BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Liu X, Li Z, Zhu S, Yuan X, Cui Z, Yang X, Chu PK, Wu S. Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. ACS Appl Mater Interfaces 2018;10:1266-77. [DOI: 10.1021/acsami.7b17351] [Cited by in Crossref: 73] [Cited by in F6Publishing: 59] [Article Influence: 14.6] [Reference Citation Analysis]
Number Citing Articles
1 Cao L, Ullah I, Li N, Niu S, Sun R, Xia D, Yang R, Zhang X. Plasma spray of biofunctional (Mg, Sr)-substituted hydroxyapatite coatings for titanium alloy implants. Journal of Materials Science & Technology 2019;35:719-26. [DOI: 10.1016/j.jmst.2018.10.020] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
2 Patil D, Wasson MK, Aravindan S, Vivekanandan P, Rao P. Antibacterial and cytocompatibility study of modified Ti6Al4V surfaces through thermal annealing. Materials Science and Engineering: C 2019;99:1007-20. [DOI: 10.1016/j.msec.2019.02.058] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
3 Akter M, Rahman MM, Ullah AKMA, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Brassica rapa var. japonica Leaf Extract Mediated Green Synthesis of Crystalline Silver Nanoparticles and Evaluation of Their Stability, Cytotoxicity and Antibacterial Activity. J Inorg Organomet Polym 2018;28:1483-93. [DOI: 10.1007/s10904-018-0818-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
4 Prasanna APS, Venkatasubbu GD. Sustained release of amoxicillin from hydroxyapatite nanocomposite for bone infections. Prog Biomater 2018;7:289-96. [PMID: 30478795 DOI: 10.1007/s40204-018-0103-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
5 Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine 2020;15:6247-62. [PMID: 32903812 DOI: 10.2147/IJN.S262876] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Chen W, Li X, Wang F, Javaid S, Pang Y, Chen J, Yin Z, Wang S, Li Y, Jia G. Nonepitaxial Gold-Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production. Small 2020;16:e1902231. [PMID: 31769587 DOI: 10.1002/smll.201902231] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
7 Fu J, Liu X, Tan L, Cui Z, Liang Y, Li Z, Zhu S, Zheng Y, Kwok Yeung KW, Chu PK, Wu S. Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation. Acta Biomater 2020;101:152-67. [PMID: 31678738 DOI: 10.1016/j.actbio.2019.10.041] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
8 Sikder P, Koju N, Ren Y, Goel VK, Phares T, Lin B, Bhaduri SB. Development of single-phase silver-doped antibacterial CDHA coatings on Ti6Al4V with sustained release. Surface and Coatings Technology 2018;342:105-16. [DOI: 10.1016/j.surfcoat.2018.02.100] [Cited by in Crossref: 30] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
9 Ha W, Hou GL, Qin WJ, Fu XK, Zhao XQ, Wei XD, An YL, Shi YP. Supramolecular hydrogel-infiltrated ceramics composite coating with combined antibacterial and self-lubricating performance. J Mater Chem B 2021;9:9852-62. [PMID: 34704586 DOI: 10.1039/d1tb01830b] [Reference Citation Analysis]
10 Rafieerad A, Bushroa A, Nasiri-tabrizi B, Baradaran S, Amiri A, Saber-samandari S, Khanahmadi S, Zeimaran E, Basirun W, Kalaiselvam K, Vellasamy K, Vadivelu J. Simultaneous enhanced antibacterial and osteoblast cytocompatibility performance of Ti6Al7Nb implant by nano-silver/graphene oxide decorated mixed oxide nanotube composite. Surface and Coatings Technology 2019;360:181-95. [DOI: 10.1016/j.surfcoat.2018.12.119] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
11 Huang L, Su K, Zheng Y, Yeung KW, Liu X. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met 2019;38:588-600. [DOI: 10.1007/s12598-018-1187-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
