BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao C, Qazvini NT, Sadati M, Zeng Z, Huang S, De La Lastra AL, Zhang L, Feng Y, Liu W, Huang B, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Liu B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Athiviraham A, Lee MJ, Wolf JM, Reid RR, Tirrell M, Huang W, de Pablo JJ, He TC. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. ACS Appl Mater Interfaces 2019;11:8749-62. [PMID: 30734555 DOI: 10.1021/acsami.8b19094] [Cited by in Crossref: 77] [Cited by in F6Publishing: 79] [Article Influence: 19.3] [Reference Citation Analysis]
Number Citing Articles
1 Geng Y, Xue H, Zhang Z, Panayi AC, Knoedler S, Zhou W, Mi B, Liu G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023;305:120555. [PMID: 36737218 DOI: 10.1016/j.carbpol.2023.120555] [Reference Citation Analysis]
2 Bharti D, Banerjee I, Sarkar P, Kim D, Pal K. Smart polymers for biomedical applications. Advances in Biomedical Polymers and Composites 2023. [DOI: 10.1016/b978-0-323-88524-9.00010-3] [Reference Citation Analysis]
3 Pountos I, Tellisi N, Ashammakhi N. 4D printing for tissue engineering of smart constructs. New Trends in Smart Nanostructured Biomaterials in Health Sciences 2023. [DOI: 10.1016/b978-0-323-85671-3.00009-9] [Reference Citation Analysis]
4 Erezuma I, Lukin I, Desimone M, Zhang YS, Dolatshahi-Pirouz A, Orive G. Progress in self-healing hydrogels and their applications in bone tissue engineering. Biomater Adv 2022;146:213274. [PMID: 36640523 DOI: 10.1016/j.bioadv.2022.213274] [Reference Citation Analysis]
5 Hu Z, Cheng J, Xu S, Cheng X, Zhao J, Kenny Low ZW, Chee PL, Lu Z, Zheng L, Kai D. PVA/pectin composite hydrogels inducing osteogenesis for bone regeneration. Mater Today Bio 2022;16:100431. [PMID: 36186849 DOI: 10.1016/j.mtbio.2022.100431] [Reference Citation Analysis]
6 Dong C, Wei H, Zhang X, Li Y, Huang L, Wa Q, Luo Y. 3D printed hydrogel/wesselsite-PCL composite scaffold with structural change from core/shell fibers to microchannels for enhanced bone regeneration. Composites Part B: Engineering 2022;246:110264. [DOI: 10.1016/j.compositesb.2022.110264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Al Maruf DSA, Ghosh YA, Xin H, Cheng K, Mukherjee P, Crook JM, Wallace GG, Klein TJ, Clark JR. Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers (Basel) 2022;14:4186. [PMID: 36236133 DOI: 10.3390/polym14194186] [Reference Citation Analysis]
8 Yu K, Huangfu H, Qin Q, Zhang Y, Gu X, Liu X, Zhang Y, Zhou Y. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects. ACS Appl Mater Interfaces 2022. [PMID: 36194837 DOI: 10.1021/acsami.2c13557] [Reference Citation Analysis]
9 Lazaridou M, Bikiaris DN, Lamprou DA. 3D Bioprinted Chitosan-Based Hydrogel Scaffolds in Tissue Engineering and Localised Drug Delivery. Pharmaceutics 2022;14:1978. [PMID: 36145727 DOI: 10.3390/pharmaceutics14091978] [Reference Citation Analysis]
10 Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022;222:132-53. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Reference Citation Analysis]
11 Zhao Y, Jin L, Liu X, Liu X, Dong S, Chen Y, Li X, Lv X, He M. Novel high strength PVA/soy protein isolate composite hydrogels and their properties. Front Chem 2022;10:984652. [DOI: 10.3389/fchem.2022.984652] [Reference Citation Analysis]
12 Zhao Y, Zhao S, Ma Z, Ding C, Chen J, Li J. Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceuticals (Basel) 2022;15:1023. [PMID: 36015171 DOI: 10.3390/ph15081023] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Rezvan G, Esmaeili M, Sadati M, Taheri-Qazvini N. Hybrid colloidal gels with tunable elasticity formed by charge-driven assembly between spherical soft nanoparticles and discotic nanosilicates. J Colloid Interface Sci 2022;627:40-52. [PMID: 35841707 DOI: 10.1016/j.jcis.2022.07.039] [Reference Citation Analysis]
14 Qin C, Wu C. Inorganic biomaterials‐based bioinks for three‐dimensional bioprinting of regenerative scaffolds. VIEW 2022;3:20210018. [DOI: 10.1002/viw.20210018] [Reference Citation Analysis]
