BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xiong Z, Liu F, Lin H, Li J, Wang Y. Covalent Bonding of Heparin on the Crystallized Poly(lactic acid) (PLA) Membrane to Improve Hemocompability via Surface Cross-Linking and Glycidyl Ether Reaction. ACS Biomater Sci Eng 2016;2:2207-16. [DOI: 10.1021/acsbiomaterials.6b00413] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 He Z, Mahmud S, Yang Y, Zhu L, Zhao Y, Zeng Q, Xiong Z, Zhao S. Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants. Separation and Purification Technology 2020;250:117266. [DOI: 10.1016/j.seppur.2020.117266] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
2 Chen Q, He Y, Zhao Y, Chen L. Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin. Journal of Membrane Science 2021;625:119174. [DOI: 10.1016/j.memsci.2021.119174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
3 Xiong Z, Liu J, Yang Y, Lai Q, Wu X, Yang J, Zeng Q, Zhang G, Zhao S. Reinforcing hydration layer on membrane surface via nano-capturing and hydrothermal crosslinking for fouling reduction. Journal of Membrane Science 2022;644:120076. [DOI: 10.1016/j.memsci.2021.120076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
4 Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS Appl Mater Interfaces 2020;12:36837-50. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Ma L, Huang L, Zhang Y, Zhao L, Xin Q, Ye H, Li H. Hemocompatible poly(lactic acid) membranes prepared by immobilizing carboxylated graphene oxide via mussel-inspired method for hemodialysis. RSC Adv 2018;8:153-61. [DOI: 10.1039/c7ra11091j] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
6 Chen Q, He Y, Zhao Y, Chen L. Tannic acid and Poly(N-acryloyl morpholine) layer-by-layer built hemodialysis membrane surface for intervening oxidative stress integrated with high biocompatibility and dialysis performance. Journal of Membrane Science 2021;621:118896. [DOI: 10.1016/j.memsci.2020.118896] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
7 Liu C, Wang W, Li Y, Cui F, Xie C, Zhu L, Shan B. PMWCNT/PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification. Journal of Membrane Science 2019;576:48-58. [DOI: 10.1016/j.memsci.2019.01.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 8.3] [Reference Citation Analysis]
8 Wang J, Liu Z, Qiu M, He C. Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. Journal of Membrane Science 2021;618:118740. [DOI: 10.1016/j.memsci.2020.118740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Mollahosseini A, Abdelrasoul A, Shoker A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Materials Chemistry and Physics 2020;248:122911. [DOI: 10.1016/j.matchemphys.2020.122911] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
10 Yu X, Zhu Y, Zhang T, Deng L, Li P, Wang X, Hsiao BS. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science 2020;599:117706. [DOI: 10.1016/j.memsci.2019.117706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
11 Xiong Z, Lin H, Zhong Y, Qin Y, Li T, Liu F. Robust superhydrophilic polylactide (PLA) membranes with a TiO 2 nano-particle inlaid surface for oil/water separation. J Mater Chem A 2017;5:6538-45. [DOI: 10.1039/c6ta11156d] [Cited by in Crossref: 92] [Cited by in F6Publishing: 3] [Article Influence: 18.4] [Reference Citation Analysis]
12 Yu X, Zhu Y, Cheng C, Zhang T, Wang X, Hsiao BS. Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. Journal of Membrane Science 2019;582:151-63. [DOI: 10.1016/j.memsci.2019.04.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
13 Miao X, Liao H, Deng Z, Li C, Wu T, Zhang H, Liu M, Cheng X, Wang X. “Dandelion” Inspired Dual-Layered Nanoarrays with Two Model Releasing Features for the Surface Modification of 3D Printing Implants. ACS Biomater Sci Eng 2017;3:2259-66. [DOI: 10.1021/acsbiomaterials.7b00456] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
