BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ding Z, Lu G, Cheng W, Xu G, Zuo B, Lu Q, Kaplan DL. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomater Sci Eng 2020;6:2357-67. [PMID: 33455344 DOI: 10.1021/acsbiomaterials.0c00143] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Mamidi N, García RG, Martínez JDH, Briones CM, Martínez Ramos AM, Tamez MFL, Del Valle BG, Segura FJM. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater Sci Eng 2022. [PMID: 36037103 DOI: 10.1021/acsbiomaterials.2c00786] [Reference Citation Analysis]
2 Shi M, Hu Y, Luo X, Liu L, Yu J, Fan Y. Tiny NaOH Assisted Facile Preparation of Silk Nanofibers and Their Nanotube-Compositing Strong, Flexible, and Conductive Films. ACS Biomater Sci Eng 2022. [PMID: 35985039 DOI: 10.1021/acsbiomaterials.2c00667] [Reference Citation Analysis]
3 Huang X, Zeng J, Wang Y. Comparison of the enhanced attachment and proliferation of the human mesenchymal stem cells on the biomimetic nanopatterned surfaces of zein, silk fibroin, and gelatin. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35906959 DOI: 10.1002/jbm.b.35142] [Reference Citation Analysis]
4 Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy. ACS Nano 2022. [PMID: 35587205 DOI: 10.1021/acsnano.2c01616] [Reference Citation Analysis]
5 Fan Z, Liu H, Shi S, Ding Z, Zhang Z, Lu Q, Kaplan DL. Anisotropic silk nanofiber layers as regulators of angiogenesis for optimized bone regeneration. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100283] [Reference Citation Analysis]
6 Zhang X, Hang Y, Ding Z, Xiao L, Cheng W, Lu Q. Macroporous Silk Nanofiber Cryogels with Tunable Properties. Biomacromolecules 2022. [PMID: 35443774 DOI: 10.1021/acs.biomac.2c00222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Gao X, Cheng W, Zhang X, Zhou Z, Ding Z, Zhou X, Lu Q, Kaplan DL. Nerve Growth Factor-Laden Anisotropic Silk Nanofiber Hydrogels to Regulate Neuronal/Astroglial Differentiation for Scarless Spinal Cord Repair. ACS Appl Mater Interfaces 2022;14:3701-15. [PMID: 35006667 DOI: 10.1021/acsami.1c19229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Yue Y, Xu P, Lei Z, Li K, Xu J, Wen J, Wang S, Cheng W, Lin S, Huang Z, Xu H. Preparation and characterization of a novel drug-loaded Bi-layer scaffold for cartilage regeneration. RSC Adv 2022;12:9524-33. [DOI: 10.1039/d2ra00311b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Bayer IS. A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines 2021;9:1612. [PMID: 34829843 DOI: 10.3390/biomedicines9111612] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
10 Hang Y, Ma X, Liu C, Li S, Zhang S, Feng R, Shang Q, Liu Q, Ding Z, Zhang X, Yu L, Lu Q, Shao C, Chen H, Shi Y, He J, Kaplan DL. Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS Nano 2021;15:14162-73. [PMID: 34516077 DOI: 10.1021/acsnano.0c10468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021;5:031509. [PMID: 34368603 DOI: 10.1063/5.0046076] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
12 Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol 2021;9:697981. [PMID: 34239865 DOI: 10.3389/fbioe.2021.697981] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Ding Z, Cheng W, Mia MS, Lu Q. Silk Biomaterials for Bone Tissue Engineering. Macromol Biosci 2021;21:e2100153. [PMID: 34117836 DOI: 10.1002/mabi.202100153] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
14 Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021;6:4830-55. [PMID: 34136726 DOI: 10.1016/j.bioactmat.2021.05.011] [Cited by in F6Publishing: 32] [Reference Citation Analysis]
15 Wang X, Fang J, Zhu W, Zhong C, Ye D, Zhu M, Lu X, Zhao Y, Ren F. Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair. Adv Funct Mater 2021;31:2010068. [DOI: 10.1002/adfm.202010068] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
16 Neubauer VJ, Döbl A, Scheibel T. Silk-Based Materials for Hard Tissue Engineering. Materials (Basel) 2021;14:674. [PMID: 33535662 DOI: 10.3390/ma14030674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
17 Liu H, Ming J, Guo X, Huang X, Zuo B, Ning X. Low voltage electric field governs fibrous silk electrogels. Materials & Design 2021;199:109401. [DOI: 10.1016/j.matdes.2020.109401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]