BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li J, Meng X, Deng J, Lu D, Zhang X, Chen Y, Zhu J, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery. ACS Appl Mater Interfaces 2018;10:17117-28. [DOI: 10.1021/acsami.8b06299] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Yang C, Wang X, Ma W, Wang Z, Tan G, Fang W, Jin Y. Improving the photodynamic therapy of pyropheophorbide a through the combination of hypoxia-sensitive molecule and infrared light-excited d-TiO2−X nanoparticles. J Porphyrins Phthalocyanines 2022;26:31-43. [DOI: 10.1142/s1088424621500784] [Reference Citation Analysis]
2 Liao S, Ting C, Chiang W. Functionalized polymeric nanogels with pH-sensitive benzoic-imine cross-linkages designed as vehicles for indocyanine green delivery. Journal of Colloid and Interface Science 2020;561:11-22. [DOI: 10.1016/j.jcis.2019.11.109] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
3 Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 An Y, Zhu J, Liu F, Deng J, Meng X, Liu G, Wu H, Fan A, Wang Z, Zhao Y. Boosting the Ferroptotic Antitumor Efficacy via Site-Specific Amplification of Tailored Lipid Peroxidation. ACS Appl Mater Interfaces 2019;11:29655-66. [DOI: 10.1021/acsami.9b10954] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
5 Zang L, Wang H, Wang Z, Wang S, Yu M, Kang Q, Zou G, Zhao H. Competition and regulation between triplet phosphorescence and singlet oxygen generation efficiency. Journal of Luminescence 2022;244:118723. [DOI: 10.1016/j.jlumin.2021.118723] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Faal Maleki M, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Jalilzadeh Moghimi SM, Aryan R, Mashreghi M, Jaafari MR. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. International Journal of Pharmaceutics 2019;572:118716. [DOI: 10.1016/j.ijpharm.2019.118716] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
7 Feng S, Zhang X, Shi D, Wang Z. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review. Front Chem Sci Eng 2021;15:221-37. [DOI: 10.1007/s11705-020-1927-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zhang X, Wu M, Li J, Lan S, Zeng Y, Liu X, Liu J. Light-Enhanced Hypoxia-Response of Conjugated Polymer Nanocarrier for Successive Synergistic Photodynamic and Chemo-Therapy. ACS Appl Mater Interfaces 2018;10:21909-19. [PMID: 29882654 DOI: 10.1021/acsami.8b06491] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
9 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 21.7] [Reference Citation Analysis]
10 Li Y, Feng S, Dai P, Liu F, Shang Y, Yang Q, Qin J, Yuchi Z, Wang Z, Zhao Y. Tailored Trojan horse nanocarriers for enhanced redox-responsive drug delivery. J Control Release 2022;342:201-9. [PMID: 34998915 DOI: 10.1016/j.jconrel.2022.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Wang Y, Li S, Wang X, Chen Q, He Z, Luo C, Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021;271:120737. [PMID: 33690103 DOI: 10.1016/j.biomaterials.2021.120737] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Li T, Yan L. Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals (Basel) 2018;11:E133. [PMID: 30513613 DOI: 10.3390/ph11040133] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
13 Horiuchi H, Hirabara A, Okutsu T. Importance of the orthogonal structure between porphyrin and aniline moieties on the pH-activatable porphyrin derivative for photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry 2018;365:60-6. [DOI: 10.1016/j.jphotochem.2018.07.034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Odrobińska J, Mielańczyk Ł, Neugebauer D. 4-n-Butylresorcinol-Based Linear and Graft Polymethacrylates for Arbutin and Vitamins Delivery by Micellar Systems. Polymers (Basel) 2020;12:E330. [PMID: 32033296 DOI: 10.3390/polym12020330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Mulatihan D, Guo T, Zhao Y. Azobenzene Photoswitch for Isomerization-Dependent Cancer Therapy via Azo-Combretastatin A4 and Phototrexate. Photochem Photobiol 2020;96:1163-8. [PMID: 32521572 DOI: 10.1111/php.13292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
16 Paul S, Heng PWS, Chan LW. Improvement in dissolution rate and photodynamic efficacy of chlorin e6 by sucrose esters as drug carrier in nanosuspension formulation: optimisation and in vitro characterisation. J Pharm Pharmacol 2018;70:1152-63. [PMID: 29943465 DOI: 10.1111/jphp.12947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Zhou H, Qin F, Chen C. Designing Hypoxia-Responsive Nanotheranostic Agents for Tumor Imaging and Therapy. Adv Healthc Mater 2021;10:e2001277. [PMID: 32985141 DOI: 10.1002/adhm.202001277] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
