling of femtosecond laser pulse on metallic nanoparticles accounting for the temperature dependences of the parameters. Nanotechnology and Precision Engineering 2022;5:045001. [DOI: 10.1063/10.0013776] [Reference Citation Analysis]
2 Rej S, Santiago EY, Baturina O, Zhang Y, Burger S, Kment Š, Govorov AO, Naldoni A. Colloidal Titanium Nitride Nanobars for Broadband Inexpensive Plasmonics and Photochemistry from Visible to Mid-IR Wavelengths. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107989] [Reference Citation Analysis]
3 Elias RC, Linic S. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c08561] [Reference Citation Analysis]
4 Gilea D, Ciocarlan RG, Seftel EM, Cool P, Carja G. Engineering Heterostructures of Layered Double Hydroxides and Metal Nanoparticles for Plasmon-Enhanced Catalysis. Catalysts 2022;12:1210. [DOI: 10.3390/catal12101210] [Reference Citation Analysis]
5 Liu G, Xu J, Chen T, Wang K. Progress in thermoplasmonics for solar energy applications. Physics Reports 2022;981:1-50. [DOI: 10.1016/j.physrep.2022.07.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Ng LS, Chong C, Lok XY, Pereira V, Ang ZZ, Han X, Li H, Lee HK. Dynamic Liquid-Liquid Interface: Applying a Spinning Interfacial Microreactor to Actively Converge Biphasic Reactants for the Enhanced Interfacial Reaction. ACS Appl Mater Interfaces 2022. [PMID: 36162132 DOI: 10.1021/acsami.2c12015] [Reference Citation Analysis]
7 Yalavarthi R, Henrotte O, Kment Š, Naldoni A. Determining the role of Pd catalyst morphology and deposition criteria over large area plasmonic metasurfaces during light-enhanced electrochemical oxidation of formic acid. J Chem Phys 2022;157:114706. [PMID: 36137800 DOI: 10.1063/5.0102012] [Reference Citation Analysis]
8 Acharya A, Lee IS. Designing plasmonically integrated nanoreactors for efficient catalysis. Bulletin Korean Chem Soc. [DOI: 10.1002/bkcs.12627] [Reference Citation Analysis]
9 Li J, Zhang Y, Huang Y, Luo B, Jing L, Jing D. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review. Nano Res . [DOI: 10.1007/s12274-022-4700-0] [Reference Citation Analysis]
10 Joshi G, Saha A, Dutta A, Khatua S. NIR-Driven Photocatalytic Hydrogen Production by Silane- and Tertiary Amine-Bound Plasmonic Gold Nanoprisms. ACS Appl Mater Interfaces 2022. [PMID: 35980736 DOI: 10.1021/acsami.2c10152] [Reference Citation Analysis]
11 King ME, Wang C, Fonseca Guzman MV, Ross MB. Plasmonics for environmental remediation and pollutant degradation. Chem Catalysis 2022;2:1880-1892. [DOI: 10.1016/j.checat.2022.06.017] [Reference Citation Analysis]
12 Forcherio GT, Ostovar B, Boltersdorf J, Cai YY, Leff AC, Grew KN, Lundgren CA, Link S, Baker DR. Single-Particle Insights into Plasmonic Hot Carrier Separation Augmenting Photoelectrochemical Ethanol Oxidation with Photocatalytically Synthesized Pd-Au Bimetallic Nanorods. ACS Nano 2022. [PMID: 35894585 DOI: 10.1021/acsnano.2c03549] [Reference Citation Analysis]
13 Negrín-Montecelo Y, Brissaud C, Piquemal JY, Govorov AO, Correa-Duarte MA, Besteiro LV, Comesaña-Hermo M. Plasmonic photocatalysis in aqueous solution: assessing the contribution of thermal effects and evaluating the role of photogenerated ROS. Nanoscale 2022. [PMID: 35866634 DOI: 10.1039/d2nr02431d] [Reference Citation Analysis]
