BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gu H, Xing Y, Xiong P, Tang H, Li C, Chen S, Zeng R, Han K, Shi G. Three-Dimensional Porous Ti 3 C 2 T x MXene–Graphene Hybrid Films for Glucose Biosensing. ACS Appl Nano Mater 2019;2:6537-45. [DOI: 10.1021/acsanm.9b01465] [Cited by in Crossref: 56] [Cited by in F6Publishing: 39] [Article Influence: 18.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Zhang L, Li C, Han J, Huang W, Zhou J, Yang Y. Hydrophilic antifouling 3D porous MXene/holey graphene nanocomposites for electrochemical determination of dopamine. Microchemical Journal 2022;181:107713. [DOI: 10.1016/j.microc.2022.107713] [Reference Citation Analysis]
2 Arifutzzaman A, Soon CF, Morsin M, Lim GP, Aslfattahi N, Jubadi WM, Sangu SS, Saheed MSM, Nayan N, Saidur R. MXene as Emerging Low Dimensional Material in Modern Energy and Bio Application: A Review. JNanoR 2022;74:109-54. [DOI: 10.4028/p-x49od6] [Reference Citation Analysis]
3 Dai G, Li Y, Li Z, Zhang J, Geng X, Zhang F, Wang Q, He P. Zirconium-Based Metal–Organic Framework and Ti 3 C 2 T x Nanosheet-Based Faraday Cage-Type Electrochemical Aptasensor for Escherichia coli Detection. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01548] [Reference Citation Analysis]
4 Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega. [DOI: 10.1021/acsomega.2c01033] [Reference Citation Analysis]
5 Mostafavi E, Iravani S. MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nanomicro Lett 2022;14:130. [PMID: 35699817 DOI: 10.1007/s40820-022-00880-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yang M, Lu H, Liu S. Recent Advances of MXene-Based Electrochemical Immunosensors. Applied Sciences 2022;12:5630. [DOI: 10.3390/app12115630] [Reference Citation Analysis]
7 Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022;304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
8 Rajeev R, Thadathil DA, Varghese A. New horizons in surface topography modulation of MXenes for electrochemical sensing toward potential biomarkers of chronic disorders. Critical Reviews in Solid State and Materials Sciences. [DOI: 10.1080/10408436.2022.2078789] [Reference Citation Analysis]
9 Li S, Chen Y, Wang Y, Mo H, Zang S. Integration of enzyme immobilization and biomimetic catalysis in hierarchically porous metal-organic frameworks for multi-enzymatic cascade reactions. Sci China Chem 2022;65:1122-8. [DOI: 10.1007/s11426-022-1254-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mahmud ST, Hasan MM, Bain S, Rahman ST, Rhaman M, Hossain MM, Ordu M. Multilayer MXene Heterostructures and Nanohybrids for Multifunctional Applications: A Review. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.2c00175] [Reference Citation Analysis]
11 Huang H, Dong C, Feng W, Wang Y, Huang B, Chen Y. Biomedical engineering of two-dimensional MXenes. Adv Drug Deliv Rev 2022;184:114178. [PMID: 35231544 DOI: 10.1016/j.addr.2022.114178] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Kumar R, Singh L. Ti 3 C 2 T x MXene as Electrocatalyst for Designing Robust Glucose Biosensors. Adv Materials Technologies. [DOI: 10.1002/admt.202200151] [Reference Citation Analysis]
13 Zhao X, Zhang G, Wang J, Yuan T, Huang J, Wang L, Liu Y. Ru Nanoclusters Supported on Ti 3 C 2 T x Nanosheets for Catalytic Hydrogenation of Quinolines. ACS Appl Nano Mater 2022;5:6213-20. [DOI: 10.1021/acsanm.2c00240] [Reference Citation Analysis]
14 Zhang Y, Yan Y, Qiu H, Ma Z, Ruan K, Gu J. A mini-review of MXene porous films: Preparation, mechanism and application. Journal of Materials Science & Technology 2022;103:42-9. [DOI: 10.1016/j.jmst.2021.08.001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 50.0] [Reference Citation Analysis]
15 Wu C, Sun W, Wang Q. Exploration of Sulfur-Containing Nanoparticles: Synthesis, Microstructure Analysis, and Sensing Potential. Inorg Chem 2022. [PMID: 35188743 DOI: 10.1021/acs.inorgchem.1c04024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hu K, Cheng J, Wang K, Zhao Y, Liu Y, Yang H, Zhang Z. Sensitive electrochemical immunosensor for CYFRA21-1 detection based on AuNPs@MoS2@Ti3C2Tx composites. Talanta 2022;238:122987. [PMID: 34857321 DOI: 10.1016/j.talanta.2021.122987] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Zhang Z, Li M, Zuo Y, Chen S, Zhuo Y, Lu M, Shi G, Gu H. In Vivo Monitoring of pH in Subacute PD Mouse Brains with a Ratiometric Electrochemical Microsensor Based on Poly(melamine) Films. ACS Sens 2022;7:235-44. [PMID: 34936337 DOI: 10.1021/acssensors.1c02051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Alwarappan S, Nesakumar N, Sun D, Hu TY, Li CZ. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens Bioelectron 2022;205:113943. [PMID: 35219021 DOI: 10.1016/j.bios.2021.113943] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
