BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cheng B, Yan Y, Qi J, Deng L, Shao Z, Zhang K, Li B, Sun Z, Li X. Cooperative Assembly of a Peptide Gelator and Silk Fibroin Afford an Injectable Hydrogel for Tissue Engineering. ACS Appl Mater Interfaces 2018;10:12474-84. [DOI: 10.1021/acsami.8b01725] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Hu T, Pan S. Co-assembled C13-dipeptide hydrogels by Gallic Acid (CA) and epigallocatechin gallate (EGCG) with antibacterial activity. Food Bioscience 2022;49:101962. [DOI: 10.1016/j.fbio.2022.101962] [Reference Citation Analysis]
2 Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022;15:5871. [DOI: 10.3390/ma15175871] [Reference Citation Analysis]
3 Wei J, Lin M, Fu X, Sun J. Hybrid Hydrogels from Nongelling Polymers Using a Fibrous Peptide Hydrogelator at Low Concentrations. Langmuir 2022. [PMID: 35960930 DOI: 10.1021/acs.langmuir.2c01758] [Reference Citation Analysis]
4 Zhang R, He Y, Tao B, Wu J, Hu X, Li X, Xia Z, Cai K. Multifunctional silicon calcium phosphate composite scaffolds promote stem cell recruitment and bone regeneration. J Mater Chem B 2022. [PMID: 35737023 DOI: 10.1039/d2tb00687a] [Reference Citation Analysis]
5 Marin D, Marchesan S. Self-Assembled Peptide Nanostructures for ECM Biomimicry. Nanomaterials 2022;12:2147. [DOI: 10.3390/nano12132147] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mañas‐torres MC, Illescas‐lopez S, Gavira JA, de Cienfuegos LÁ, Marchesan S. Interactions Between Peptide Assemblies and Proteins for Medicine. Israel Journal of Chemistry. [DOI: 10.1002/ijch.202200018] [Reference Citation Analysis]
7 Sharma P, Pal VK, Kaur H, Roy S. Exploring the TEMPO-Oxidized Nanofibrillar Cellulose and Short Ionic-Complementary Peptide Composite Hydrogel as Biofunctional Cellular Scaffolds. Biomacromolecules 2022. [PMID: 35522599 DOI: 10.1021/acs.biomac.2c00234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wu Y, Li X, Wang Y, Shi Y, Wang F, Lin G. Research progress on mechanical properties and wear resistance of cartilage repair hydrogel. Materials & Design 2022;216:110575. [DOI: 10.1016/j.matdes.2022.110575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Cheng B, Lei Z, Wu P. Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies. Nano Res . [DOI: 10.1007/s12274-022-4124-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022;14:986. [PMID: 35267809 DOI: 10.3390/polym14050986] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Wang S, Lin S, Xue B, Wang C, Yan N, Guan Y, Hu Y, Wen X. Bruch's-Mimetic Nanofibrous Membranes Functionalized with the Integrin-Binding Peptides as a Promising Approach for Human Retinal Pigment Epithelium Cell Transplantation. Molecules 2022;27:1429. [PMID: 35209218 DOI: 10.3390/molecules27041429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Park J, Kim M, Seo M, Lee J, Jung J. In Situ Supramolecular Gel Formed by Cyclohexane Diamine with Aldehyde Derivative. Polymers 2022;14:400. [DOI: 10.3390/polym14030400] [Reference Citation Analysis]
13 Luo R, Wan Y, Luo X, Liu G, Li Z, Chen J, Su D, Lu N, Luo Z. A Rapid Self-Assembly Peptide Hydrogel for Recruitment and Activation of Immune Cells. Molecules 2022;27:419. [PMID: 35056735 DOI: 10.3390/molecules27020419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Murphy RD, Garcia RV, Heise A, Hawker CJ. Peptides as 3D printable feedstocks: Design strategies and emerging applications. Progress in Polymer Science 2022;124:101487. [DOI: 10.1016/j.progpolymsci.2021.101487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liu J, Ge X, Liu L, Xu W, Shao R. Challenges and opportunities of silk protein hydrogels in biomedical applications. Mater Adv 2022;3:2291-308. [DOI: 10.1039/d1ma00960e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Lu X, Guo H, Li J, Sun T, Xiong M. Recombinant Human Bone Morphogenic Protein-2 Immobilized Fabrication of Magnesium Functionalized Injectable Hydrogels for Controlled-Delivery and Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells in Femoral Head Necrosis Repair. Front Cell Dev Biol 2021;9:723789. [PMID: 34900987 DOI: 10.3389/fcell.2021.723789] [Reference Citation Analysis]