18 Jiang C, Zhang G, Peng G, Liu Y, Kong Y, Wang B. Polymeric Micelles Encapsulating a Small Molecule SO 2 Fluorescent Probe Exhibiting Novel Analytical Performance and Enhanced Cellular Imaging Ability. ACS Appl Bio Mater 2019;2:236-42. [DOI: 10.1021/acsabm.8b00576] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021;339:445-72. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Reference Citation Analysis]
20 Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics 2020;10:7287-318. [PMID: 32641993 DOI: 10.7150/thno.46288] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 18.0] [Reference Citation Analysis]
21 Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein J Nanotechnol 2020;11:180-212. [PMID: 32082960 DOI: 10.3762/bjnano.11.15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
22 Yan K, Sedgwick AC, Zang Y, Chen G, He X, Li J, Yoon J, James TD. Sensors, Imaging Agents, and Theranostics to Help Understand and Treat Reactive Oxygen Species Related Diseases. Small Methods 2019;3:1900013. [DOI: 10.1002/smtd.201900013] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 12.3] [Reference Citation Analysis]
23 Huang SJ, Wang TH, Chou YH, Wang HD, Hsu TC, Yow JL, Tzang BS, Chiang WH. Hybrid PEGylated chitosan/PLGA nanoparticles designed as pH-responsive vehicles to promote intracellular drug delivery and cancer chemotherapy. Int J Biol Macromol 2022;210:565-78. [PMID: 35513093 DOI: 10.1016/j.ijbiomac.2022.04.209] [Reference Citation Analysis]
24 Li L, Wang B, Zhang Q, Song P, Jiang T, Zhao X. Hypoxia responsive fucoidan-based micelles for oxidative stress-augmented chemotherapy. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111340] [Reference Citation Analysis]
25 Chen Y, Deng J, Liu F, Dai P, An Y, Wang Z, Zhao Y. Energy-Free, Singlet Oxygen-Based Chemodynamic Therapy for Selective Tumor Treatment without Dark Toxicity. Adv Healthc Mater 2019;8:e1900366. [PMID: 31365192 DOI: 10.1002/adhm.201900366] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 10.3] [Reference Citation Analysis]
26 Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials (Basel) 2021;11:746. [PMID: 33809633 DOI: 10.3390/nano11030746] [Reference Citation Analysis]
27 Yan Q, Guo X, Huang X, Meng X, Liu F, Dai P, Wang Z, Zhao Y. Gated Mesoporous Silica Nanocarriers for Hypoxia-Responsive Cargo Release. ACS Appl Mater Interfaces 2019;11:24377-85. [DOI: 10.1021/acsami.9b04142] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
28 Hussain A, Guo S. NIR-triggered release of DOX from sophorolipid-coated mesoporous carbon nanoparticles with the phase-change material 1-tetradecanol to treat MCF-7/ADR cells. J Mater Chem B 2019;7:974-85. [DOI: 10.1039/c8tb02673d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
29 Huang L, Asghar S, Zhu T, Ye P, Hu Z, Chen Z, Xiao Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv 2021;:1-27. [PMID: 34253129 DOI: 10.1080/17425247.2021.1950685] [Reference Citation Analysis]
30 An Y, Chen C, Zhu J, Dwivedi P, Zhao Y, Wang Z. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Front Chem Sci Eng 2020;14:880-8. [DOI: 10.1007/s11705-019-1864-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
31 Wang X, Wu M, Zhang X, Li F, Zeng Y, Lin X, Liu X, Liu J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J Nanobiotechnology 2021;19:204. [PMID: 34238297 DOI: 10.1186/s12951-021-00952-y] [Reference Citation Analysis]
32 Zhuang W, Ma B, Hu J, Jiang J, Li G, Yang L, Wang Y. Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics 2019;9:6618-30. [PMID: 31588239 DOI: 10.7150/thno.33901] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
33 Wang K, Yu B, Pathak JL. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021;12:1154-60. [PMID: 33442413 DOI: 10.7150/jca.51537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
34 Xia Q, Chen Z, Zhou Y, Liu R. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer. Nanotheranostics 2019;3:156-65. [PMID: 31008024 DOI: 10.7150/ntno.33536] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
35 Yang M, Yang T, Mao C. Optimierung photodynamischer Krebstherapien auf der Grundlage physikalisch‐chemischer Faktoren. Angew Chem 2019;131:14204-19. [DOI: 10.1002/ange.201814098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
36 Tao R, Gao M, Liu F, Guo X, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. ACS Appl Mater Interfaces 2018;10:21836-46. [PMID: 29897226 DOI: 10.1021/acsami.8b04192] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
37 Pereira-silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. European Journal of Pharmaceutical Sciences 2020;153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Deng J, Liu F, Wang L, An Y, Gao M, Wang Z, Zhao Y. Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production. Biomater Sci 2019;7:429-41. [DOI: 10.1039/c8bm01042k] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 9.3] [Reference Citation Analysis]
