BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ravetz BD, Tay NES, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. Development of a Platform for Near-Infrared Photoredox Catalysis. ACS Cent Sci 2020;6:2053-9. [PMID: 33274281 DOI: 10.1021/acscentsci.0c00948] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Sugimoto H, Hasebe H, Furuyama T, Fujii M. Direct Excitation of Triplet State of Molecule by Enhanced Magnetic Field of Dielectric Metasurfaces. Small 2021;17:e2104458. [PMID: 34643043 DOI: 10.1002/smll.202104458] [Reference Citation Analysis]
2 Lampkin PP, Thompson BJ, Gellman SH. Versatile Open-Source Photoreactor Architecture for Photocatalysis Across the Visible Spectrum. Org Lett 2021;23:5277-81. [PMID: 34161103 DOI: 10.1021/acs.orglett.1c01910] [Reference Citation Analysis]
3 Qin Y, Zhu Q, Sun R, Ganley JM, Knowles RR, Nocera DG. Mechanistic Investigation and Optimization of Photoredox Anti-Markovnikov Hydroamination. J Am Chem Soc 2021;143:10232-42. [PMID: 34191486 DOI: 10.1021/jacs.1c03644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wu Y, Kim D, Teets TS. Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations. Synlett. [DOI: 10.1055/a-1390-9065] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
5 Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Lovato K, Fier PS, Maloney KM. The application of modern reactions in large-scale synthesis. Nat Rev Chem 2021;5:546-63. [DOI: 10.1038/s41570-021-00288-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
7 Wang S, Tang L, Cai B, Yin Z, Li Y, Xiong L, Kang X, Xuan J, Pei Y, Zhu M. Ligand Modification of Au 25 Nanoclusters for Near-Infrared Photocatalytic Oxidative Functionalization. J Am Chem Soc . [DOI: 10.1021/jacs.2c01570] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
8 Calogero F, Magagnano G, Potenti S, Pasca F, Fermi A, Gualandi A, Ceroni P, Bergamini G, Cozzi PG. Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chem Sci 2022;13:5973-81. [PMID: 35685797 DOI: 10.1039/d2sc00800a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Glaser F, Kerzig C, Wenger OS. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem Sci 2021;12:9922-33. [PMID: 34349964 DOI: 10.1039/d1sc02085d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
10 Irikura M, Tamaki Y, Ishitani O. Development of a panchromatic photosensitizer and its application to photocatalytic CO2 reduction. Chem Sci 2021;12:13888-96. [PMID: 34760174 DOI: 10.1039/d1sc04045f] [Reference Citation Analysis]
11 Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021;50:7587-680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022. [PMID: 35623627 DOI: 10.1021/jacs.2c02592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Katsurayama Y, Ikabata Y, Maeda H, Segi M, Nakai H, Furuyama T. Direct Near Infrared Light-Activatable Phthalocyanine Catalysts. Chemistry 2021. [PMID: 34734432 DOI: 10.1002/chem.202103223] [Reference Citation Analysis]
14 Suerkan A, Alkan EA, Kaya K, Udum YA, Toppare L, Yagci Y. Highly conjugated visible and near-infrared light photoinitiating systems for radical and cationic polymerizations. Progress in Organic Coatings 2021;154:106189. [DOI: 10.1016/j.porgcoat.2021.106189] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
15 Goldschmid SL, Bednářová E, Beck LR, Xie K, Tay NES, Ravetz BD, Li J, Joe CL, Rovis T. Tuning the Electrochemical and Photophysical Properties of Osmium-Based Photoredox Catalysts. Synlett. [DOI: 10.1055/s-0041-1737792] [Reference Citation Analysis]
16 Bilger JB, Kerzig C, Larsen CB, Wenger OS. A Photorobust Mo(0) Complex Mimicking [Os(2,2'-bipyridine)3]2+ and Its Application in Red-to-Blue Upconversion. J Am Chem Soc 2021;143:1651-63. [PMID: 33434435 DOI: 10.1021/jacs.0c12805] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
17 Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2021. [PMID: 34787359 DOI: 10.1002/anie.202110491] [Reference Citation Analysis]
18 Brown GD, Batalla D, Cavallaro CL, Perez HL, Wrobleski ST, Sherwood TC. A compact, practical photoreactor for multi-reaction arrays. React Chem Eng . [DOI: 10.1039/d2re00062h] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Fajardo J Jr, Barth AT, Morales M, Takase MK, Winkler JR, Gray HB. Photoredox Catalysis Mediated by Tungsten(0) Arylisocyanides. J Am Chem Soc 2021;143:19389-98. [PMID: 34756036 DOI: 10.1021/jacs.1c07617] [Reference Citation Analysis]
20 Obah Kosso AR, Sellet N, Baralle A, Cormier M, Goddard JP. Cyanine-based near infra-red organic photoredox catalysis. Chem Sci 2021;12:6964-8. [PMID: 34123323 DOI: 10.1039/d1sc00998b] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zeng L, Wang Z, Zhang T, Duan C. Direct Utilization of Near-Infrared Light for Photooxidation with a Metal-Free Photocatalyst. Molecules 2022;27:4047. [DOI: 10.3390/molecules27134047] [Reference Citation Analysis]
