BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Su C, Hu Y, Song Q, Ye Y, Gao L, Li P, Ye T. Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces. ACS Appl Mater Interfaces 2020;12:18978-86. [PMID: 32212671 DOI: 10.1021/acsami.9b22611] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhou L, Zhao C, Yang W. Durable and covalently attached antibacterial coating based on post-crosslinked maleic anhydride copolymer with long-lasting performance. Colloids and Surfaces B: Biointerfaces 2022;217:112710. [DOI: 10.1016/j.colsurfb.2022.112710] [Reference Citation Analysis]
2 González-ceballos L, Guirado-moreno JC, Guembe-garcía M, Rovira J, Melero B, Arnaiz A, Diez AM, García JM, Vallejos S. Metal-free organic polymer for the preparation of a reusable antimicrobial material with real-life application as an absorbent food pad. Food Packaging and Shelf Life 2022;33:100910. [DOI: 10.1016/j.fpsl.2022.100910] [Reference Citation Analysis]
3 Kim M, Park J, Nonnenmann SS, Bradley LC. Liquid Crystalline Polymer Coatings Fabricated by Initiated Chemical Vapor Deposition. Adv Materials Inter. [DOI: 10.1002/admi.202201105] [Reference Citation Analysis]
4 Su P, Liu W, Hong Y, Ye Y, Huang S. Vapor deposition of ultrathin hydrophilic polymer coatings enabling candle soot composite for highly sensitive humidity sensors. Materials Today Chemistry 2022;24:100786. [DOI: 10.1016/j.mtchem.2022.100786] [Reference Citation Analysis]
5 Liu Z, Jiang X, Li Z, Zheng Y, Nie J, Cui Z, Liang Y, Zhu S, Chen D, Wu S. Recent progress of photo-excited antibacterial materials via chemical vapor deposition. Chemical Engineering Journal 2022;437:135401. [DOI: 10.1016/j.cej.2022.135401] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Hao X, Zhou J, Xie J, Zou X, Li B, Liang C, Zhang Y, Peng F, Wang D. Porous thermosensitive coating with water-locking ability for enhanced osteogenic and antibacterial abilities. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100285] [Reference Citation Analysis]
7 Dai L, Lou J, Baek N, Zhang X, Yuan J, Xu J, Fan X. A rapid way of preparing switchable bacteria-killing and bacteria-releasing cellulosic material with anti-bacteria adhesion capability. Cellulose. [DOI: 10.1007/s10570-022-04589-4] [Reference Citation Analysis]
8 Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022;10:850110. [DOI: 10.3389/fbioe.2022.850110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sultana A, Zare M, Luo H, Ramakrishna S. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. Int J Mol Sci 2021;22:11788. [PMID: 34769219 DOI: 10.3390/ijms222111788] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
10 Zou Y, Lu K, Lin Y, Wu Y, Wang Y, Li L, Huang C, Zhang Y, Brash JL, Chen H, Yu Q. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. ACS Appl Mater Interfaces 2021;13:45191-200. [PMID: 34519474 DOI: 10.1021/acsami.1c10747] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhu Y, Zhang J, Quan Y, Wei L, Zang L, Wang Z, Wang L, Wang L, Che F. A self-healing nanocomposite coating with antibacterial, biocompatibility and self-cleaning properties. Materials & Design 2021;206:109799. [DOI: 10.1016/j.matdes.2021.109799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Liu C, Zhang T, Luo Y, Wang Y, Li J, Ye T, Guo R, Song P, Zhou J, Wang H. Multifunctional polyurethane sponge coatings with excellent flame retardant, antibacterial, compressible, and recyclable properties. Composites Part B: Engineering 2021;215:108785. [DOI: 10.1016/j.compositesb.2021.108785] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
13 Alavi M, Varma RS. Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustainable Chemistry and Pharmacy 2021;21:100412. [DOI: 10.1016/j.scp.2021.100412] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
14 Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2020;8:6867-82. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
15 Mitra D, Kang E, Neoh KG. Polymer-Based Coatings with Integrated Antifouling and Bactericidal Properties for Targeted Biomedical Applications. ACS Appl Polym Mater 2021;3:2233-63. [DOI: 10.1021/acsapm.1c00125] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
16 Li J, Xiao M, Wang Y, Yang J, Liu W. Robust and Antiswelling Hollow Hydrogel Tube with Antibacterial and Antithrombotic Ability for Emergency Vascular Replacement. ACS Appl Bio Mater 2021;4:3598-607. [PMID: 35014445 DOI: 10.1021/acsabm.1c00096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Song Q, Zhao R, Liu T, Gao L, Su C, Ye Y, Chan SY, Liu X, Wang K, Li P, Huang W. One-step vapor deposition of fluorinated polycationic coating to fabricate antifouling and anti-infective textile against drug-resistant bacteria and viruses. Chem Eng J 2021;418:129368. [PMID: 33746567 DOI: 10.1016/j.cej.2021.129368] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Su C, Ye Y, Qiu H, Zhu Y. Solvent-Free Fabrication of Self-Regenerating Antibacterial Surfaces Resisting Biofilm Formation. ACS Appl Mater Interfaces 2021;13:10553-63. [PMID: 33617220 DOI: 10.1021/acsami.0c20033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Reichstein W, Sommer L, Veziroglu S, Sayin S, Schröder S, Mishra YK, Saygili Eİ, Karayürek F, Açil Y, Wiltfang J, Gülses A, Faupel F, Aktas OC. Initiated Chemical Vapor Deposition (iCVD) Functionalized Polylactic Acid-Marine Algae Composite Patch for Bone Tissue Engineering. Polymers (Basel) 2021;13:E186. [PMID: 33430187 DOI: 10.3390/polym13020186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Chai D, Liu W, Hao X, Wang H, Wang H, Hao Y, Gao Y, Qu H, Wang L, Dong A, Gao G. Mussel-inspired synthesis of magnetic N-Halamine nanoparticles for antibacterial recycling. Colloid and Interface Science Communications 2020;39:100320. [DOI: 10.1016/j.colcom.2020.100320] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
21 Liu T, Yan S, Zhou R, Zhang X, Yang H, Yan Q, Yang R, Luan S. Self-Adaptive Antibacterial Coating for Universal Polymeric Substrates Based on a Micrometer-Scale Hierarchical Polymer Brush System. ACS Appl Mater Interfaces 2020;12:42576-85. [PMID: 32867474 DOI: 10.1021/acsami.0c13413] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zhu L, Ding X, Wu X, Yan Z, Lei S, Si Y. Innovative and Sustainable Multifunctional Finishing Method for Textile Materials by Applying Engineered Water Nanostructures. ACS Sustainable Chem Eng 2020;8:14833-44. [DOI: 10.1021/acssuschemeng.0c04252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]