15 Zhihui K, Min D. Application of Graphene Oxide-Based Hydrogels in Bone Tissue Engineering. ACS Biomater Sci Eng 2022. [PMID: 35759514 DOI: 10.1021/acsbiomaterials.2c00396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Chen Y, Wu X, Li J, Jiang Y, Xu K, Su J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front Pharmacol 2022;13:909408. [PMID: 35712701 DOI: 10.3389/fphar.2022.909408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhu Y, Zhang Y, Zhou Y. Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022;23:6574. [PMID: 35743019 DOI: 10.3390/ijms23126574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wang N, Yang J, Gan G, Bao X, Wang L. Self-assembled insulin-like growth factor 1 peptides induce adipose stem cell differentiation to repair cartilage injury. Biomaterials Advances 2022;137:212845. [DOI: 10.1016/j.bioadv.2022.212845] [Reference Citation Analysis]
19 Lin X, Tsao CT, Kyomoto M, Zhang M. Injectable Natural Polymer Hydrogels for Treatment of Knee Osteoarthritis. Adv Healthc Mater 2022;11:e2101479. [PMID: 34535978 DOI: 10.1002/adhm.202101479] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
20 Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022;:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
21 Singha I, Basu A. Chitosan based injectable hydrogels for smart drug delivery applications. Sensors International 2022;3:100168. [DOI: 10.1016/j.sintl.2022.100168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zhou W, Shi P, Dong J, Li S, Lv P, Liu C. Scaffolds of bioactive glass (Bioglass®) combined with recombinant human bone morphogenetic protein -9 (rhBMP-9) for tooth extraction site preservation. Heliyon 2022;8:e08796. [DOI: 10.1016/j.heliyon.2022.e08796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Das SS, Kar S, Singh SK, Hussain A, Verma P, Beg S. Carboxymethyl chitosan in advanced drug-delivery applications. Chitosan in Drug Delivery 2022. [DOI: 10.1016/b978-0-12-819336-5.00006-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Roy A, Manna K, Pal S. Recent advances in various stimuli-responsive hydrogels: from synthetic designs to emerging healthcare applications. Mater Chem Front . [DOI: 10.1039/d2qm00469k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 周 昌. Research Progress of Chitosan-Based Hydrogels for Bone Tissue Engineering Applications. BP 2022;12:124-130. [DOI: 10.12677/bp.2022.122014] [Reference Citation Analysis]
26 Salar Amoli M, Ezeldeen M, Jacobs R, Bloemen V. Materials for Dentoalveolar Bioprinting: Current State of the Art. Biomedicines 2022;10:71. [DOI: 10.3390/biomedicines10010071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zhong J, Wang H, Yang K, Wang H, Duan C, Ni N, An L, Luo Y, Zhao P, Gou Y, Sheng S, Shi D, Chen C, Wagstaff W, Hendren-Santiago B, Haydon RC, Luu HH, Reid RR, Ho SH, Ameer GA, Shen L, He TC, Fan J. Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioact Mater 2022;9:523-40. [PMID: 34820586 DOI: 10.1016/j.bioactmat.2021.07.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Pramanik N, Rath T. Current Scenario of Regenerative Medicine: Role of Cell, Scaffold and Growth Factor. Biomechanics and Functional Tissue Engineering 2021. [DOI: 10.5772/intechopen.94906] [Reference Citation Analysis]
29 Yazdanian M, Arefi AH, Alam M, Abbasi K, Tebyaniyan H, Tahmasebi E, Ranjbar R, Seifalian A, Rahbar M. Decellularized and biological scaffolds in dental and craniofacial tissue engineering: a comprehensive overview. Journal of Materials Research and Technology 2021;15:1217-51. [DOI: 10.1016/j.jmrt.2021.08.083] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
30 Dong H, Zhu T, Zhang M, Wang D, Wang X, Huang G, Wang S, Zhang M. Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Front Bioeng Biotechnol 2021;9:761302. [PMID: 34631688 DOI: 10.3389/fbioe.2021.761302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zhou Y, Hu Z, Ge M, Jin W, Tang R, Li Q, Xu W, Shi J, Xie Z. Intraosseous Injection of Calcium Phosphate Polymer-Induced Liquid Precursor Increases Bone Density and Improves Early Implant Osseointegration in Ovariectomized Rats. Int J Nanomedicine 2021;16:6217-29. [PMID: 34531654 DOI: 10.2147/IJN.S321882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Mao Y, Ni N, Huang L, Fan J, Wang H, He F, Liu Q, Shi D, Fu K, Pakvasa M, Wagstaff W, Tucker AB, Chen C, Reid RR, Haydon RC, Ho SH, Lee MJ, He TC, Yang J, Shen L, Cai L, Luu HH. Argonaute (AGO) proteins play an essential role in mediating BMP9-induced osteogenic signaling in mesenchymal stem cells (MSCs). Genes Dis 2021;8:918-30. [PMID: 34522718 DOI: 10.1016/j.gendis.2021.04.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