14 Jiang P, Ji Z, Wang X, Zhou F. Surface functionalization – a new functional dimension added to 3D printing. J Mater Chem C 2020;8:12380-411. [DOI: 10.1039/d0tc02850a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
15 Mulinti P, Brooks J, Lervick B, Pullan J, Brooks A. Strategies to improve the hemocompatibility of biodegradable biomaterials. Hemocompatibility of Biomaterials for Clinical Applications. Elsevier; 2018. pp. 253-78. [DOI: 10.1016/b978-0-08-100497-5.00017-3] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
16 Ali M, Jahan Z, Sher F, Khan Niazi MB, Kakar SJ, Gul S. Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. Mater Sci Eng C Mater Biol Appl 2021;128:112260. [PMID: 34474819 DOI: 10.1016/j.msec.2021.112260] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Zhong D, Wang Z, Zhou J, Wang Y. Additive-free preparation of hemodialysis membranes from block copolymers of polysulfone and polyethylene glycol. Journal of Membrane Science 2021;618:118690. [DOI: 10.1016/j.memsci.2020.118690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
18 Xiong Z, Zhong Y, Lin H, Liu F, Li T, Li J. PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation. Journal of Membrane Science 2017;533:103-11. [DOI: 10.1016/j.memsci.2017.03.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zhong Y, Li T, Lin H, Zhang L, Xiong Z, Fang Q, Zhang G, Liu F. Meso-/macro-porous microspheres confining Au nanoparticles based on PDLA/PLLA stereo-complex membrane for continuous flowing catalysis and separation. Chemical Engineering Journal 2018;344:299-310. [DOI: 10.1016/j.cej.2018.03.080] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
20 Ngo BKD, Barry ME, Lim KK, Johnson JC, Luna DJ, Pandian NK, Jain A, Grunlan MA. Thromboresistance of Silicones Modified with PEO-Silane Amphiphiles. ACS Biomater Sci Eng 2020;6:2029-37. [DOI: 10.1021/acsbiomaterials.0c00011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Beibei D, Tiantang F, Jiafeng L, Li G, Qin Z, Wuyou Y, Hongyun T, Wenxin W, Zhongyong F. PLLA-Grafted Gelatin Amphiphilic Copolymer and Its Self-Assembled Nano Carrier for Anticancer Drug Delivery. Macromol Chem Phys 2019;220:1800528. [DOI: 10.1002/macp.201800528] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Talebi A, Labbaf S, Karimzadeh F, Masaeli E, Nasr Esfahani M. Electroconductive Graphene-Containing Polymeric Patch: A Promising Platform for Future Cardiac Repair. ACS Biomater Sci Eng 2020;6:4214-24. [DOI: 10.1021/acsbiomaterials.0c00266] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
23 Chen Q, Kou M, He Y, Zhao Y, Chen L. Constructing hierarchical surface structure of hemodialysis membranes to intervene in oxidative stress through Michael addition reaction between tannic acid and PEtOx brushes. Journal of Membrane Science 2022;657:120700. [DOI: 10.1016/j.memsci.2022.120700] [Reference Citation Analysis]
24 More N, Avhad M, Utekar S, More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull . [DOI: 10.1007/s00289-022-04135-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Hedayati M, Neufeld MJ, Reynolds MM, Kipper MJ. The quest for blood-compatible materials: Recent advances and future technologies. Materials Science and Engineering: R: Reports 2019;138:118-52. [DOI: 10.1016/j.mser.2019.06.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
26 Vatanpour V, Dehqan A, Paziresh S, Zinadini S, Zinatizadeh AA, Koyuncu I. Polylactic acid in the fabrication of separation membranes: A review. Separation and Purification Technology 2022;296:121433. [DOI: 10.1016/j.seppur.2022.121433] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zhao J, Bai L, Muhammad K, Ren X, Guo J, Xia S, Zhang W, Feng Y. Construction of Hemocompatible and Histocompatible Surface by Grafting Antithrombotic Peptide ACH 11 and Hydrophilic PEG. ACS Biomater Sci Eng 2019;5:2846-57. [DOI: 10.1021/acsbiomaterials.9b00431] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]