BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: To KC, Ben-Jaber S, Parkin IP. Recent Developments in the Field of Explosive Trace Detection. ACS Nano 2020;14:10804-33. [PMID: 32790331 DOI: 10.1021/acsnano.0c01579] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Hao R, Zhao J, Liu J, You H, Fang J. Remote Raman Detection of Trace Explosives by Laser Beam Focusing and Plasmonic Spray Enhancement Methods. Anal Chem 2022. [PMID: 35921536 DOI: 10.1021/acs.analchem.2c01732] [Reference Citation Analysis]
2 Ke Y, Liu Y, Zu B, Lei D, Wang G, Li J, Ren W, Dou X. Electronic Tuning in Reaction-Based Fluorescent Sensing for Instantaneous and Ultrasensitive Visualization of Ethylenediamine. Angew Chem Int Ed Engl 2022;61:e202203358. [PMID: 35363416 DOI: 10.1002/anie.202203358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li L, Zhang T, Ge W, He X, Zhang Y, Wang X, Li P. Detection of Trace Explosives Using a Novel Sample Introduction and Ionization Method. Molecules 2022;27:4551. [PMID: 35889424 DOI: 10.3390/molecules27144551] [Reference Citation Analysis]
4 Kangasluoma J, Mikkilä J, Hemmilä V, Kausiala O, Hakala J, Iakovleva E, Juuti P, Sipilä M, Junninen H, Jost HJ, Shcherbinin A. Atmospheric pressure thermal desorption chemical ionization mass spectrometry for ultra-sensitive explosive detection. Talanta 2022;249:123653. [PMID: 35691127 DOI: 10.1016/j.talanta.2022.123653] [Reference Citation Analysis]
5 Wang L, Li Y, Cheng Y, Jia P. Sol-gel Synthesis of CaYAlO4:Tb Phosphors and Their Application in Detecting Nitroaromatic Compounds. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Aznar-gadea E, Rodriguez-canto PJ, Sánchez SA, Martínez-pastor JP, Abargues R. Luminescent CdSe Quantum Dot Arrays for Rapid Sensing of Explosive Taggants. ACS Appl Nano Mater 2022;5:6717-25. [DOI: 10.1021/acsanm.2c00743] [Reference Citation Analysis]
7 Campmajó G, Saurina J, Núñez O, Sentellas S. Differential mobility spectrometry coupled to mass spectrometry (DMS-MS) for the classification of Spanish PDO paprika. Food Chem 2022;390:133141. [PMID: 35567973 DOI: 10.1016/j.foodchem.2022.133141] [Reference Citation Analysis]
8 Li J, Li Y, Li P, Zhang Y, Du L, Wang Y, Zhang C, Wang C. Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022;144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Ferrari C, Attolini G, Bosi M, Frigeri C, Frigeri P, Gombia E, Lazzarini L, Rossi F, Seravalli L, Trevisi G, Lolli R, Aversa L, Verucchi R, Musayeva N, Alizade M, Quluzade S, Orujov T, Sansone F, Baldini L, Rispoli F. Detection of Nitroaromatic Explosives in Air by Amino-Functionalized Carbon Nanotubes. Nanomaterials 2022;12:1278. [DOI: 10.3390/nano12081278] [Reference Citation Analysis]
10 Yang J, Feng L, Chen Y, Feng L, Lu J, Du L, Guo J, Cheng Z, Shi Z, Zhao L. High-Sensitivity and Environmentally Friendly Humidity Sensors Deposited with Recyclable Green Microspheres for Wireless Monitoring. ACS Appl Mater Interfaces 2022;14:15608-22. [PMID: 35319203 DOI: 10.1021/acsami.2c00489] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Gao Y, Chu F, Chen W, Wang X, Pan Y. Arc-Induced Nitrate Reagent Ion for Analysis of Trace Explosives on Surfaces Using Atmospheric Pressure Arc Desorption/Ionization Mass Spectrometry. Anal Chem 2022. [PMID: 35357149 DOI: 10.1021/acs.analchem.1c05650] [Reference Citation Analysis]
12 Sarkar S. Computational design of a nanoconjugate model of pyrene-linked CdTe quantum dot for the detection of trinitrotoluene. Computational and Theoretical Chemistry 2022. [DOI: 10.1016/j.comptc.2022.113681] [Reference Citation Analysis]
13 Doshi M, Fahrenthold EP. Functionalized semiconducting carbon nanotube arrays for gas phase explosives detection. Surface Science 2022;717:121998. [DOI: 10.1016/j.susc.2021.121998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Paria S, Maity P, Siddiqui R, Patra R, Maity SB, Jana A. Nanostructured Luminescent Micelles: Efficient “Functional Materials” for Sensing Nitroaromatic and Nitramine Explosives. Photochem 2022;2:32-57. [DOI: 10.3390/photochem2010004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Qu H, Liu H, Wang B, Jiang L, Zhang P, Liu G, Xiong Y. A three dimensional porous diamond-multilayer graphene nanohybrid film for surface-enhanced Raman spectroscopy. Diamond and Related Materials 2022;121:108737. [DOI: 10.1016/j.diamond.2021.108737] [Reference Citation Analysis]
