BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Klesse G, Tucker SJ, Sansom MSP. Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT3 Receptor Channel. ACS Nano 2020;14:10480-91. [PMID: 32673478 DOI: 10.1021/acsnano.0c04387] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Gao Y, Yin M, Zhang H, Xu B. Electrically Suppressed Outflow of Confined Liquid in Hydrophobic Nanopores. ACS Nano 2022. [PMID: 35658431 DOI: 10.1021/acsnano.2c02240] [Reference Citation Analysis]
2 Polster JW, Aydin F, de Souza JP, Bazant MZ, Pham TA, Siwy ZS. Rectified and Salt Concentration Dependent Wetting of Hydrophobic Nanopores. J Am Chem Soc 2022. [PMID: 35729706 DOI: 10.1021/jacs.2c03436] [Reference Citation Analysis]
3 Rao S, Klesse G, Lynch CI, Tucker SJ, Sansom MSP. Molecular Simulations of Hydrophobic Gating of Pentameric Ligand Gated Ion Channels: Insights into Water and Ions. J Phys Chem B 2021;125:981-94. [PMID: 33439645 DOI: 10.1021/acs.jpcb.0c09285] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Sofos F, Karakasidis TE, Sarris IE. Effects of channel size, wall wettability, and electric field strength on ion removal from water in nanochannels. Sci Rep 2022;12:641. [PMID: 35022494 DOI: 10.1038/s41598-021-04620-x] [Reference Citation Analysis]
5 Gonzalez MA, Zaragoza A, Lynch CI, Sansom MSP, Valeriani C. Influence of water models on water movement through AQP1. J Chem Phys 2021;155:154502. [PMID: 34686053 DOI: 10.1063/5.0063986] [Reference Citation Analysis]
6 Lynch CI, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020;120:10298-335. [PMID: 32841020 DOI: 10.1021/acs.chemrev.9b00830] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 13.5] [Reference Citation Analysis]
7 Lynch CI, Klesse G, Rao S, Tucker SJ, Sansom MSP. Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models. ACS Nano 2021;15:19098-108. [PMID: 34784172 DOI: 10.1021/acsnano.1c06443] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Li Q, Liu R, Li L, Song X, Wang Y, Jiang X. The Dynamic Behaviour of Multi-Phase Flow on a Polymeric Surface with Various Hydrophobicity and Electric Field Strength. Polymers (Basel) 2022;14:750. [PMID: 35215660 DOI: 10.3390/polym14040750] [Reference Citation Analysis]
9 Choudhury K, Kasimova MA, McComas S, Howard RJ, Delemotte L. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Biophys J 2021:S0006-3495(21)03901-1. [PMID: 34890580 DOI: 10.1016/j.bpj.2021.12.010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Both AK, Gao Y, Zeng XC, Cheung CL. Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. Nanoscale 2021;13:7447-70. [PMID: 33876814 DOI: 10.1039/d1nr00751c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
11 Baek S, Kwon S, Bohn PW. Potential-Induced Wetting and Dewetting in Hydrophobic Nanochannels for Mass Transport Control. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.100980] [Reference Citation Analysis]