14 Chen M, Ye Z, Wei L, Yuan J, Xiao L. Shining at the Tips: Anisotropic Deposition of Pt Nanoparticles Boosting Hot Carrier Utilization for Plasmon-Driven Photocatalysis. J Am Chem Soc 2022. [PMID: 35802866 DOI: 10.1021/jacs.2c04202] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Herran M, Sousa‐castillo A, Fan C, Lee S, Xie W, Döblinger M, Auguié B, Cortés E. Tailoring Plasmonic Bimetallic Nanocatalysts Toward Sunlight‐Driven H 2 Production. Adv Funct Materials. [DOI: 10.1002/adfm.202203418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Rodrigues MP, Dourado AH, Krischer K, Torresi SIC. Gold–rhodium nanoflowers for the plasmon enhanced ethanol electrooxidation under visible light for tuning the activity and selectivity. Electrochimica Acta 2022;420:140439. [DOI: 10.1016/j.electacta.2022.140439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mascaretti L, Schirato A, Montini T, Alabastri A, Naldoni A, Fornasiero P. Challenges in temperature measurements in gas-phase photothermal catalysis. Joule 2022. [DOI: 10.1016/j.joule.2022.06.019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Xia Z, Chen C, Qi X, Xu Q, Tang H, Liu G. Delocalized Electrons via In Situ CNT Growth on Au/g‐C 3 N 4 for Boosting Photocatalytic H 2 Evolution. Advanced Sustainable Systems. [DOI: 10.1002/adsu.202200134] [Reference Citation Analysis]
19 Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022. [PMID: 35728004 DOI: 10.1021/acs.chemrev.2c00078] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
20 Kamal KM, Narayan R, Chandran N, Popović S, Nazrulla MA, Kovač J, Vrtovec N, Bele M, Hodnik N, Kržmanc MM, Likozar B. Synergistic enhancement of photocatalytic CO2 reduction by plasmonic Au nanoparticles on TiO2 decorated N-graphene heterostructure catalyst for high selectivity methane production. Applied Catalysis B: Environmental 2022;307:121181. [DOI: 10.1016/j.apcatb.2022.121181] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
21 Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS Nano 2022. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Mascaretti L, Schirato A, Fornasiero P, Boltasseva A, Shalaev VM, Alabastri A, Naldoni A. Challenges and prospects of plasmonic metasurfaces for photothermal catalysis. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Fiorio JL, Gothe ML, Kohlrausch EC, Zardo ML, Tanaka AA, de Lima RB, da Silva AGM, Garcia MAS, Vidinha P, Machado G. Nanoengineering of Catalysts for Enhanced Hydrogen Production. Hydrogen 2022;3:218-54. [DOI: 10.3390/hydrogen3020014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Hirbodvash Z, Krupin O, Northfield H, Olivieri A, Baranova EA, Berini P. Infrared surface plasmons on a Au waveguide electrode open new redox channels associated with the transfer of energetic carriers. Sci Adv 2022;8:eabm9303. [PMID: 35584214 DOI: 10.1126/sciadv.abm9303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Stefancu A, Nan L, Zhu L, Chiș V, Bald I, Liu M, Leopold N, Maier SA, Cortes E. Controlling Plasmonic Chemistry Pathways through Specific Ion Effects. Advanced Optical Materials. [DOI: 10.1002/adom.202200397] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Sakamoto M, Saitow KI. Fast, Economical, and Reproducible Sensing from a 2D Si Wire Array: Accurate Characterization by Single Wire Spectroscopy. Anal Chem 2022. [PMID: 35475623 DOI: 10.1021/acs.analchem.1c05001] [Reference Citation Analysis]
27 Zhao Y, Sarhan RM, Eljarrat A, Kochovski Z, Koch C, Schmidt B, Koopman W, Lu Y. Surface-Functionalized Au-Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance. ACS Appl Mater Interfaces 2022;14:17259-72. [PMID: 35389208 DOI: 10.1021/acsami.2c00221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Villegas CEP, Leite MS, Marini A, Rocha AR. Efficient hot-carrier dynamics in near-infrared photocatalytic metals. Phys Rev B 2022;105. [DOI: 10.1103/physrevb.105.165109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Schirato A, Moretti L, Yang Z, Mazzanti A, Cerullo G, Pileni M, Maiuri M, Della Valle G. Chemically-Controlled Ultrafast Photothermal Response in Plasmonic Nanostructured Assemblies. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c00364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Cortés E, Grzeschik R, Maier SA, Schlücker S. Experimental characterization techniques for plasmon-assisted chemistry. Nat Rev Chem. [DOI: 10.1038/s41570-022-00368-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
