BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018;4:3939-61. [DOI: 10.1021/acsbiomaterials.8b01098] [Cited by in Crossref: 63] [Cited by in F6Publishing: 38] [Article Influence: 15.8] [Reference Citation Analysis]
Number Citing Articles
1 Janani B, Vijayakumar M, Priya K, Kim JH, Prabakaran DS, Shahid M, Al-ghamdi S, Alsaidan M, Othman Bahakim N, Hassan Abdelzaher M, Ramesh T. EGFR-Based Targeted Therapy for Colorectal Cancer—Promises and Challenges. Vaccines 2022;10:499. [DOI: 10.3390/vaccines10040499] [Reference Citation Analysis]
2 Wang L, Ji X, Guo D, Shi C, Luo J. Facial Solid-Phase Synthesis of Well-Defined Zwitterionic Amphiphiles for Enhanced Anticancer Drug Delivery. Mol Pharm 2021;18:2349-59. [PMID: 33983742 DOI: 10.1021/acs.molpharmaceut.1c00163] [Reference Citation Analysis]
3 Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coordination Chemistry Reviews 2020;412:213258. [DOI: 10.1016/j.ccr.2020.213258] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
4 Shamiya Y, Ravi SP, Coyle A, Chakrabarti S, Paul A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov Today 2021:S1359-6446(21)00530-4. [PMID: 34839040 DOI: 10.1016/j.drudis.2021.11.024] [Reference Citation Analysis]
5 Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021;16:032005. [DOI: 10.1088/1748-605x/abe35a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Wilks LR, Joshi G, Grisham MR, Gill HS. Tyrosine-Based Cross-Linking of Peptide Antigens to Generate Nanoclusters with Enhanced Immunogenicity: Demonstration Using the Conserved M2e Peptide of Influenza A. ACS Infect Dis 2021;7:2723-35. [PMID: 34432416 DOI: 10.1021/acsinfecdis.1c00219] [Reference Citation Analysis]
7 Sarkar S, Gulati K, Mishra A, Poluri KM. Protein nanocomposites: Special inferences to lysozyme based nanomaterials. International Journal of Biological Macromolecules 2020;151:467-82. [DOI: 10.1016/j.ijbiomac.2020.02.179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
8 Zaheer Y, Vorup‐jensen T, Webster TJ, Ahmed M, Khan WS, Ihsan A. Protein based nanomedicine: Promising therapeutic modalities against inflammatory disorders. Nano Select 2022;3:733-50. [DOI: 10.1002/nano.202100214] [Reference Citation Analysis]
9 Jeong Y, Jo YK, Kim MS, Joo KI, Cha HJ. Tunicate-Inspired Photoactivatable Proteinic Nanobombs for Tumor-Adhesive Multimodal Therapy. Adv Healthc Mater 2021;10:e2101212. [PMID: 34626527 DOI: 10.1002/adhm.202101212] [Reference Citation Analysis]
10 Ellis GA, Díaz SA, Medintz IL. Enhancing enzymatic performance with nanoparticle immobilization: improved analytical and control capability for synthetic biochemistry. Curr Opin Biotechnol 2021;71:77-90. [PMID: 34293630 DOI: 10.1016/j.copbio.2021.06.021] [Reference Citation Analysis]
11 Chen T, Yang H, Yang M, Liu F, Wu J, Yang S, Wang J. Controlling DOPA adsorption via interacting with polyelectrolytes: layer structure and corrosion resistance. Soft Matter 2020;16:4912-8. [PMID: 32393946 DOI: 10.1039/d0sm00420k] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Blocher McTigue WC, Perry SL. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us. Small 2020;16:e1907671. [PMID: 32363758 DOI: 10.1002/smll.201907671] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
13 Araiza-calahorra A, Sarkar A. Pickering emulsion stabilized by protein nanogel particles for delivery of curcumin: Effects of pH and ionic strength on curcumin retention. Food Structure 2019;21:100113. [DOI: 10.1016/j.foostr.2019.100113] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
14 Elbialy NS, Mohamed N. Alginate-coated caseinate nanoparticles for doxorubicin delivery: Preparation, characterisation, and in vivo assessment. International Journal of Biological Macromolecules 2020;154:114-22. [DOI: 10.1016/j.ijbiomac.2020.03.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