33 Wang C, Willner B, Willner I. Redox-responsive and light-responsive DNA-based hydrogels and their applications. Reactive and Functional Polymers 2021;166:104983. [DOI: 10.1016/j.reactfunctpolym.2021.104983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Zhang S, Xie D, Zhang Q. Mesenchymal stem cells plus bone repair materials as a therapeutic strategy for abnormal bone metabolism: Evidence of clinical efficacy and mechanisms of action implied. Pharmacol Res 2021;172:105851. [PMID: 34450314 DOI: 10.1016/j.phrs.2021.105851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Medrano-David D, Lopera AM, Londoño ME, Araque-Marín P. Formulation and Characterization of a New Injectable Bone Substitute Composed PVA/Borax/CaCO3 and Demineralized Bone Matrix. J Funct Biomater 2021;12:46. [PMID: 34449632 DOI: 10.3390/jfb12030046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Samiei M, Fathi M, Barar J, Fathi N, Amiryaghoubi N, Omidi Y. Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. Journal of Drug Delivery Science and Technology 2021;64:102600. [DOI: 10.1016/j.jddst.2021.102600] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021;174:504-34. [PMID: 33991588 DOI: 10.1016/j.addr.2021.05.007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 59] [Article Influence: 25.5] [Reference Citation Analysis]
38 Zhang Z, Zhang L, Li C, Xie X, Li G, Hu Z, Li S. Research Progress of Chitosan-Based Biomimetic Materials. Mar Drugs 2021;19:372. [PMID: 34199126 DOI: 10.3390/md19070372] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Ngan Giang N, Kim SG, In I, Park SY. Real-Time Wireless Monitoring of Cell Proliferation and Detachment Based on pH-Responsive Conductive Polymer Dots. Anal Chem 2021;93:8638-46. [PMID: 34110775 DOI: 10.1021/acs.analchem.1c01778] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Zarrintaj P, Khodadadi Yazdi M, Youssefi Azarfam M, Zare M, Ramsey JD, Seidi F, Reza Saeb M, Ramakrishna S, Mozafari M. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Eng Part A 2021;27:821-43. [PMID: 33779319 DOI: 10.1089/ten.TEA.2020.0341] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
41 Buyuksungur S, Hasirci V, Hasirci N. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. J Biomed Mater Res A 2021. [PMID: 34033241 DOI: 10.1002/jbm.a.37235] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
42 Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021. [PMID: 33938724 DOI: 10.1021/acs.chemrev.0c01177] [Cited by in Crossref: 110] [Cited by in F6Publishing: 131] [Article Influence: 55.0] [Reference Citation Analysis]
43 Huang F, Chen M, Zhou Z, Duan R, Xia F, Willner I. Spatiotemporal patterning of photoresponsive DNA-based hydrogels to tune local cell responses. Nat Commun 2021;12:2364. [PMID: 33888708 DOI: 10.1038/s41467-021-22645-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
44 Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021;6:4110-40. [PMID: 33997497 DOI: 10.1016/j.bioactmat.2021.03.043] [Cited by in Crossref: 91] [Cited by in F6Publishing: 85] [Article Influence: 45.5] [Reference Citation Analysis]
45 Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 2021;42:e2100025. [PMID: 33876841 DOI: 10.1002/marc.202100025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
46 Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021;32:861-78. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
47 Qianqian O, Songzhi K, Yongmei H, Xianghong J, Sidong L, Puwang L, Hui L. Preparation of nano-hydroxyapatite/chitosan/tilapia skin peptides hydrogels and its burn wound treatment. Int J Biol Macromol 2021;181:369-77. [PMID: 33737190 DOI: 10.1016/j.ijbiomac.2021.03.085] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
48 Xue X, Hu Y, Deng Y, Su J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Adv Funct Mater 2021;31:2009432. [DOI: 10.1002/adfm.202009432] [Cited by in Crossref: 61] [Cited by in F6Publishing: 72] [Article Influence: 30.5] [Reference Citation Analysis]
