BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater Sci Eng 2021;7:2880-99. [PMID: 34275293 DOI: 10.1021/acsbiomaterials.0c00640] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Rogal J, Schlünder K, Loskill P. Developer's Guide to an Organ-on-Chip Model. ACS Biomater Sci Eng 2022. [PMID: 35760397 DOI: 10.1021/acsbiomaterials.1c01536] [Reference Citation Analysis]
2 Bakht SM, Gomez‐florit M, Lamers T, Reis RL, Domingues RMA, Gomes ME. 3D Bioprinting of Miniaturized Tissues Embedded in Self‐Assembled Nanoparticle‐Based Fibrillar Platforms. Adv Funct Materials 2021;31:2104245. [DOI: 10.1002/adfm.202104245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Nishikawa M, Ito H, Tokito F, Hirono K, Inamura K, Scheidecker B, Danoy M, Kawanishi T, Arakawa H, Kato Y, Esashika K, Miyasako H, Sakai Y. Accurate Evaluation of Hepatocyte Metabolisms on a Noble Oxygen-Permeable Material With Low Sorption Characteristics. Front Toxicol 2022;4:810478. [DOI: 10.3389/ftox.2022.810478] [Reference Citation Analysis]
4 Dabbagh SR, Ozdalgic B, Mustafaoglu N, Tasoglu S. Three-Dimensional-Bioprinted Liver Chips and Challenges. Applied Sciences 2022;12:5029. [DOI: 10.3390/app12105029] [Reference Citation Analysis]
5 Deguchi S, Tsuda M, Kosugi K, Sakamoto A, Mimura N, Negoro R, Sano E, Nobe T, Maeda K, Kusuhara H, Mizuguchi H, Yamashita F, Torisawa YS, Takayama K. Usability of Polydimethylsiloxane-Based Microfluidic Devices in Pharmaceutical Research Using Human Hepatocytes. ACS Biomater Sci Eng 2021;7:3648-57. [PMID: 34283567 DOI: 10.1021/acsbiomaterials.1c00642] [Reference Citation Analysis]
6 Caligiuri V, Leone F, Annesi F, Pane A, Bartolino R, De Luca A. Envisioning Quantum Electrodynamic Frameworks Based on Bio-Photonic Cavities. Photonics 2021;8:470. [DOI: 10.3390/photonics8110470] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Elvira KS. Microfluidic technologies for drug discovery and development: friend or foe? Trends Pharmacol Sci 2021;42:518-26. [PMID: 33994176 DOI: 10.1016/j.tips.2021.04.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Winkler TE, Herland A. Sorption of Neuropsychopharmaca in Microfluidic Materials for In Vitro Studies. ACS Appl Mater Interfaces 2021;13:45161-74. [PMID: 34528803 DOI: 10.1021/acsami.1c07639] [Reference Citation Analysis]
9 Banik S, Uchil A, Kalsang T, Chakrabarty S, Ali MA, Srisungsitthisunti P, Mahato KK, Surdo S, Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2022;:1-19. [PMID: 35410564 DOI: 10.1080/07388551.2022.2034733] [Reference Citation Analysis]
10 Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Reference Citation Analysis]
11 Aparici Herraiz I, Caires HR, Castillo-fernández Ó, Sima N, Méndez-mora L, Risueño RM, Sattabongkot J, Roobsoong W, Hernández-machado A, Fernandez-becerra C, Barrias CC, del Portillo HA. Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Front Cell Infect Microbiol 2022;12:920204. [DOI: 10.3389/fcimb.2022.920204] [Reference Citation Analysis]
12 Sano E, Deguchi S, Matsuoka N, Tsuda M, Wang M, Kosugi K, Mori C, Yagi K, Wada A, Yamasaki S, Kawai T, Yodogawa M, Mizuguchi H, Nakazawa N, Yamashita F, Torisawa YS, Takayama K. Generation of Tetrafluoroethylene-Propylene Elastomer-Based Microfluidic Devices for Drug Toxicity and Metabolism Studies. ACS Omega 2021;6:24859-65. [PMID: 34604667 DOI: 10.1021/acsomega.1c03719] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ghosh G, Meeseepong M, Bag A, Hanif A, Chinnamani M, Beigtan M, Kim Y, Lee N. Tough, transparent, biocompatible and stretchable thermoplastic copolymer with high stability and processability for soft electronics. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.05.019] [Reference Citation Analysis]
14 Ejiugwo M, Rochev Y, Gethin G, O'Connor G. Toward Developing Immunocompetent Diabetic Foot Ulcer-on-a-Chip Models for Drug Testing. Tissue Eng Part C Methods 2021;27:77-88. [PMID: 33406980 DOI: 10.1089/ten.TEC.2020.0331] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Rojas D, Hernández-rodríguez JF, Della Pelle F, Escarpa A, Compagnone D. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Microchim Acta 2022;189. [DOI: 10.1007/s00604-022-05185-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Jain V, Patel VB, Singh B, Varade D. Microfluidic device based molecular Self-Assembly structures. Journal of Molecular Liquids 2022;362:119760. [DOI: 10.1016/j.molliq.2022.119760] [Reference Citation Analysis]