39 Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. European Polymer Journal 2021;147:110325. [DOI: 10.1016/j.eurpolymj.2021.110325] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Xu Z, Pan C, Yuan W. Light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable micelles for synergistic photodynamic therapy and chemotherapy. Biomater Sci 2020;8:3348-58. [DOI: 10.1039/d0bm00328j] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Guo X, Liu F, Deng J, Dai P, Qin Y, Li Z, Wang B, Fan A, Wang Z, Zhao Y. Electron-Accepting Micelles Deplete Reduced Nicotinamide Adenine Dinucleotide Phosphate and Impair Two Antioxidant Cascades for Ferroptosis-Induced Tumor Eradication. ACS Nano 2020;14:14715-30. [PMID: 33156626 DOI: 10.1021/acsnano.0c00764] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 23.5] [Reference Citation Analysis]
42 Chen N, Han Y, Luo Y, Zhou Y, Hu X, Yu Y, Xie X, Yin M, Sun J, Zhong W, Zhao Y, Song H, Fan C. Nanodiamond-based non-canonical autophagy inhibitor synergistically induces cell death in oxygen-deprived tumors. Mater Horiz 2018;5:1204-10. [DOI: 10.1039/c8mh00993g] [Cited by in Crossref: 14] [Article Influence: 3.5] [Reference Citation Analysis]
43 Bai H, Peng R, Wang D, Sawyer M, Fu T, Cui C, Tan W. A minireview on multiparameter-activated nanodevices for cancer imaging and therapy. Nanoscale 2020;12:21571-82. [DOI: 10.1039/d0nr04080k] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
44 Yang M, Yang T, Mao C. Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angew Chem Int Ed Engl 2019;58:14066-80. [PMID: 30663185 DOI: 10.1002/anie.201814098] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 19.0] [Reference Citation Analysis]
45 Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019;12:E163. [PMID: 31671658 DOI: 10.3390/ph12040163] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
46 Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021;339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Reference Citation Analysis]
47 Wang Z, Xu FJ, Yu B. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Front Bioeng Biotechnol 2021;9:783354. [PMID: 34805129 DOI: 10.3389/fbioe.2021.783354] [Reference Citation Analysis]
48 Liu P, Xie X, Shi X, Peng Y, Ding J, Zhou W. Oxygen-Self-Supplying and HIF-1α-Inhibiting Core-Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy. ACS Appl Mater Interfaces 2019;11:48261-70. [PMID: 31763809 DOI: 10.1021/acsami.9b18112] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
49 Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Letters 2020;490:31-43. [DOI: 10.1016/j.canlet.2020.05.032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
50 Gao B, Zhang Q, Muhammad K, Ren X, Guo J, Xia S, Zhang W, Feng Y. A progressively targeted gene delivery system with a pH triggered surface charge-switching ability to drive angiogenesis in vivo. Biomater Sci 2019;7:2061-75. [PMID: 30855618 DOI: 10.1039/c9bm00132h] [Cited by in Crossref: 15] [Article Influence: 5.0] [Reference Citation Analysis]
51 Conejos-sánchez I, Đorđević S, Medel M, Vicent MJ. Polypeptides as building blocks for image-guided nanotherapies. Current Opinion in Biomedical Engineering 2021;20:100323. [DOI: 10.1016/j.cobme.2021.100323] [Reference Citation Analysis]
52 Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020;10:4557-88. [PMID: 32292515 DOI: 10.7150/thno.38069] [Cited by in Crossref: 154] [Cited by in F6Publishing: 130] [Article Influence: 77.0] [Reference Citation Analysis]
53 Xue Y, Bai S, Wang L, Luo S, Zhang Z, Gong T, Zhang L. A dual-responsive nanoplatform with feedback amplification improves antitumor efficacy of photodynamic therapy. Nanoscale 2022. [PMID: 35113116 DOI: 10.1039/d1nr06875j] [Reference Citation Analysis]
54 Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, Chen Y, Luo X, Zhang H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials. 2020;237:119827. [PMID: 32036302 DOI: 10.1016/j.biomaterials.2020.119827] [Cited by in Crossref: 142] [Cited by in F6Publishing: 100] [Article Influence: 71.0] [Reference Citation Analysis]
55 Zhu J, Guo T, Wang Z, Zhao Y. Triggered azobenzene-based prodrugs and drug delivery systems. J Control Release 2022:S0168-3659(22)00167-5. [PMID: 35339578 DOI: 10.1016/j.jconrel.2022.03.041] [Reference Citation Analysis]
56 Meng X, Deng J, Liu F, Guo T, Liu M, Dai P, Fan A, Wang Z, Zhao Y. Triggered All-Active Metal Organic Framework: Ferroptosis Machinery Contributes to the Apoptotic Photodynamic Antitumor Therapy. Nano Lett 2019;19:7866-76. [DOI: 10.1021/acs.nanolett.9b02904] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 18.0] [Reference Citation Analysis]