49 Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021;9:12. [PMID: 33574225 DOI: 10.1038/s41413-020-00131-z] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 29.5] [Reference Citation Analysis]
50 Li X, Xu W, Xin Y, Yuan J, Ji Y, Chu S, Liu J, Luo Q. Supramolecular Polymer Nanocomposites for Biomedical Applications. Polymers (Basel) 2021;13:513. [PMID: 33572052 DOI: 10.3390/polym13040513] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Selezneva EV, Bakirov AV, Sedush NG, Bystrova AV, Chvalun SN, Demco DE, Möller M. How Shape Memory Effects can Contribute to Improved Self-Healing Properties in Polymer Materials. Macromolecules 2021;54:2506-17. [DOI: 10.1021/acs.macromol.0c02102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
52 do N Ferreira CR, de L Ramos EL, Araujo LFS, da S Sousa LM, Feitosa JPA, Cunha AF, Oliveira MB, Mano JF, da S Maciel J. Synthesis and characterization of scaffolds produced under mild conditions based on oxidized cashew gums and carboxyethyl chitosan. Int J Biol Macromol 2021;176:26-36. [PMID: 33529634 DOI: 10.1016/j.ijbiomac.2021.01.178] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Ai J, Li K, Li J, Yu F, Ma J. Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network. Int J Biol Macromol 2021;172:66-73. [PMID: 33434549 DOI: 10.1016/j.ijbiomac.2021.01.038] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
54 Roy BK, Tahmid I, Rashid TU. Chitosan-Based Hydrogels for Tissue Engineering. Engineering Materials for Stem Cell Regeneration 2021. [DOI: 10.1007/978-981-16-4420-7_19] [Reference Citation Analysis]
55 Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020;8:598607. [PMID: 33381499 DOI: 10.3389/fbioe.2020.598607] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
56 Chyzy A, Plonska-Brzezinska ME. Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020;25:E5795. [PMID: 33302592 DOI: 10.3390/molecules25245795] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
57 Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. Chem Mater 2020;32:9508-30. [PMID: 33551566 DOI: 10.1021/acs.chemmater.0c03018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
58 Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. Tissue Eng Part B Rev 2021;27:430-54. [PMID: 33086984 DOI: 10.1089/ten.TEB.2020.0168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
59 He F, Ni N, Zeng Z, Wu D, Feng Y, Li AJ, Luu B, Li AF, Qin K, Wang E, Wang X, Wu X, Luo H, Zhang J, Zhang M, Mao Y, Pakvasa M, Wagstaff W, Zhang Y, Niu C, Wang H, Huang L, Shi D, Liu Q, Zhao X, Fu K, Reid RR, Wolf JM, Lee MJ, Hynes K, Strelzow J, El Dafrawy M, Gan H, He TC, Fan J. FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells. Mol Ther Nucleic Acids 2020;22:885-99. [PMID: 33230483 DOI: 10.1016/j.omtn.2020.10.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
60 Zhu W, Huang W, Zhou W, Qiu Z, Wang Z, Li H, Wang Y, Li J, Xie Y. Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation. Carbohydrate Polymers 2020;245:116587. [DOI: 10.1016/j.carbpol.2020.116587] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
61 Liu J, Zeng H, Xiao P, Yang A, Situ X, Wang Y, Zhang X, Li W, Pan W, Wang Y. Sustained Release of Magnesium Ions Mediated by a Dynamic Mechanical Hydrogel to Enhance BMSC Proliferation and Differentiation. ACS Omega 2020;5:24477-86. [PMID: 33015464 DOI: 10.1021/acsomega.0c02946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
62 Su T, Zhang M, Zeng Q, Pan W, Huang Y, Qian Y, Dong W, Qi X, Shen J. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering. Bioact Mater 2021;6:579-88. [PMID: 33005823 DOI: 10.1016/j.bioactmat.2020.09.004] [Cited by in Crossref: 78] [Cited by in F6Publishing: 64] [Article Influence: 26.0] [Reference Citation Analysis]
63 Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y, He H, Chen R, Ye X. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol 2020;8:587658. [PMID: 33042982 DOI: 10.3389/fbioe.2020.587658] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
64 Yue S, He H, Li B, Hou T. Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review. Nanomaterials (Basel) 2020;10:E1511. [PMID: 32752105 DOI: 10.3390/nano10081511] [Cited by in Crossref: 59] [Cited by in F6Publishing: 64] [Article Influence: 19.7] [Reference Citation Analysis]