17 Chen Y, Wang X, Huang Y, Kuang P, Wang Y, Liu Y, Yin W, Zan J, Liu Y, Yin C, Fan Q. In Situ-Forming Cellulose/Albumin-Based Injectable Hydrogels for Localized Antitumor Therapy. Polymers (Basel) 2021;13:4221. [PMID: 34883724 DOI: 10.3390/polym13234221] [Reference Citation Analysis]
18 Ling L, Zhu L, Li Y, Liu C, Cheng L. Ultrasound-Induced Amino Acid-Based Hydrogels With Superior Mechanical Strength for Controllable Long-Term Release of Anti-Cercariae Drug. Front Bioeng Biotechnol 2021;9:703582. [PMID: 34733826 DOI: 10.3389/fbioe.2021.703582] [Reference Citation Analysis]
19 Mañas-Torres MC, Gila-Vilchez C, Vazquez-Perez FJ, Kuzhir P, Momier D, Scimeca JC, Borderie A, Goracci M, Burel-Vandenbos F, Blanco-Elices C, Rodriguez IA, Alaminos M, de Cienfuegos LÁ, Lopez-Lopez MT. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. ACS Appl Mater Interfaces 2021;13:49692-704. [PMID: 34645258 DOI: 10.1021/acsami.1c13972] [Reference Citation Analysis]
20 Ge Y, Wang C, Zhang W, Lai S, Wang D, Wang J. Coassembly Behavior and Rheological Properties of a β-Hairpin Peptide with Dicarboxylates. Langmuir 2021;37:11657-64. [PMID: 34597056 DOI: 10.1021/acs.langmuir.1c01376] [Reference Citation Analysis]
21 Dorishetty P, Balu R, Gelmi A, Mata JP, Dutta NK, Choudhury NR. 3D Printable Soy/Silk Hybrid Hydrogels for Tissue Engineering Applications. Biomacromolecules 2021;22:3668-78. [PMID: 34460237 DOI: 10.1021/acs.biomac.1c00250] [Reference Citation Analysis]
22 Wang L, Chen Z, Yan Y, He C, Li X. Fabrication of injectable hydrogels from silk fibroin and angiogenic peptides for vascular growth and tissue regeneration. Chemical Engineering Journal 2021;418:129308. [DOI: 10.1016/j.cej.2021.129308] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
23 Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int J Mol Sci 2021;22:7724. [PMID: 34299344 DOI: 10.3390/ijms22147724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
24 Murphy R, Kordbacheh S, Skoulas D, Ng S, Suthiwanich K, Kasko AM, Cryan SA, Fitzgerald-Hughes D, Khademhosseini A, Sheikhi A, Heise A. Three-dimensionally printable shear-thinning triblock copolypeptide hydrogels with antimicrobial potency. Biomater Sci 2021;9:5144-9. [PMID: 34236349 DOI: 10.1039/d1bm00275a] [Reference Citation Analysis]
25 Xing Z, Chen Y, Qiu F. Alternative Causal Link between Peptide Fibrillization and β-Strand Conformation. ACS Omega 2021;6:12904-12. [PMID: 34056442 DOI: 10.1021/acsomega.1c01423] [Reference Citation Analysis]
26 Zhang J, Deng M, Shi X, Zhang C, Qu X, Hu X, Wang W, Kong D, Huang P. Cascaded amplification of intracellular oxidative stress and reversion of multidrug resistance by nitric oxide prodrug based-supramolecular hydrogel for synergistic cancer chemotherapy. Bioact Mater 2021;6:3300-13. [PMID: 33778206 DOI: 10.1016/j.bioactmat.2021.03.005] [Reference Citation Analysis]
27 Lyu Y, Azevedo HS. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021;26:873. [DOI: 10.3390/molecules26040873] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
28 Huang X, Fu Q, Deng Y, Wang F, Xia B, Chen Z, Chen G. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo. Carbohydrate Polymers 2021;253:117256. [DOI: 10.1016/j.carbpol.2020.117256] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
29 Fujii D, Takase K, Takagi A, Kamino K, Hirano Y. Design of RGDS Peptide-Immobilized Self-Assembling β-Strand Peptide from Barnacle Protein. Int J Mol Sci 2021;22:1240. [PMID: 33513895 DOI: 10.3390/ijms22031240] [Reference Citation Analysis]