15 Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021;16:3937-99. [PMID: 34140768 DOI: 10.2147/IJN.S298606] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Das G, Shin HS, Campos EVR, Fraceto LF, Del Pilar Rodriguez-Torres M, Mariano KCF, de Araujo DR, Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J Nanobiotechnology 2021;19:30. [PMID: 33482828 DOI: 10.1186/s12951-021-00774-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Raychaudhuri R, Pandey A, Das S, Nannuri SH, Joseph A, George SD, Vincent AP, Mutalik S. Nanoparticle impregnated self-supporting protein gel for enhanced reduction in oxidative stress: A molecular dynamics insight for lactoferrin-polyphenol interaction. Int J Biol Macromol 2021;189:100-13. [PMID: 34411613 DOI: 10.1016/j.ijbiomac.2021.08.089] [Reference Citation Analysis]
18 Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;:1-18. [PMID: 34026278 DOI: 10.1038/s41578-021-00315-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Zhang H, Liu P. One-Pot Synthesis of Chicken-Feather-Keratin-Based Prodrug Nanoparticles with High Drug Content for Tumor Intracellular DOX Delivery. Langmuir 2019;35:8007-14. [DOI: 10.1021/acs.langmuir.9b01190] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
20 Vlassi E, Papagiannopoulos A. Nanoformulation of fibrinogen by thermal stabilization of its electrostatic complexes with hyaluronic acid. Int J Biol Macromol 2020;158:251-7. [PMID: 32360964 DOI: 10.1016/j.ijbiomac.2020.04.244] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder SS, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021. [PMID: 33578402 DOI: 10.1088/1748-605X/abe5fa] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
22 Papagiannopoulos A, Selianitis D, Chroni A, Allwang J, Li Y, Papadakis CM. Preparation of trypsin-based nanoparticles, colloidal properties and ability to bind bioactive compounds. Int J Biol Macromol 2022:S0141-8130(22)00601-8. [PMID: 35341884 DOI: 10.1016/j.ijbiomac.2022.03.131] [Reference Citation Analysis]
23 Hussain A, Hasan A, Babadaei MMN, Bloukh SH, Edis Z, Rasti B, Sharifi M, Falahati M. Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. Journal of Molecular Liquids 2020;318:114053. [DOI: 10.1016/j.molliq.2020.114053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
24 Baruah RR, Chandra Kalita M, Devi D. Novel non-mulberry silk fibroin nanoparticles with enhanced activity as potential candidate in nanocarrier mediated delivery system. RSC Adv 2020;10:9070-8. [DOI: 10.1039/c9ra08901b] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sajid M, Płotka-wasylka J. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal 2020;154:104623. [DOI: 10.1016/j.microc.2020.104623] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 14.5] [Reference Citation Analysis]
26 Heshmati Aghda N, Dabbaghianamiri M, Tunnell JW, Betancourt T. Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022;:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Reference Citation Analysis]
27 Narayana RVL, Jana P, Tomar N, Prabhu V, Nair RM, Manukonda R, Kaliki S, Coupland SE, Alexander J, Kalirai H, Kondapi AK, Vemuganti GK. Carboplatin- and Etoposide-Loaded Lactoferrin Protein Nanoparticles for Targeting Cancer Stem Cells in Retinoblastoma In Vitro. Invest Ophthalmol Vis Sci 2021;62:13. [PMID: 34784412 DOI: 10.1167/iovs.62.14.13] [Reference Citation Analysis]
28 You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021;14:589. [PMID: 34207383 DOI: 10.3390/ph14060589] [Reference Citation Analysis]
29 Qian Y, Di S, Wang L, Li Z. Recent advances in the synthesis and applications of graphene-polypeptide nanocomposites. J Mater Chem B 2021;9:6521-35. [PMID: 34318859 DOI: 10.1039/d1tb00779c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Tefas LR, Barbălată C, Tefas C, Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021;13:1120. [PMID: 34452081 DOI: 10.3390/pharmaceutics13081120] [Reference Citation Analysis]