22 Ogbu IM, Bassani DM, Robert F, Landais Y. Photocatalyzed decarboxylation of oxamic acids under near-infrared conditions. Chem Commun (Camb) 2022. [PMID: 35838178 DOI: 10.1039/d2cc03155h] [Reference Citation Analysis]
23 Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022. [PMID: 35768069 DOI: 10.1021/acs.inorgchem.2c01438] [Reference Citation Analysis]
24 Reischauer S, Pieber B. Emerging concepts in photocatalytic organic synthesis. iScience 2021;24:102209. [PMID: 33733069 DOI: 10.1016/j.isci.2021.102209] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 13.0] [Reference Citation Analysis]
25 Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2021. [PMID: 34751568 DOI: 10.1021/acs.chemrev.1c00384] [Reference Citation Analysis]
26 Han G, Li G, Huang J, Han C, Turro C, Sun Y. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nat Commun 2022;13:2288. [PMID: 35484148 DOI: 10.1038/s41467-022-29981-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Sellet N, Cormier M, Goddard J. The dark side of photocatalysis: near-infrared photoredox catalysis for organic synthesis. Org Chem Front 2021;8:6783-90. [DOI: 10.1039/d1qo01476e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
28 Sasaki Y, Yanai N, Kimizuka N. Osmium Complex-Chromophore Conjugates with Both Singlet-to-Triplet Absorption and Long Triplet Lifetime through Tuning of the Heavy-Atom Effect. Inorg Chem 2022. [PMID: 35080875 DOI: 10.1021/acs.inorgchem.1c03129] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Peng C, Fan W, Li Q, Han W, Chen X, Zhang G, Yan Y, Gu Q, Wang C, Zhang H, Zhang P. Boosting photocatalytic activity through tuning electron spin states and external magnetic fields. Journal of Materials Science & Technology 2022;115:208-20. [DOI: 10.1016/j.jmst.2021.11.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Mei L, Moutet J, Stull SM, Gianetti TL. Synthesis of CF3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade. J Org Chem 2021;86:10640-53. [PMID: 34255497 DOI: 10.1021/acs.joc.1c01313] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Wang Z, Li Y, Wu C, Tsang SCE. Electric-/magnetic-field-assisted photocatalysis: Mechanisms and design strategies. Joule 2022. [DOI: 10.1016/j.joule.2022.06.018] [Reference Citation Analysis]
32 González-Esguevillas M, Fernández DF, Rincón JA, Barberis M, de Frutos O, Mateos C, García-Cerrada S, Agejas J, MacMillan DWC. Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. ACS Cent Sci 2021;7:1126-34. [PMID: 34345665 DOI: 10.1021/acscentsci.1c00303] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
33 Holmberg-Douglas N, Nicewicz DA. Photoredox-Catalyzed C-H Functionalization Reactions. Chem Rev 2021. [PMID: 34585909 DOI: 10.1021/acs.chemrev.1c00311] [Reference Citation Analysis]
34 Choi I, Messinis AM, Hou X, Ackermann L. A Strategy for Site- and Chemoselective C-H Alkenylation through Osmaelectrooxidative Catalysis. Angew Chem Int Ed Engl 2021. [PMID: 34665924 DOI: 10.1002/anie.202110616] [Reference Citation Analysis]
35 Sasaki Y, Amemori S, Yanai N, Kimizuka N. Singlet-to-Triplet Absorption for Near-Infrared-to-Visible Photon Upconversion. BCSJ 2021;94:1760-8. [DOI: 10.1246/bcsj.20210114] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Noël T, Zysman-colman E. The promise and pitfalls of photocatalysis for organic synthesis. Chem Catalysis 2022;2:468-76. [DOI: 10.1016/j.checat.2021.12.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
37 Liu W, Watson EE, Winssinger N. Photocatalysis in Chemical Biology: Extending the Scope of Optochemical Control and Towards New Frontiers in Semisynthetic Bioconjugates and Biocatalysis. Helvetica Chimica Acta 2021;104. [DOI: 10.1002/hlca.202100179] [Reference Citation Analysis]
38 Li M, Gebremedhin KH, Ma D, Pu Z, Xiong T, Xu Y, Kim JS, Peng X. Conditionally Activatable Photoredox Catalysis in Living Systems. J Am Chem Soc 2021. [PMID: 34963281 DOI: 10.1021/jacs.1c07372] [Reference Citation Analysis]
39 Tanioka M, Kuromiya A, Ueda R, Obata T, Muranaka A, Uchiyama M, Kamino S. Bridged eosin Y: a visible and near-infrared photoredox catalyst. Chem Commun (Camb) 2022. [PMID: 35748437 DOI: 10.1039/d2cc02907c] [Reference Citation Analysis]
40 Cesana PT, Li BX, Shepard SG, Ting SI, Hart SM, Olson CM, Martinez Alvarado JI, Son M, Steiman TJ, Castellano FN, Doyle AG, Macmillan DW, Schlau-cohen GS. A biohybrid strategy for enabling photoredox catalysis with low-energy light. Chem 2022;8:174-85. [DOI: 10.1016/j.chempr.2021.10.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
41 Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022. [PMID: 34982536 DOI: 10.1021/acs.chemrev.1c00409] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]