31 Puértolas B, Comesaña‐hermo M, Besteiro LV, Vázquez‐gonzález M, Correa‐duarte MA. Challenges and Opportunities for Renewable Ammonia Production via Plasmon‐Assisted Photocatalysis. Advanced Energy Materials. [DOI: 10.1002/aenm.202103909] [Reference Citation Analysis]
32 Schirato A, Crotti G, Gonçalves Silva M, Teles-Ferreira DC, Manzoni C, Proietti Zaccaria R, Laporta P, de Paula AM, Cerullo G, Della Valle G. Ultrafast Plasmonics Beyond the Perturbative Regime: Breaking the Electronic-Optical Dynamics Correspondence. Nano Lett 2022. [PMID: 35343692 DOI: 10.1021/acs.nanolett.1c04608] [Reference Citation Analysis]
33 Movsesyan A, Santiago EY, Burger S, Correa‐duarte MA, Besteiro LV, Wang Z, Govorov AO. Plasmonic Nanocrystals with Complex Shapes for Photocatalysis and Growth: Contrasting Anisotropic Hot‐Electron Generation with the Photothermal Effect. Advanced Optical Materials 2022;10:2102663. [DOI: 10.1002/adom.202102663] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ganguli S, Sekretareva A. Role of an Inert Electrode Support in Plasmonic Electrocatalysis. ACS Catal 2022;12:4110-8. [DOI: 10.1021/acscatal.2c00206] [Reference Citation Analysis]
35 Schürmann R, Nagel A, Juergensen S, Pathak A, Reich S, Pacholski C, Bald I. Microscopic Understanding of Reaction Rates Observed in Plasmon Chemistry of Nanoparticle–Ligand Systems. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c00278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Yang B, Li C, Wang Z, Dai Q. Thermoplasmonics in Solar Energy Conversion: Materials, Nanostructured Designs, and Applications. Adv Mater 2022;:e2107351. [PMID: 35271744 DOI: 10.1002/adma.202107351] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
37 Burova D, Rohlfs J, Sastre F, Molina PM, Meulendijks N, Verheijen MA, Kelchtermans A, Elen K, Hardy A, Van Bael MK, Buskens P. Comparing the Performance of Supported Ru Nanocatalysts Prepared by Chemical Reduction of RuCl3 and Thermal Decomposition of Ru3(CO)12 in the Sunlight-Powered Sabatier Reaction. Catalysts 2022;12:284. [DOI: 10.3390/catal12030284] [Reference Citation Analysis]
38 Simpkins BS, Maximenko SI, Baturina O. Potential of TiN/GaN Heterostructures for Hot Carrier Generation and Collection. Nanomaterials 2022;12:837. [DOI: 10.3390/nano12050837] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
39 Devasenathipathy R, Wang JZ, Xiao YH, Rani KK, Lin JD, Zhang YM, Zhan C, Zhou JZ, Wu DY, Tian ZQ. Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes. J Am Chem Soc 2022. [PMID: 35199991 DOI: 10.1021/jacs.1c10447] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Chen Y, Zhu Y, Sheng H, Wang J, Zhang C, Chen Y, Huang W, Lu G. Molecular Coadsorption of p -Hydroxythiophenol on Silver Nanoparticles Boosts the Plasmon-Mediated Decarboxylation Reaction. ACS Catal 2022;12:2938-46. [DOI: 10.1021/acscatal.1c05499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Ezendam S, Herran M, Nan L, Gruber C, Kang Y, Gröbmeyer F, Lin R, Gargiulo J, Sousa-Castillo A, Cortés E. Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS Energy Lett 2022;7:778-815. [PMID: 35178471 DOI: 10.1021/acsenergylett.1c02241] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 22.0] [Reference Citation Analysis]
42 da Silva AGM, Rodrigues TS, Wang J, Camargo PHC. Plasmonic catalysis with designer nanoparticles. Chem Commun (Camb) 2022;58:2055-74. [PMID: 35044391 DOI: 10.1039/d1cc03779j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