31 Alijani H, Noori A, Faridi N, Bathaie S, Mousavi MF. Aptamer-functionalized Fe3O4@MOF nanocarrier for targeted drug delivery and fluorescence imaging of the triple-negative MDA-MB-231 breast cancer cells. Journal of Solid State Chemistry 2020;292:121680. [DOI: 10.1016/j.jssc.2020.121680] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
32 Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021;57:13662-77. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Reference Citation Analysis]
33 Quevedo DF, Habibi N, Gregory JV, Hernandez Y, Brown TD, Miki R, Plummer BN, Rahmani S, Raymond JE, Mitragotri S, Lahann J. Multifunctional Synthetic Protein Nanoparticles via Reactive Electrojetting. Macromol Rapid Commun 2020;41:e2000425. [PMID: 32974989 DOI: 10.1002/marc.202000425] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
34 Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021;13:2022. [PMID: 34205672 DOI: 10.3390/polym13122022] [Reference Citation Analysis]
35 Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021;16:7891-941. [PMID: 34880614 DOI: 10.2147/IJN.S328135] [Reference Citation Analysis]
36 Kang S, Kim Y, Shin Y, Song JJ, Jon S. Antigen-Presenting, Self-Assembled Protein Nanobarrels as an Adjuvant-Free Vaccine Platform against Influenza Virus. ACS Nano 2021;15:10722-32. [PMID: 34114799 DOI: 10.1021/acsnano.1c04078] [Reference Citation Analysis]
37 Das RP, Singh BG, Kunwar A. Preparation of a size selective nanocomposite through temperature assisted co-assembly of gelatin and pluronic F127 for passive targeting of doxorubicin. Biomater Sci 2020;8:4251-65. [DOI: 10.1039/d0bm00725k] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Singh S, Maurya P, Rani S, Mishra N, Nisha R, Singh P, Saraf SA. Development of doxorubicin hydrochloride-loaded whey protein nanoparticles and its surface modification with N-acetyl cysteine for triple-negative breast cancer. Drug Deliv Transl Res 2022. [PMID: 35499714 DOI: 10.1007/s13346-022-01169-8] [Reference Citation Analysis]
39 Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. Reactive and Functional Polymers 2020;148:104501. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Cited by in Crossref: 44] [Cited by in F6Publishing: 20] [Article Influence: 22.0] [Reference Citation Analysis]
40 Papagiannopoulos A, Sklapani A. Xanthan-based polysaccharide/protein nanoparticles: Preparation, characterization, encapsulation and stabilization of curcumin. Carbohydrate Polymer Technologies and Applications 2021;2:100075. [DOI: 10.1016/j.carpta.2021.100075] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Boonpavanitchakul K, Bast LK, Bruns N, Magaraphan R. Silk Sericin-Polylactide Protein-Polymer Conjugates as Biodegradable Amphiphilic Materials and Their Application in Drug Release Systems. Bioconjug Chem 2020;31:2312-24. [PMID: 32927943 DOI: 10.1021/acs.bioconjchem.0c00399] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Das G, Shin HS, Campos EVR, Fraceto LF, Del Pilar Rodriguez-Torres M, Mariano KCF, de Araujo DR, Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J Nanobiotechnology 2021;19:30. [PMID: 33482828 DOI: 10.1186/s12951-021-00774-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Choi Y, Nam GH, Kim GB, Kim S, Kim YK, Kim SA, Kim HJ, Lee EJ, Kim IS. Nanocages displaying SIRP gamma clusters combined with prophagocytic stimulus of phagocytes potentiate anti-tumor immunity. Cancer Gene Ther 2021. [PMID: 34349240 DOI: 10.1038/s41417-021-00372-y] [Reference Citation Analysis]