19 Zhu S, Wang D, Li M, Zhou C, Yu D, Lin Y. Recent advances in flexible and wearable chemo- and bio-sensors based on two-dimensional transition metal carbides and nitrides (MXenes). J Mater Chem B. [DOI: 10.1039/d1tb02759j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Chen Z, Asif M, Wang R, Li Y, Zeng X, Yao W, Sun Y, Liao K. Recent Trends in Synthesis and Applications of porous MXene Assemblies: A Topical Review. Chem Rec 2021. [PMID: 34913570 DOI: 10.1002/tcr.202100261] [Reference Citation Analysis]
21 Qu ZB, Jiang Y, Zhang J, Chen S, Zeng R, Zhuo Y, Lu M, Shi G, Gu H. Tailoring Oxygen-Containing Groups on Graphene for Ratiometric Electrochemical Measurements of Ascorbic Acid in Living Subacute Parkinson's Disease Mouse Brains. Anal Chem 2021;93:16598-607. [PMID: 34844405 DOI: 10.1021/acs.analchem.1c03965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Mathew M, Rout CS. Electrochemical biosensors based on Ti3C2Tx MXene: future perspectives for on-site analysis. Current Opinion in Electrochemistry 2021;30:100782. [DOI: 10.1016/j.coelec.2021.100782] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Li X, Lu Y, Liu Q. Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects. Talanta 2021;235:122726. [PMID: 34517594 DOI: 10.1016/j.talanta.2021.122726] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Yu L, Lv R. Two-dimensional layer materials for highly efficient molecular sensing based on surface-enhanced Raman scattering. New Carbon Materials 2021;36:995-1012. [DOI: 10.1016/s1872-5805(21)60098-5] [Reference Citation Analysis]
25 Ho DH, Choi YY, Jo SB, Myoung JM, Cho JH. Sensing with MXenes: Progress and Prospects. Adv Mater 2021;33:e2005846. [PMID: 33938600 DOI: 10.1002/adma.202005846] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 46.0] [Reference Citation Analysis]
26 Jia G, Zheng A, Wang X, Zhang L, Li L, Li C, Zhang Y, Cao L. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sensors and Actuators B: Chemical 2021;346:130507. [DOI: 10.1016/j.snb.2021.130507] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
27 Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. Adv Mater 2021;33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 17.0] [Reference Citation Analysis]
28 Thenmozhi R, Maruthasalamoorthy S, Nirmala R, Navamathavan R. Review—MXene Based Transducer for Biosensor Applications. J Electrochem Soc 2021;168:117507. [DOI: 10.1149/1945-7111/ac2fc6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Xiao X, Li C, Liu Y, Feng Y, Han K, Xiang H, Shi G, Gu H. A ratiometric electrochemical microsensor for monitoring chloride ions in vivo. Analyst 2021;146:6202-10. [PMID: 34519726 DOI: 10.1039/d1an01370j] [Reference Citation Analysis]
30 Cao C, Chang Q, Qiao H, Shao R, Guo X, Xiao G, Shi W, Huang L. Determination of H+ ion diffusion in Ti3C2-rGO glucose sensor. Sensors and Actuators B: Chemical 2021;340:129943. [DOI: 10.1016/j.snb.2021.129943] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Guan Y, Zhang M, Qin J, Guo X, Li Z, Zhang B, Tang J. Morphological Evolutions of Ti 3 C 2 T x Nanosheets and Fe 3 O 4 /Ti 3 C 2 T x Nanocomposites under Potential Cycling Investigated Using In Situ Electrochemical Atomic Force Microscopy. J Phys Chem C 2021;125:12811-8. [DOI: 10.1021/acs.jpcc.1c03167] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Li C, Zhuo Y, Xiao X, Li S, Han K, Lu M, Zhang J, Chen S, Gu H. Facile Electrochemical Microbiosensor Based on In Situ Self-Assembly of Ag Nanoparticles Coated on Ti3C2Tx for In Vivo Measurements of Chloride Ions in the PD Mouse Brain. Anal Chem 2021;93:7647-56. [PMID: 34014093 DOI: 10.1021/acs.analchem.1c00342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Li C, Feng X, Sun L, Zhou L, Sun J, Wang Z, Liao D, Lan P, Lan X. Non-covalent and covalent immobilization of papain onto Ti3C2 MXene nanosheets. Enzyme Microb Technol 2021;148:109817. [PMID: 34116748 DOI: 10.1016/j.enzmictec.2021.109817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Chen S, Shi M, Xu Q, Xu J, Duan X, Gao Y, Lu L, Gao F, Wang X, Yu Y. Ti3C2TxMXene/nitrogen-doped reduced graphene oxide composite: a high-performance electrochemical sensing platform for adrenaline detection. Nanotechnology 2021. [PMID: 33730698 DOI: 10.1088/1361-6528/abef94] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
