BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Suo X, Eldridge BN, Zhang H, Mao C, Min Y, Sun Y, Singh R, Ming X. P-Glycoprotein-Targeted Photothermal Therapy of Drug-Resistant Cancer Cells Using Antibody-Conjugated Carbon Nanotubes. ACS Appl Mater Interfaces 2018;10:33464-73. [PMID: 30188117 DOI: 10.1021/acsami.8b11974] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Thakur CK, Karthikeyan C, Abou-dahech MS, Altabakha MMAM, Al Shahwan MJS, Ashby CR, Tiwari AK, Babu RJ, Moorthy NSHN. Microwave-Assisted Functionalization of Multi-Walled Carbon Nanotubes for Biosensor and Drug Delivery Applications. Pharmaceutics 2023;15:335. [DOI: 10.3390/pharmaceutics15020335] [Reference Citation Analysis]
2 Giri L, Kenguva G, Rout SR, Abourehab MA, Kesharwani P, Dandela R. Dispersions of carbon nanotubes and its biomedical and diagnostic applications. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00007-8] [Reference Citation Analysis]
3 Chen Y, Zhou F, Wang C, Hu L, Guo P. Nanostructures as Photothermal Agents in Tumor Treatment. Molecules 2022;28. [PMID: 36615470 DOI: 10.3390/molecules28010277] [Reference Citation Analysis]
4 Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01626-z] [Reference Citation Analysis]
5 Zhang W, Taheri-ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022;8:e09577. [DOI: 10.1016/j.heliyon.2022.e09577] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. Adv Mater 2022;:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Deng P, Liang X, Chen F, Chen Y, Zhou J. Novel multifunctional dual-dynamic-bonds crosslinked hydrogels for multi-strategy therapy of MRSA-infected wounds. Applied Materials Today 2022;26:101362. [DOI: 10.1016/j.apmt.2022.101362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Nath J, Sharma K, Kumar S, Kumar V, Sehgal R. Polymer/Carbon Nanocomposites for Biomedical Applications. Polymeric and Natural Composites 2022. [DOI: 10.1007/978-3-030-70266-3_4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Almeida MR, Nunes JCF, Cristóvão RO, Faria JL, Tavares APM, Silva CG, Freire MG. Carbon Nanotubes for Biomedical Applications. Nanotechnology for Biomedical Applications 2022. [DOI: 10.1007/978-981-16-7483-9_14] [Reference Citation Analysis]
10 Halder J, Pradhan D, Kar B, Ghosh G, Rath G. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine 2021;:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
11 Nigam P. Concentration dependent debundling and single tube dispersions of pristine multiwalled carbon nanotubes functionalized with double tail phospholipids. Nanotechnology 2021;33. [PMID: 34663770 DOI: 10.1088/1361-6528/ac30c3] [Reference Citation Analysis]
12 Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021;178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
13 Guo S, Li R, Tian F, Yang X, Wang L, Guan S, Zhou S, Lu J. Carbon-Defect-Driven Boron Carbide for Dual-Modal NIR-II/Photoacoustic Imaging and Photothermal Therapy. ACS Biomater Sci Eng 2021;7:3370-8. [PMID: 34120445 DOI: 10.1021/acsbiomaterials.1c00578] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Kadkhoda J, Akrami-Hasan-Kohal M, Tohidkia MR, Khaledi S, Davaran S, Aghanejad A. Advances in antibody nanoconjugates for diagnosis and therapy: A review of recent studies and trends. Int J Biol Macromol 2021;185:664-78. [PMID: 34224755 DOI: 10.1016/j.ijbiomac.2021.06.191] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
15 Nagai Y, Nakamura K, Ohno J, Kawaguchi M, Fujigaya T. Antibody-Conjugated Gel-Coated Single-Walled Carbon Nanotubes as Photothermal Agents. ACS Appl Bio Mater 2021;4:5049-56. [PMID: 35007053 DOI: 10.1021/acsabm.1c00299] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
16 An D, Fu J, Zhang B, Xie N, Nie G, Ågren H, Qiu M, Zhang H. NIR‐II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Adv Funct Materials 2021;31:2101625. [DOI: 10.1002/adfm.202101625] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 18.0] [Reference Citation Analysis]
17 Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Zong Q, Dong N, Yang X, Ling G, Zhang P. Development of gold nanorods for cancer treatment. J Inorg Biochem 2021;220:111458. [PMID: 33857697 DOI: 10.1016/j.jinorgbio.2021.111458] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
19 Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. Materials (Basel) 2021;14:1059. [PMID: 33668271 DOI: 10.3390/ma14051059] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
20 Chaturvedi S, Pathak K. Nanoparticulate systems and their translation potential for breast cancer therapeutics. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00021-3] [Reference Citation Analysis]
21 Wang Z, Meng Q, Li S. The Role of NIR Fluorescence in MDR Cancer Treatment: From Targeted Imaging to Phototherapy. Curr Med Chem 2020;27:5510-29. [PMID: 31244415 DOI: 10.2174/0929867326666190627123719] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Xu P, Liang F. Nanomaterial-Based Tumor Photothermal Immunotherapy. Int J Nanomedicine 2020;15:9159-80. [PMID: 33244232 DOI: 10.2147/IJN.S249252] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 11.7] [Reference Citation Analysis]