30 Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021;10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
31 Han C, Zhang Z, Sun J, Li K, Li Y, Ren C, Meng Q, Yang J. Self-Assembling Peptide-Based Hydrogels in Angiogenesis. Int J Nanomedicine 2020;15:10257-69. [PMID: 33364757 DOI: 10.2147/IJN.S277046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Chen C, Duan N, Chen S, Guo Z, Hu J, Guo J, Chen Z, Yang L. Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds. Journal of Molecular Liquids 2020;319:114134. [DOI: 10.1016/j.molliq.2020.114134] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
33 Kaur H, Jain R, Roy S. Pathway-Dependent Preferential Selection and Amplification of Variable Self-Assembled Peptide Nanostructures and Their Biological Activities. ACS Appl Mater Interfaces 2020;12:52445-56. [DOI: 10.1021/acsami.0c16725] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Qian K, Song Y, Yan X, Dong L, Xue J, Xu Y, Wang B, Cao B, Hou Q, Peng W, Hu J, Jiang K, Chen S, Wang H, Lu Y. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials 2020;259:120299. [DOI: 10.1016/j.biomaterials.2020.120299] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
35 Wenhao Z, Zhang T, Yan J, Li Q, Xiong P, Li Y, Cheng Y, Zheng Y. In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. Acta Biomater 2020;116:223-45. [PMID: 32889111 DOI: 10.1016/j.actbio.2020.08.040] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
36 Li H, Zhang J, Liu S, Yan Y, Li X. Consecutive dephosphorylation by alkaline phosphatase-directed in situ formation of porous hydrogels of SF with nanocrystalline calcium phosphate ceramics for bone regeneration. J Mater Chem B 2020. [PMID: 32955073 DOI: 10.1039/d0tb01777a] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Abdollahiyan P, Baradaran B, de la Guardia M, Oroojalian F, Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release 2020;328:514-31. [PMID: 32956710 DOI: 10.1016/j.jconrel.2020.09.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
38 Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020;16:1404-54. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Cited by in Crossref: 91] [Cited by in F6Publishing: 22] [Article Influence: 45.5] [Reference Citation Analysis]
39 Cui T, Li X, He S, Xu D, Yin L, Huang X, Deng S, Yue W, Zhong W. Instant Self-Assembly Peptide Hydrogel Encapsulation with Fibrous Alginate by Microfluidics for Infected Wound Healing. ACS Biomater Sci Eng 2020;6:5001-11. [DOI: 10.1021/acsbiomaterials.0c00581] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
40 Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS Appl Bio Mater 2020;3:5529-51. [DOI: 10.1021/acsabm.0c00758] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
41 Maity B, Samanta S, Sarkar S, Alam S, Govindaraju T. Injectable Silk Fibroin-Based Hydrogel for Sustained Insulin Delivery in Diabetic Rats. ACS Appl Bio Mater 2020;3:3544-52. [PMID: 35025224 DOI: 10.1021/acsabm.0c00152] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
42 Thota CK, Berger AA, Elomaa L, Nie C, Böttcher C, Koksch B. Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties. ACS Omega 2020;5:8557-63. [PMID: 32337417 DOI: 10.1021/acsomega.9b04371] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
43 Zhao X, Zhang H, Gao Y, Lin Y, Hu J. A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity. ACS Appl Bio Mater 2020;3:648-53. [PMID: 35019409 DOI: 10.1021/acsabm.9b01007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
44 Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020;11:184-219. [DOI: 10.1039/c9py01021a] [Cited by in Crossref: 122] [Cited by in F6Publishing: 2] [Article Influence: 61.0] [Reference Citation Analysis]
45 Fu W, Farhadi Sabet Z, Liu J, You M, Zhou H, Wang Y, Gao Y, Li J, Ma X, Chen C. Metal ions modulation of the self-assembly of short peptide conjugated nonsteroidal anti-inflammatory drugs (NSAIDs). Nanoscale 2020;12:7960-8. [DOI: 10.1039/d0nr00572j] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