43 Kiani F, Tagliabue G. High Aspect Ratio Au Microflakes via Gap-Assisted Synthesis. Chem Mater . [DOI: 10.1021/acs.chemmater.1c03908] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Devaraj V, Choi JW, Lee JM, Oh JW. An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications. Materials (Basel) 2022;15:792. [PMID: 35160740 DOI: 10.3390/ma15030792] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Joshi G, Mir AQ, Layek A, Ali A, Aziz ST, Khatua S, Dutta A. Plasmon-Based Small-Molecule Activation: A New Dawn in the Field of Solar-Driven Chemical Transformation. ACS Catal 2022;12:1052-67. [DOI: 10.1021/acscatal.1c05245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 González-Colsa J, Serrera G, Saiz JM, Ortiz D, González F, Bresme F, Moreno F, Albella P. Gold nanodoughnut as an outstanding nanoheater for photothermal applications. Opt Express 2022;30:125-37. [PMID: 35201187 DOI: 10.1364/OE.446637] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
47 Molinaro C, Khitous A, Noel L, Soppera O. Nanochemistry by Thermoplasmonic Effects. Topics in Applied Physics 2022. [DOI: 10.1007/978-3-031-16518-4_3] [Reference Citation Analysis]
48 Jia H, Zhao M, Du A, Dou Y, Zhang C. Symmetry-breaking synthesis of Janus Au/CeO2 nanostructures for visible-light nitrogen photofixation. Chem Sci 2022. [DOI: 10.1039/d2sc03863c] [Reference Citation Analysis]
49 Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications. EnergyChem 2022. [DOI: 10.1016/j.enchem.2022.100070] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
50 Yan L, Fu Z, Zhang Z. Plasmon-Induced Hot Electrons in Metallic Nanoparticles. Lecture Notes in Nanoscale Science and Technology 2022. [DOI: 10.1007/978-3-030-87544-2_7] [Reference Citation Analysis]
51 Zhou J, He W, Liu H, Huang CZ. Energy Flow during the Plasmon Resonance-Driven Photocatalytic Reactions on Single Nanoparticles. ACS Catal 2022;12:847-53. [DOI: 10.1021/acscatal.1c04919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Liu C, Maier SA. High-Quality Optical Hotspots with Topology-Protected Robustness. ACS Photonics 2022;9:241-8. [DOI: 10.1021/acsphotonics.1c01445] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Besteiro LV, Movsesyan A, Ávalos-Ovando O, Lee S, Cortés E, Correa-Duarte MA, Wang ZM, Govorov AO. Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. Nano Lett 2021;21:10315-24. [PMID: 34860527 DOI: 10.1021/acs.nanolett.1c03503] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
54 Koenderink AF, Tsukanov R, Enderlein J, Izeddin I, Krachmalnicoff V. Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics 2022;11:169-202. [DOI: 10.1515/nanoph-2021-0551] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 de Albuquerque CDL, Zoltowski CM, Scarpitti BT, Shoup DN, Schultz ZD. Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations. ACS Nanosci Au 2021;1:38-46. [PMID: 34966910 DOI: 10.1021/acsnanoscienceau.1c00031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Crotti G, Schirato A, Proietti Zaccaria R, Della Valle G. On the limits of quasi-static theory in plasmonic nanostructures. J Opt 2021;24:015001. [DOI: 10.1088/2040-8986/ac3e00] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Pileni M. Self-Assemblies of Gold Nanocrystals: Unexpected Properties. J Phys Chem C 2021;125:25936-25950. [DOI: 10.1021/acs.jpcc.1c07560] [Reference Citation Analysis]
58 Ahlawat M, Mittal D, Govind Rao V. Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis. Commun Mater 2021;2. [DOI: 10.1038/s43246-021-00220-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