12 Fu J, Zhu W, Liu X, Liang C, Zheng Y, Li Z, Liang Y, Zheng D, Zhu S, Cui Z, Wu S. Self-activating anti-infection implant. Nat Commun 2021;12:6907. [PMID: 34824260 DOI: 10.1038/s41467-021-27217-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces 2021;204:111802. [PMID: 33964526 DOI: 10.1016/j.colsurfb.2021.111802] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Ullah I, Siddiqui MA, Liu H, Kolawole SK, Zhang J, Zhang S, Ren L, Yang K. Mechanical, Biological, and Antibacterial Characteristics of Plasma-Sprayed (Sr,Zn) Substituted Hydroxyapatite Coating. ACS Biomater Sci Eng 2020;6:1355-66. [PMID: 33455366 DOI: 10.1021/acsbiomaterials.9b01396] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 11.5] [Reference Citation Analysis]
15 Zhao S, Xu Y, Xu W, Weng Z, Cao F, Wan X, Cui T, Yu Y, Liao L, Wang X. Tremella-Like ZnO@Col-I-Decorated Titanium Surfaces with Dual-Light-Defined Broad-Spectrum Antibacterial and Triple Osteogenic Properties. ACS Appl Mater Interfaces 2020;12:30044-51. [PMID: 32589010 DOI: 10.1021/acsami.0c05413] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
16 Li D, Li Y, Shrestha A, Wang S, Wu Q, Li L, Guan C, Wang C, Fu T, Liu W, Huang Y, Ji P, Chen T. Effects of Programmed Local Delivery from a Micro/Nano‐Hierarchical Surface on Titanium Implant on Infection Clearance and Osteogenic Induction in an Infected Bone Defect. Adv Healthcare Mater 2019;8:1900002. [DOI: 10.1002/adhm.201900002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
17 Oleshko O, Husak Y, Korniienko V, Pshenychnyi R, Varava Y, Kalinkevich O, Pisarek M, Grundstains K, Pogorielova O, Mishchenko O, Simka W, Viter R, Pogorielov M. Biocompatibility and Antibacterial Properties of ZnO-Incorporated Anodic Oxide Coatings on TiZrNb Alloy. Nanomaterials (Basel) 2020;10:E2401. [PMID: 33266240 DOI: 10.3390/nano10122401] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Kayani ZN, Anwar M, Saddiqe Z, Riaz S, Naseem S. Biological and optical properties of sol–gel derived ZnO using different percentages of silver contents. Colloids and Surfaces B: Biointerfaces 2018;171:383-90. [DOI: 10.1016/j.colsurfb.2018.07.055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
19 Lingaraju K, Naika HR, Nagabhushana H, Nagaraju G. Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: Characterization and evaluation of antibacterial and anticancer properties. Biocatalysis and Agricultural Biotechnology 2019;18:100894. [DOI: 10.1016/j.bcab.2018.10.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zhu Z, Jiang S, Liu Y, Gao X, Hu S, Zhang X, Huang C, Wan Q, Wang J, Pei X. Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Res 2020;13:511-26. [DOI: 10.1007/s12274-020-2642-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
21 Wang X, Tan L, Liu X, Cui Z, Yang X, Yeung KWK, Chu PK, Wu S. Construction of perfluorohexane/IR780@liposome coating on Ti for rapid bacteria killing under permeable near infrared light. Biomater Sci 2018;6:2460-71. [PMID: 30066710 DOI: 10.1039/c8bm00602d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
22 Aguilera-Correa JJ, Auñón Á, Boiza-Sánchez M, Mahillo-Fernández I, Mediero A, Eguibar-Blázquez D, Conde A, Arenas MÁ, de-Damborenea JJ, Cordero-Ampuero J, Esteban J. Urine Aluminum Concentration as a Possible Implant Biomarker of Pseudomonas aeruginosa Infection Using a Fluorine- and Phosphorus-Doped Ti-6Al-4V Alloy with Osseointegration Capacity. ACS Omega 2019;4:11815-23. [PMID: 31460290 DOI: 10.1021/acsomega.9b00898] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Zhu W, Liu X, Tan L, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Yeung KWK, Wu S. AgBr Nanoparticles in Situ Growth on 2D MoS 2 Nanosheets for Rapid Bacteria-Killing and Photodisinfection. ACS Appl Mater Interfaces 2019;11:34364-75. [DOI: 10.1021/acsami.9b12629] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
24 Prasetia R, Fuangswasdi S, Unob F. Silver nanoparticle-supported hydroxyapatite as a material for visual detection of urinary cysteine. Anal Methods 2019;11:2888-94. [DOI: 10.1039/c9ay00725c] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