46 Deng Z, Wang H, Ma PX, Guo B. Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale 2020;12:1224-46. [DOI: 10.1039/c9nr09283h] [Cited by in Crossref: 108] [Cited by in F6Publishing: 19] [Article Influence: 54.0] [Reference Citation Analysis]
47 Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, Wang Y, Yan B, Xie W, Liu F, Yu XY, Li Y. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7:2920-2933. [PMID: 31090763 DOI: 10.1039/c9bm00101h] [Cited by in Crossref: 65] [Cited by in F6Publishing: 44] [Article Influence: 21.7] [Reference Citation Analysis]
48 Liu J, Ding Z, Lu G, Wang J, Wang L, Lu Q. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties. Macromol Biosci 2019;19:1900326. [DOI: 10.1002/mabi.201900326] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
49 Wang B, Huang Y, Huang Z, Wang H, Chen J, Pan X, Wu C. Self-assembling in situ gel based on lyotropic liquid crystals containing VEGF for tissue regeneration. Acta Biomater 2019;99:84-99. [PMID: 31521813 DOI: 10.1016/j.actbio.2019.09.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
50 Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends in Pharmacological Sciences 2019;40:747-62. [DOI: 10.1016/j.tips.2019.08.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
51 Zhang J, Shen B, Chen L, Chen L, Mo J, Feng J. Antibacterial and Antifouling Hybrid Ionic–Covalent Hydrogels with Tunable Mechanical Properties. ACS Appl Mater Interfaces 2019;11:31594-604. [DOI: 10.1021/acsami.9b08870] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
52 Guo JL, Kim YS, Mikos AG. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies. Biomacromolecules 2019;20:2904-12. [PMID: 31282658 DOI: 10.1021/acs.biomac.9b00792] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
53 Jing J, Liang S, Yan Y, Tian X, Li X. Fabrication of Hybrid Hydrogels from Silk Fibroin and Tannic Acid with Enhanced Gelation and Antibacterial Activities. ACS Biomater Sci Eng 2019;5:4601-11. [DOI: 10.1021/acsbiomaterials.9b00604] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
54 Li J, Xing R, Bai S, Yan X. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 2019;15:1704-15. [PMID: 30724947 DOI: 10.1039/c8sm02573h] [Cited by in Crossref: 138] [Cited by in F6Publishing: 36] [Article Influence: 46.0] [Reference Citation Analysis]
55 Yan Y, Cheng B, Chen K, Cui W, Qi J, Li X, Deng L. Enhanced Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells by a Functionalized Silk Fibroin Hydrogel for Bone Defect Repair. Adv Healthc Mater 2019;8:e1801043. [PMID: 30485718 DOI: 10.1002/adhm.201801043] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
56 Zhai Z, Xu K, Mei L, Wu C, Liu J, Liu Z, Wan L, Zhong W. Co-assembled supramolecular hydrogels of cell adhesive peptide and alginate for rapid hemostasis and efficacious wound healing. Soft Matter 2019;15:8603-10. [DOI: 10.1039/c9sm01296f] [Cited by in Crossref: 23] [Cited by in F6Publishing: 6] [Article Influence: 7.7] [Reference Citation Analysis]
57 Zhang Y, Lu L, Chen Y, Wang J, Chen Y, Mao C, Yang M. Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomater Sci 2019;7:5232-7. [DOI: 10.1039/c9bm00974d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
58 Nutan B, Chandel AKS, Jewrajka SK. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)- Linked -Poly(caprolactone)- Linked -Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS Appl Bio Mater 2018;1:1606-19. [DOI: 10.1021/acsabm.8b00461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
59 Vieira VMP, Lima AC, de Jong M, Smith DK. Commercially Relevant Orthogonal Multi-Component Supramolecular Hydrogels for Programmed Cell Growth. Chemistry 2018;24:15112-8. [PMID: 30021050 DOI: 10.1002/chem.201803292] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]