23 Gomez S, Tsung A, Hu Z. Current Targets and Bioconjugation Strategies in Photodynamic Diagnosis and Therapy of Cancer. Molecules 2020;25:E4964. [PMID: 33121022 DOI: 10.3390/molecules25214964] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
24 Martinelli C, Biglietti M. Nanotechnological approaches for counteracting multidrug resistance in cancer. Cancer Drug Resist 2020;3:1003-20. [PMID: 35582219 DOI: 10.20517/cdr.2020.47] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Sheikhpour M, Naghinejad M, Kasaeian A, Lohrasbi A, Shahraeini SS, Zomorodbakhsh S. The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. Int J Nanomedicine 2020;15:7063-78. [PMID: 33061368 DOI: 10.2147/IJN.S263238] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
26 Faraji Dizaji B, Khoshbakht S, Farboudi A, Azarbaijan MH, Irani M. Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sci 2020;257:118059. [PMID: 32659368 DOI: 10.1016/j.lfs.2020.118059] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
27 Qin W, Quan G, Sun Y, Chen M, Yang P, Feng D, Wen T, Hu X, Pan X, Wu C. Dissolving Microneedles with Spatiotemporally controlled pulsatile release Nanosystem for Synergistic Chemo-photothermal Therapy of Melanoma. Theranostics 2020;10:8179-96. [PMID: 32724465 DOI: 10.7150/thno.44194] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
28 Song G, Jiang G, Liu T, Zhang X, Zeng Z, Wang R, Li P, Yang Y. Separable Microneedles for Synergistic Chemo-Photothermal Therapy against Superficial Skin Tumors. ACS Biomater Sci Eng 2020;6:4116-25. [DOI: 10.1021/acsbiomaterials.0c00793] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
29 Curcio M, Farfalla A, Saletta F, Valli E, Pantuso E, Nicoletta FP, Iemma F, Vittorio O, Cirillo G. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules 2020;25:E2102. [PMID: 32365886 DOI: 10.3390/molecules25092102] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
30 Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug and Chemical Toxicology. [DOI: 10.1080/01480545.2019.1709492] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
31 Henna T, Pramod K. Biocompatibility of graphene quantum dots and related materials. Handbook of Biomaterials Biocompatibility 2020. [DOI: 10.1016/b978-0-08-102967-1.00017-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 114] [Cited by in F6Publishing: 120] [Article Influence: 28.5] [Reference Citation Analysis]
33 Xing Y, Cai Z, Xu M, Ju W, Luo X, Hu Y, Liu X, Kang T, Wu P, Cai C, Zhu JJ. Raman observation of a molecular signaling pathway of apoptotic cells induced by photothermal therapy. Chem Sci 2019;10:10900-10. [PMID: 32190245 DOI: 10.1039/c9sc04389f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
34 Zhang L, Qian M, Wang J, Xia J, Cui H, Chen Q. Nitrophenyl-engaged photocleavage of an amphiphilic copolymer for spatiotemporally controlled drug release. J Mater Sci 2019;54:13298-313. [DOI: 10.1007/s10853-019-03831-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Wang K, Wang QQ, Wang MN, Xing S, Zhu B, Zhang ZH. Supramolecular Amphiphilic Assembly Formed by the Complexation of Calixpyridinium with Alimta. Langmuir 2019;35:9020-8. [PMID: 31203624 DOI: 10.1021/acs.langmuir.9b01336] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
36 Liu X, Liu Y, Wang J, Wei T, Dai Z. Mild Hyperthermia-Enhanced Enzyme-Mediated Tumor Cell Chemodynamic Therapy. ACS Appl Mater Interfaces 2019;11:23065-71. [DOI: 10.1021/acsami.9b08257] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 12.8] [Reference Citation Analysis]
37 Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater Sci Eng C Mater Biol Appl 2019;101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 13.3] [Reference Citation Analysis]
38 Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K. Advanced biomedical applications of carbon nanotube. Mater Sci Eng C Mater Biol Appl 2019;100:616-30. [PMID: 30948098 DOI: 10.1016/j.msec.2019.03.043] [Cited by in Crossref: 111] [Cited by in F6Publishing: 120] [Article Influence: 27.8] [Reference Citation Analysis]
39 霍 铭. Application and Toxicity of Carbon Nano-Tubes in Biomedicine. AMC 2019;07:1-7. [DOI: 10.12677/amc.2019.71001] [Reference Citation Analysis]
40 Xing Y, Kang T, Luo X, Zhu J, Wu P, Cai C. Coral-shaped Au nanostructures for selective apoptosis induction during photothermal therapy. J Mater Chem B 2019;7:6224-31. [DOI: 10.1039/c9tb01503e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
41 Zhou M, Zhang X, Xie J, Qi R, Lu H, Leporatti S, Chen J, Hu Y. pH-Sensitive Poly(β-amino ester)s Nanocarriers Facilitate the Inhibition of Drug Resistance in Breast Cancer Cells. Nanomaterials 2018;8:952. [DOI: 10.3390/nano8110952] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]