59 Reinhardt PA, Crawford AP, West CA, DeLong G, Link S, Masiello DJ, Willets KA. Toward Quantitative Nanothermometry Using Single-Molecule Counting. J Phys Chem B 2021;125:12197-205. [PMID: 34723520 DOI: 10.1021/acs.jpcb.1c08348] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Swearer DF, Bourgeois BB, Angell DK, Dionne JA. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy. Acc Chem Res 2021;54:3632-42. [PMID: 34492177 DOI: 10.1021/acs.accounts.1c00309] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Zhang Q, Chen K, Wang H. Hot-Hole-Induced Molecular Scissoring: A Case Study of Plasmon-Driven Decarboxylation of Aromatic Carboxylates. J Phys Chem C 2021;125:20958-71. [DOI: 10.1021/acs.jpcc.1c07177] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
62 Vahidzadeh E, Zeng S, Alam KM, Kumar P, Riddell S, Chaulagain N, Gusarov S, Kobryn AE, Shankar K. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting. ACS Appl Mater Interfaces 2021;13:42741-52. [PMID: 34476945 DOI: 10.1021/acsami.1c10698] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
63 Tong F, Liang X, Wang Z, Liu Y, Wang P, Cheng H, Dai Y, Zheng Z, Huang B. Probing the Mechanism of Plasmon-Enhanced Ammonia Borane Methanolysis on a CuAg Alloy at a Single-Particle Level. ACS Catal 2021;11:10814-23. [DOI: 10.1021/acscatal.1c02857] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
64 Stefancu A, Lee S, Zhu L, Liu M, Lucacel RC, Cortés E, Leopold N. Fermi Level Equilibration at the Metal-Molecule Interface in Plasmonic Systems. Nano Lett 2021;21:6592-9. [PMID: 34291936 DOI: 10.1021/acs.nanolett.1c02003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
65 Tamtaji M, Tyagi A, You CY, Galligan PR, Liu H, Liu Z, Karimi R, Cai Y, Roxas AP, Wong H, Luo Z. Singlet Oxygen Photosensitization Using Graphene-Based Structures and Immobilized Dyes: A Review. ACS Appl Nano Mater 2021;4:7563-86. [DOI: 10.1021/acsanm.1c01436] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
66 Rudenko A, Moloney JV. Coupled kinetic Boltzmann electromagnetic approach for intense ultrashort laser excitation of plasmonic nanostructures. Phys Rev B 2021;104. [DOI: 10.1103/physrevb.104.035418] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
67 Stefancu A, Lee S, Li Z, Liu M, Ciceo-lucacel R, Leopold N, Cortes E. Metal-molecule charge transfer through Fermi level equilibration in plasmonic systems. 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) 2021. [DOI: 10.1109/cleo/europe-eqec52157.2021.9542635] [Reference Citation Analysis]
68 Gordon W, Balboa A, Giles S, Epshteyn A, Ávalos-ovando O, Govorov A, Mcentee M, Baturina O. Visible Light-Induced Reactivity of Plasmonic Gold Nanoparticles Incorporated into TiO2 Matrix towards 2-Chloroethyl Ethyl Sulfide. Crystals 2021;11:659. [DOI: 10.3390/cryst11060659] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
69 Stefancu A, Iancu SD, Leopold N. Selective Single Molecule SERRS of Cationic and Anionic Dyes by Cl and Mg 2+ Adions: An Old New Idea. J Phys Chem C 2021;125:12802-10. [DOI: 10.1021/acs.jpcc.1c03155] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
70 Yuan L, Geng Z, Fan B, Guo F, Han C. State-of-the-art progress in tracking plasmon-mediated photoredox catalysis. Pure and Applied Chemistry 2021;93:509-24. [DOI: 10.1515/pac-2021-0205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Zhang S, Yi W, Guo Y, Jiang R, Chen X, Yang B, Wang J. Driving Click Reactions with Plasmonic Hot Holes on (Au Core)@(Cu 2 O Shell) Nanostructures for Regioselective Production of 1,2,3-Triazoles. ACS Appl Nano Mater 2021;4:4623-31. [DOI: 10.1021/acsanm.1c00220] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