44 Iqbal H, Yang T, Li T, Zhang M, Ke H, Ding D, Deng Y, Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 2021;329:997-1022. [PMID: 33091526 DOI: 10.1016/j.jconrel.2020.10.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Advanced Science. [DOI: 10.1002/advs.202104012] [Reference Citation Analysis]
46 Liao H, Niu C. Role of CD47-SIRPα Checkpoint in Nanomedicine-Based Anti-Cancer Treatment. Front Bioeng Biotechnol 2022;10:887463. [DOI: 10.3389/fbioe.2022.887463] [Reference Citation Analysis]
47 Bisso S, Leroux J. Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics 2020;578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
48 Prasanna P, Upadhyay A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. ACS Pharmacol Transl Sci 2021;4:74-95. [PMID: 33615162 DOI: 10.1021/acsptsci.0c00224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Paolino D, Mancuso A, Cristiano MC, Froiio F, Lammari N, Celia C, Fresta M. Nanonutraceuticals: The New Frontier of Supplementary Food. Nanomaterials (Basel) 2021;11:792. [PMID: 33808823 DOI: 10.3390/nano11030792] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Reddy N, Rapisarda M. Properties and Applications of Nanoparticles from Plant Proteins. Materials (Basel) 2021;14:3607. [PMID: 34203348 DOI: 10.3390/ma14133607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Katyal P, Meleties M, Montclare JK. Self-Assembled Protein- and Peptide-Based Nanomaterials. ACS Biomater Sci Eng 2019;5:4132-47. [PMID: 33417774 DOI: 10.1021/acsbiomaterials.9b00408] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
52 Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. Nanoscale Adv 2020;2:5046-89. [DOI: 10.1039/d0na00478b] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
53 Singh BG, Das RP, Kunwar A. Protein: a versatile biopolymer for the fabrication of smart materials for drug delivery. J Chem Sci 2019;131. [DOI: 10.1007/s12039-019-1671-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Reference Citation Analysis]
55 Di Giosia M, Genovese D, Cantelli A, Cingolani M, Rampazzo E, Strever G, Tavoni M, Zaccheroni N, Calvaresi M, Prodi L. Synthesis and characterization of a reconstituted myoglobin-chlorin e6 adduct for theranostic applications. J Porphyrins Phthalocyanines 2020;24:887-93. [DOI: 10.1142/s108842461950202x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Wang R, Zhang Z, Liu B, Xue J, Liu F, Tang T, Liu W, Feng F, Qu W. Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomater Sci 2021;9:3621-37. [PMID: 34008587 DOI: 10.1039/d0bm02221g] [Reference Citation Analysis]
57 Barick KC, Tripathi A, Dutta B, Shelar SB, Hassan PA. Curcumin Encapsulated Casein Nanoparticles: Enhanced Bioavailability and Anticancer Efficacy. J Pharm Sci 2021;110:2114-20. [PMID: 33338492 DOI: 10.1016/j.xphs.2020.12.011] [Reference Citation Analysis]
58 Swanson HL, Guo C, Cao M, Addison JB, Holland GP. Probing the binding modes and dynamics of histidine on fumed silica surfaces by solid-state NMR. Phys Chem Chem Phys 2020;22:20349-61. [PMID: 32901618 DOI: 10.1039/d0cp03472j] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. Nano Converg 2022;9:2. [PMID: 34997888 DOI: 10.1186/s40580-021-00293-4] [Reference Citation Analysis]
60 Zhang H, Liu P. Drug‐Conjugation Induced Self‐Assembly of Feather Keratin‐Based Prodrug for Tumor Intracellular Reduction Triggered Drug Delivery. Part Part Syst Charact 2019;36:1900189. [DOI: 10.1002/ppsc.201900189] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
61 Alvarez MM, del Carmen Flores-cruz L, Pedroza-gonzález SC, Trujillo-de Santiago G. Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity. Education Sciences 2022;12:307. [DOI: 10.3390/educsci12050307] [Reference Citation Analysis]
62 Morozova MA, Tumasov VN, Kazimova IV, Maksimova TV, Uspenskaya EV, Syroeshkin AV. Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics 2022;14:767. [DOI: 10.3390/pharmaceutics14040767] [Reference Citation Analysis]