65 Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020;59:15342-77. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Cited by in Crossref: 127] [Cited by in F6Publishing: 131] [Article Influence: 42.3] [Reference Citation Analysis]
66 Vázquez‐gonzález M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem 2020;132:15458-96. [DOI: 10.1002/ange.201907670] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
67 Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020;5:630-48. [PMID: 32864434 DOI: 10.1002/lio2.416] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
68 Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Materials Science and Engineering: C 2020;111:110862. [DOI: 10.1016/j.msec.2020.110862] [Cited by in Crossref: 62] [Cited by in F6Publishing: 47] [Article Influence: 20.7] [Reference Citation Analysis]
69 Mirza S, Jolly R, Zia I, Saad Umar M, Owais M, Shakir M. Bioactive Gum Arabic/κ-Carrageenan-Incorporated Nano-Hydroxyapatite Nanocomposites and Their Relative Biological Functionalities in Bone Tissue Engineering. ACS Omega 2020;5:11279-90. [PMID: 32478215 DOI: 10.1021/acsomega.9b03761] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
70 Yu T, Wang H, Zhang Y, Wang X, Han B. The Delivery of RNA-Interference Therapies Based on Engineered Hydrogels for Bone Tissue Regeneration. Front Bioeng Biotechnol 2020;8:445. [PMID: 32478058 DOI: 10.3389/fbioe.2020.00445] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
71 Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020;5:584-601. [PMID: 32405574 DOI: 10.1016/j.bioactmat.2020.04.008] [Cited by in Crossref: 99] [Cited by in F6Publishing: 105] [Article Influence: 33.0] [Reference Citation Analysis]
72 Li YL, Zhao WK, Zhang J, Xiang C, Chen Q, Yan C, Jiang K. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/yttria-stabilized zirconia as a novel bioactive material for bone screws: Biocompatibility and bioactivity. J Biomater Appl 2020;35:108-22. [PMID: 32248734 DOI: 10.1177/0885328220916618] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
73 Zhang B, Yang L, Zeng Z, Feng Y, Wang X, Wu X, Luo H, Zhang J, Zhang M, Pakvasa M, Wagstaff W, He F, Mao Y, Qin K, Ding H, Zhang Y, Niu C, Wu M, Zhao X, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Athiviraham A, Moriatis Wolf J, Lee MJ, Hynes K, Strelzow J, El Dafrawy M, Xia Y, He TC. Leptin Potentiates BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells Through the Activation of JAK/STAT Signaling. Stem Cells Dev 2020;29:498-510. [PMID: 32041483 DOI: 10.1089/scd.2019.0292] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
74 Zeng Z, Huang B, Wang X, Fan J, Zhang B, Yang L, Feng Y, Wu X, Luo H, Zhang J, Zhang M, He F, Mao Y, Pakvasa M, Wagstaff W, Li AJ, Liu B, Ding H, Zhang Y, Niu C, Wu M, Zhao X, Wolf JM, Lee MJ, Huang A, Luu HH, Haydon RC, He TC. A reverse transcriptase-mediated ribosomal RNA depletion (RTR2D) strategy for the cost-effective construction of RNA sequencing libraries. J Adv Res 2020;24:239-50. [PMID: 32373357 DOI: 10.1016/j.jare.2019.12.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
75 Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020;11:184-219. [DOI: 10.1039/c9py01021a] [Cited by in Crossref: 205] [Cited by in F6Publishing: 213] [Article Influence: 68.3] [Reference Citation Analysis]
76 Peng Q, Chen B, Wang H, Zhu Y, Wu J, Luo Y, Zuo G, Luo J, Zhou L, Shi Q, Weng Y, Huang A, He TC, Fan J. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging (Albany NY) 2019;11:11520-40. [PMID: 31831718 DOI: 10.18632/aging.102552] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
77 Wasupalli GK, Verma D. Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2020;107:110343. [PMID: 31761212 DOI: 10.1016/j.msec.2019.110343] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
78 Wang X, Yuan C, Huang B, Fan J, Feng Y, Li AJ, Zhang B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Wu D, Chen X, Liu B, Wagstaff W, He F, Wu X, Luo H, Zhang J, Zhang M, Haydon RC, Luu HH, Lee MJ, Moriatis Wolf J, Huang A, He TC, Zeng Z. Developing a Versatile Shotgun Cloning Strategy for Single-Vector-Based Multiplex Expression of Short Interfering RNAs (siRNAs) in Mammalian Cells. ACS Synth Biol 2019;8:2092-105. [PMID: 31465214 DOI: 10.1021/acssynbio.9b00203] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]