16 Burns D, Mathias S, Mccullough BJ, Hopley CJ, Douce D, Lumley N, Bajic S, Sears P. Ambient ionisation mass spectrometry for the trace detection of explosives using a portable mass spectrometer. International Journal of Mass Spectrometry 2022;471:116735. [DOI: 10.1016/j.ijms.2021.116735] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
17 Cheng C, Cui L, Xiong W, Gong Y, Ji H, Song W, Zhao J, Che Y. Emergent Photostability Synchronization in Coassembled Array Members for the Steady Multiple Discrimination of Explosives. Adv Sci (Weinh) 2022;9:e2102739. [PMID: 34747152 DOI: 10.1002/advs.202102739] [Reference Citation Analysis]
18 Climent E, Weller MG, Martínez-máñez R, Rurack K. Immunochemical Design of Antibody-Gated Indicator Delivery (gAID) Systems Based on Mesoporous Silica Nanoparticles. ACS Appl Nano Mater 2022;5:626-41. [DOI: 10.1021/acsanm.1c03417] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sohn H. Enhanced explosive sensing based on silole-modified luminescent porous silicon. J Korean Phys Soc 2022;80:82-7. [DOI: 10.1007/s40042-021-00368-9] [Reference Citation Analysis]
20 Song C, Ye B, Xu J, Chen J, Shi W, Yu C, An C, Zhu J, Zhang W. Large-Area Nanosphere Self-Assembly Monolayers for Periodic Surface Nanostructures with Ultrasensitive and Spatially Uniform SERS Sensing. Small 2021;:e2104202. [PMID: 34877766 DOI: 10.1002/smll.202104202] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
21 Gao ZF, Li YX, Dong LM, Zheng LL, Li JZ, Shen Y, Xia F. Photothermal-induced partial Leidenfrost superhydrophobic surface as ultrasensitive surface-enhanced Raman scattering platform for the detection of neonicotinoid insecticides. Sensors and Actuators B: Chemical 2021;348:130728. [DOI: 10.1016/j.snb.2021.130728] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Liu G, Ling J, Li J. Extremely Sensitive Molecularly Imprinted ECL Sensor with Multiple Probes Released from Liposomes Immobilized by a Light-Triggered Click Reaction. ACS Sens 2021;6:4185-92. [PMID: 34662113 DOI: 10.1021/acssensors.1c01763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Panariello L, Chuen To K, Khan Z, Wu G, Gkogkos G, Damilos S, Parkin IP, Gavriilidis A. Kinetics-based design of a flow platform for highly reproducible on demand synthesis of gold nanoparticles with controlled size between 50 and 150 nm and their application in SERS and PIERS sensing. Chemical Engineering Journal 2021;423:129069. [DOI: 10.1016/j.cej.2021.129069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
24 Pang CM, Cao XY, Xiao Y, Luo SH, Chen Q, Zhou YJ, Wang ZY. N-alkylation briefly constructs tunable multifunctional sensor materials: Multianalyte detection and reversible adsorption. iScience 2021;24:103126. [PMID: 34632330 DOI: 10.1016/j.isci.2021.103126] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Li M, Xie K, Wang G, Zheng J, Cao Y, Cheng X, Li Z, Wei F, Tu H, Tang J. An AIE-Active Ultrathin Polymeric Self-Assembled Monolayer Sensor for Trace Volatile Explosive Detection. Macromol Rapid Commun 2021;42:e2100551. [PMID: 34610177 DOI: 10.1002/marc.202100551] [Reference Citation Analysis]
26 Adegoke O, Nic Daeid N. Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg Top Life Sci 2021;5:367-79. [PMID: 33960382 DOI: 10.1042/ETLS20200281] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
27 Yoon B, Choi SJ, Swager TM, Walsh GF. Flexible Chemiresistive Cyclohexanone Sensors Based on Single-Walled Carbon Nanotube-Polymer Composites. ACS Sens 2021;6:3056-62. [PMID: 34357769 DOI: 10.1021/acssensors.1c01076] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
28 Adhikari S, Ampadu EK, Kim M, Noh D, Oh E, Lee D. Detection of Explosives by SERS Platform Using Metal Nanogap Substrates. Sensors (Basel) 2021;21:5567. [PMID: 34451009 DOI: 10.3390/s21165567] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Forbes TP, Lawrence J, Hao C, Gillen G. Open port sampling interface mass spectrometry of wipe-based explosives, oxidizers, and narcotics for trace contraband detection. Anal Methods 2021;13:3453-60. [PMID: 34291248 DOI: 10.1039/d1ay01038g] [Reference Citation Analysis]