72 Maccaferri N, Vavassori P, Garoli D. Magnetic control of particle trapping in a hybrid plasmonic nanopore. Appl Phys Lett 2021;118:193102. [DOI: 10.1063/5.0046245] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
73 Mascaretti L, Schirato A, Zbořil R, Kment Š, Schmuki P, Alabastri A, Naldoni A. Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy 2021;83:105828. [DOI: 10.1016/j.nanoen.2021.105828] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 25.0] [Reference Citation Analysis]
74 Koya AN, Zhu X, Ohannesian N, Yanik AA, Alabastri A, Proietti Zaccaria R, Krahne R, Shih WC, Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano 2021;15:6038-60. [PMID: 33797880 DOI: 10.1021/acsnano.0c10945] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 44.0] [Reference Citation Analysis]
75 Hüttenhofer L, Tittl A, Kühner L, Cortés E, Maier SA. Anapole-Assisted Absorption Engineering in Arrays of Coupled Amorphous Gallium Phosphide Nanodisks. ACS Photonics 2021;8:1469-76. [DOI: 10.1021/acsphotonics.1c00238] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
76 Besteiro LV, Cortés E, Ishii S, Narang P, Oulton RF. Hot electron physics and applications. Journal of Applied Physics 2021;129:150401. [DOI: 10.1063/5.0050796] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
77 Li R, Cheng W, Richter MH, Duchene JS, Tian W, Li C, Atwater HA. Unassisted Highly Selective Gas-Phase CO 2 Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H 2 O as an Electron Donor. ACS Energy Lett 2021;6:1849-56. [DOI: 10.1021/acsenergylett.1c00392] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
78 Yuan L, Geng Z, Xu J, Guo F, Han C. Metal‐Semiconductor Heterostructures for Photoredox Catalysis: Where Are We Now and Where Do We Go? Adv Funct Mater 2021;31:2101103. [DOI: 10.1002/adfm.202101103] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
79 Koya AN, Garoli D. Nanoporous metals, plasmonic properties and applications. Metamaterials XIII 2021. [DOI: 10.1117/12.2589708] [Reference Citation Analysis]
80 Li X, Wang W, Dong F, Zhang Z, Han L, Luo X, Huang J, Feng Z, Chen Z, Jia G, Zhang T. Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catal 2021;11:4739-69. [DOI: 10.1021/acscatal.0c05354] [Cited by in Crossref: 81] [Cited by in F6Publishing: 91] [Article Influence: 81.0] [Reference Citation Analysis]
81 Wu Z, Li C, Li Z, Feng K, Cai M, Zhang D, Wang S, Chu M, Zhang C, Shen J, Huang Z, Xiao Y, Ozin GA, Zhang X, He L. Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO2 Photocatalysis. ACS Nano 2021;15:5696-705. [PMID: 33624496 DOI: 10.1021/acsnano.1c00990] [Cited by in Crossref: 61] [Cited by in F6Publishing: 70] [Article Influence: 61.0] [Reference Citation Analysis]
82 Staechelin YU, Hoeing D, Schulz F, Lange H. Size-Dependent Electron–Phonon Coupling in Monocrystalline Gold Nanoparticles. ACS Photonics 2021;8:752-7. [DOI: 10.1021/acsphotonics.1c00078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
83 Li P, Ouyang Y, Xiao G, Zhao Y, Sarina S, Baeyens J, Su H, Zhu H. Non-plasmonic Ni nanoparticles catalyzed visible light selective hydrogenolysis of aryl ethers in lignin under mild conditions. Green Chem 2021;23:7780-9. [DOI: 10.1039/d1gc01953h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
84 Belousov AS, Suleimanov EV, Fukina DG. Pyrochlore oxides as visible light-responsive photocatalysts. New J Chem 2021;45:22531-58. [DOI: 10.1039/d1nj04439g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
85 Wang H, Chen K. Interfacial Dynamics, Chemistry, and Photochemistry of Molecular Ligands on Plasmonic Nanoparticle Surfaces: Insights From Surface-Enhanced Raman Spectroscopy. Reference Module in Materials Science and Materials Engineering 2021. [DOI: 10.1016/b978-0-12-822425-0.00001-4] [Reference Citation Analysis]