17 El-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021;13:4327. [PMID: 34960878 DOI: 10.3390/polym13244327] [Reference Citation Analysis]
18 Radisic M, Loskill P. Beyond PDMS and Membranes: New Materials for Organ-on-a-Chip Devices. ACS Biomater Sci Eng 2021;7:2861-3. [PMID: 34275298 DOI: 10.1021/acsbiomaterials.1c00831] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Rhyou J, Youn J, Eom S, Kim DS. Facile Fabrication of Electrospun Nanofiber Membrane-Integrated PDMS Microfluidic Chip via Silver Nanowires-Uncured PDMS Adhesive Layer. ACS Macro Lett 2021;10:965-70. [PMID: 35549208 DOI: 10.1021/acsmacrolett.1c00256] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Danek C. Recent Advances and Future Challenges in the Additive Manufacturing of Hydrogels. Polymers (Basel) 2022;14:494. [PMID: 35160482 DOI: 10.3390/polym14030494] [Reference Citation Analysis]
21 Kulsharova G, Kurmangaliyeva A, Darbayeva E, Rojas-Solórzano L, Toxeitova G. Development of a Hybrid Polymer-Based Microfluidic Platform for Culturing Hepatocytes towards Liver-on-a-Chip Applications. Polymers (Basel) 2021;13:3215. [PMID: 34641031 DOI: 10.3390/polym13193215] [Reference Citation Analysis]
22 Schneider S, Bubeck M, Rogal J, Weener HJ, Rojas C, Weiss M, Heymann M, van der Meer AD, Loskill P. Peristaltic on-chip pump for tunable media circulation and whole blood perfusion in PDMS-free organ-on-chip and Organ-Disc systems. Lab Chip 2021;21:3963-78. [PMID: 34636813 DOI: 10.1039/d1lc00494h] [Reference Citation Analysis]
23 Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2021;93:167-83. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
24 Mou J, Ren Y, Wang J, Wang C, Zou Y, Lou K, Zheng Z, Zhang D. Nickel oxide nanoparticle synthesis and photocatalytic applications: evolution from conventional methods to novel microfluidic approaches. Microfluid Nanofluid 2022;26. [DOI: 10.1007/s10404-022-02534-2] [Reference Citation Analysis]
25 Zou Z, Luo X, Chen Z, Zhang YS, Wen C. Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics 2022;12:891-909. [PMID: 34976219 DOI: 10.7150/thno.62685] [Reference Citation Analysis]
26 Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines 2022;13:428. [DOI: 10.3390/mi13030428] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
27 Bossink EGBM, Vollertsen AR, Loessberg-Zahl JT, van der Meer AD, Segerink LI, Odijk M. Systematic characterization of cleanroom-free fabricated macrovalves, demonstrating pumps and mixers for automated fluid handling tuned for organ-on-chip applications. Microsyst Nanoeng 2022;8:54. [PMID: 35615464 DOI: 10.1038/s41378-022-00378-y] [Reference Citation Analysis]
28 Monteiro MV, Zhang YS, Gaspar VM, Mano JF. 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends Biotechnol 2021:S0167-7799(21)00194-3. [PMID: 34556340 DOI: 10.1016/j.tibtech.2021.08.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
29 Kalasin S, Sangnuang P, Surareungchai W. Satellite-Based Sensor for Environmental Heat-Stress Sweat Creatinine Monitoring: The Remote Artificial Intelligence-Assisted Epidermal Wearable Sensing for Health Evaluation. ACS Biomater Sci Eng 2021;7:322-34. [DOI: 10.1021/acsbiomaterials.0c01459] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines (Basel) 2021;12:1443. [PMID: 34945293 DOI: 10.3390/mi12121443] [Reference Citation Analysis]
31 Cintron Pregosin N, Bronstein R, Mallipattu SK. Recent Advances in Kidney Bioengineering. Front Pediatr 2021;9:743301. [PMID: 34900859 DOI: 10.3389/fped.2021.743301] [Reference Citation Analysis]
32 Gomez-Florit M, Labrador-Rached CJ, Domingues RMA, Gomes ME. The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Adv Drug Deliv Rev 2022;185:114299. [PMID: 35436570 DOI: 10.1016/j.addr.2022.114299] [Reference Citation Analysis]