30 Zhu B, Zhu L, Wan Y, Deng S, Zhang C, Luo J. Multicomponent metal-organic frameworks with aggregation-induced emission characteristics as fluorescence sensor array for the identification of energetic compounds. Sensors and Actuators B: Chemical 2021;341:130011. [DOI: 10.1016/j.snb.2021.130011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
31 Kumar V, Saini SK, Choudhury N, Kumar A, Maiti B, De P, Kumar M, Satapathi S. Highly Sensitive Detection of Nitro Compounds Using a Fluorescent Copolymer-Based FRET System. ACS Appl Polym Mater 2021;3:4017-26. [DOI: 10.1021/acsapm.1c00540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
32 Heleg-Shabtai V, Zaltsman A, Sharon M, Sharabi H, Nir I, Marder D, Cohen G, Ron I, Pevzner A. Explosive vapour/particles detection using SERS substrates and a hand-held Raman detector. RSC Adv 2021;11:26029-36. [PMID: 35479444 DOI: 10.1039/d1ra04637c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Mitri F, De Iacovo A, De Santis S, Giansante C, Spirito D, Sotgiu G, Colace L. A compact optical sensor for explosive detection based on NIR luminescent quantum dots. Appl Phys Lett 2021;119:041106. [DOI: 10.1063/5.0060400] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Mitri F, De Iacovo A, De Santis S, Giansante C, Sotgiu G, Colace L. Chemiresistive Device for the Detection of Nitroaromatic Explosives Based on Colloidal PbS Quantum Dots. ACS Appl Electron Mater 2021;3:3234-9. [DOI: 10.1021/acsaelm.1c00401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Wang G, Li M, Wei Q, Xiong Y, Li J, Li Z, Tang J, Wei F, Tu H. Design of an AIE-Active Flexible Self-Assembled Monolayer Probe for Trace Nitroaromatic Compound Explosive Detection. ACS Sens 2021;6:1849-56. [PMID: 33827212 DOI: 10.1021/acssensors.1c00047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
36 Lin Y, Wang L, Zhang H, Wu L, Fan H, Liu X, Zheng R, Tian X, He H. Widely tunable surface plasmon resonance and uniquely superior SERS performance of Au nanotube network films. Nanotechnology 2021;32. [PMID: 33823499 DOI: 10.1088/1361-6528/abf511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Ricci PP, Gregory OJ. Free-standing, thin-film sensors for the trace detection of explosives. Sci Rep 2021;11:6623. [PMID: 33758273 DOI: 10.1038/s41598-021-86077-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Aguirre-Díaz LM, Echeverri M, Paredes-Gil K, Snejko N, Gómez-Lor B, Gutiérrez-Puebla E, Monge MÁ. The Effect of Auxiliary Nitrogenated Linkers on the Design of New Cadmium-Based Coordination Polymers as Sensors for the Detection of Explosive Materials. Chemistry 2021;27:5298-306. [PMID: 33427359 DOI: 10.1002/chem.202005166] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Garcia X, Sabaté M, Aubets J, Jansat J, Sentellas S. Ion Mobility–Mass Spectrometry for Bioanalysis. Separations 2021;8:33. [DOI: 10.3390/separations8030033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
40 Panda SK, Mishra S, Singh AK. Recent progress in the development of MOF-based optical sensors for Fe3. Dalton Trans 2021;50:7139-55. [PMID: 33908518 DOI: 10.1039/d1dt00353d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
41 Doshi M, Fahrenthold EP. Explosive molecule sensing at lattice defect sites in metallic carbon nanotubes. Mater Adv 2021;2:6315-25. [DOI: 10.1039/d1ma00571e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
42 Wang J, Cheng Y, Zhou J, Tang W. A donor–acceptor liganded metal–organic framework showcases the hydrogen-bond-enhanced sensing of N-heterocyclic explosives. J Mater Chem C 2021;9:12086-93. [DOI: 10.1039/d1tc03197j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Ly NH, Kim HH, Joo S. On‐Site Detection for Hazardous Materials in Chemical Accidents. Bull Korean Chem Soc 2021;42:4-16. [DOI: 10.1002/bkcs.12140] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Vendamani VS, Rao SVSN, Pathak AP, Soma VR. Robust and cost-effective silver dendritic nanostructures for SERS-based trace detection of RDX and ammonium nitrate. RSC Adv 2020;10:44747-55. [DOI: 10.1039/d0ra08834j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
45 Hu X, Ma Z, Li J, Cai Z, Li Y, Zu B, Dou X. Superior water anchoring hydrogel validated by colorimetric sensing. Mater Horiz 2020;7:3250-7. [DOI: 10.1039/d0mh01383h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]