35 Huang J, Li Z, Mao Y, Li Z. Progress and biomedical applications of MXenes. Nano Select 2021;2:1480-508. [DOI: 10.1002/nano.202000309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
36 Soomro RA, Jawaid S, Zhang P, Han X, Hallam KR, Karakuş S, Kilislioğlu A, Xu B, Willander M. NiWO4-induced partial oxidation of MXene for photo-electrochemical detection of prostate-specific antigen. Sensors and Actuators B: Chemical 2021;328:129074. [DOI: 10.1016/j.snb.2020.129074] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
37 Miao J, Zhu Q, Li K, Zhang P, Zhao Q, Xu B. Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. Journal of Energy Chemistry 2021;52:243-50. [DOI: 10.1016/j.jechem.2020.04.015] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 16.0] [Reference Citation Analysis]
38 Sharifuzzaman M, Chhetry A, Zahed MA, Yoon SH, Park CI, Zhang S, Chandra Barman S, Sharma S, Yoon H, Park JY. Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosensors and Bioelectronics 2020;169:112637. [DOI: 10.1016/j.bios.2020.112637] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
39 Shahzad F, Iqbal A, Kim H, Koo CM. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Adv Mater 2020;32:e2002159. [PMID: 33146936 DOI: 10.1002/adma.202002159] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 34.0] [Reference Citation Analysis]
40 Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 2021;50:619-57. [PMID: 33206730 DOI: 10.1039/d0cs00150c] [Cited by in Crossref: 32] [Cited by in F6Publishing: 6] [Article Influence: 16.0] [Reference Citation Analysis]
41 Shahzad F, Zaidi SA, Naqvi RA. 2D Transition Metal Carbides (MXene) for Electrochemical Sensing: A Review. Crit Rev Anal Chem 2020;:1-17. [PMID: 33108217 DOI: 10.1080/10408347.2020.1836470] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
42 Sharifuzzaman M, Barman SC, Zahed MA, Sharma S, Yoon H, Nah JS, Kim H, Park JY. An Electrodeposited MXene‐Ti 3 C 2 T x Nanosheets Functionalized by Task‐Specific Ionic Liquid for Simultaneous and Multiplexed Detection of Bladder Cancer Biomarkers. Small 2020;16:2002517. [DOI: 10.1002/smll.202002517] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
43 Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang J, Anasori B, Seh ZW. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS Nano 2020;14:10834-64. [PMID: 32790329 DOI: 10.1021/acsnano.0c05482] [Cited by in Crossref: 150] [Cited by in F6Publishing: 113] [Article Influence: 75.0] [Reference Citation Analysis]
44 Kashefi-Kheyrabadi L, Koyappayil A, Kim T, Cheon YP, Lee MH. A MoS2@Ti3C2Tx MXene hybrid-based electrochemical aptasensor (MEA) for sensitive and rapid detection of Thyroxine. Bioelectrochemistry 2021;137:107674. [PMID: 32949936 DOI: 10.1016/j.bioelechem.2020.107674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Ferrand A, Siaj M, Claverie JP. Graphene, the Swiss Army Knife of Nanomaterials Science. ACS Appl Nano Mater 2020;3:7305-13. [DOI: 10.1021/acsanm.0c02055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
46 Gutiérrez HR. Two-Dimensional Layered Materials Offering Expanded Applications in Flatland. ACS Appl Nano Mater 2020;3:6134-9. [DOI: 10.1021/acsanm.0c01763] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
47 Rohaizad N, Mayorga-Martinez CC, Sofer Z, Webster RD, Pumera M. Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors. Biosens Bioelectron 2020;155:112114. [PMID: 32217336 DOI: 10.1016/j.bios.2020.112114] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
48 Kokulnathan T, Wang T. Vanadium Carbide-Entrapped Graphitic Carbon Nitride Nanocomposites: Synthesis and Electrochemical Platforms for Accurate Detection of Furazolidone. ACS Appl Nano Mater 2020;3:2554-61. [DOI: 10.1021/acsanm.9b02618] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 19.0] [Reference Citation Analysis]
49 Kemmegne-mbouguen JC, Tchoumi FP, Mouafo-tchinda E, Langmi HW, Bambalaza SE, Musyoka NM, Kowenje C, Mokaya R. Simultaneous quantification of acetaminophen and tryptophan using a composite graphene foam/Zr-MOF film modified electrode. New J Chem 2020;44:13108-17. [DOI: 10.1039/d0nj02374d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]