25 Zhang X, Zhao Y, Zhang Y, Wang A, Ding X, Li Y, Duan S, Ding X, Xu F. Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces. Biomacromolecules 2019;20:4171-9. [DOI: 10.1021/acs.biomac.9b01060] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
26 Zhang L, Xue Y, Gopalakrishnan S, Li K, Han Y, Rotello VM. Antimicrobial Peptide-Loaded Pectolite Nanorods for Enhancing Wound-Healing and Biocidal Activity of Titanium. ACS Appl Mater Interfaces 2021;13:28764-73. [PMID: 34110763 DOI: 10.1021/acsami.1c04895] [Reference Citation Analysis]
27 Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020;46:1035-62. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
28 Dong T, Duan C, Wang S, Gao X, Yang Q, Yang W, Deng Y. Multifunctional Surface with Enhanced Angiogenesis for Improving Long-Term Osteogenic Fixation of Poly(ether ether ketone) Implants. ACS Appl Mater Interfaces 2020;12:14971-82. [PMID: 32159330 DOI: 10.1021/acsami.0c02304] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
29 Kalantari E, Naghib SM, Iravani NJ, Esmaeili R, Naimi-Jamal MR, Mozafari M. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical application: Synthesis, characterization, and biological studies. Mater Sci Eng C Mater Biol Appl 2019;105:109912. [PMID: 31546348 DOI: 10.1016/j.msec.2019.109912] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
30 Sopchenski L, Cogo S, Dias-ntipanyj M, Elifio-espósito S, Popat K, Soares P. Bioactive and antibacterial boron doped TiO2 coating obtained by PEO. Applied Surface Science 2018;458:49-58. [DOI: 10.1016/j.apsusc.2018.07.049] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
31 Gharpure S, Yadwade R, Chakraborty B, Makar R, Chavhan P, Kamble S, Pawar P, Ankamwar B. Bioactive properties of ZnO nanoparticles synthesized using Cocos nucifera leaves. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03110-9] [Reference Citation Analysis]
32 Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology 2021;19:353. [PMID: 34717648 DOI: 10.1186/s12951-021-01099-6] [Reference Citation Analysis]
33 Matter MT, Maliqi L, Keevend K, Guimond S, Ng J, Armagan E, Rottmar M, Herrmann IK. One-Step Synthesis of Versatile Antimicrobial Nano-Architected Implant Coatings for Hard and Soft Tissue Healing. ACS Appl Mater Interfaces 2021;13:33300-10. [PMID: 34254508 DOI: 10.1021/acsami.1c10121] [Reference Citation Analysis]
34 Wang C, Chen P, Qiao Y, Kang Y, Guo S, Wu D, Wang J, Wu H. Bacteria-activated chlorin e6 ionic liquid based on cation and anion dual-mode antibacterial action for enhanced photodynamic efficacy. Biomater Sci 2019;7:1399-410. [PMID: 30768109 DOI: 10.1039/c8bm00990b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
35 Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coordination Chemistry Reviews 2019;398:113012. [DOI: 10.1016/j.ccr.2019.07.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
36 Ou Q, Huang K, Fu C, Huang C, Fang Y, Gu Z, Wu J, Wang Y. Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. Chemical Engineering Journal 2020;382:123019. [DOI: 10.1016/j.cej.2019.123019] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
37 Mallakpour S, Abbasi M. Hydroxyapatite mineralization on chitosan-tragacanth gum/silica@silver nanocomposites and their antibacterial activity evaluation. International Journal of Biological Macromolecules 2020;151:909-23. [DOI: 10.1016/j.ijbiomac.2020.02.167] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
38 Ghiasi B, Sefidbakht Y, Rezaei M. Hydroxyapatite for Biomedicine and Drug Delivery. In: Rahmandoust M, Ayatollahi MR, editors. Nanomaterials for Advanced Biological Applications. Cham: Springer International Publishing; 2019. pp. 85-120. [DOI: 10.1007/978-3-030-10834-2_4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
39 Qin D, Yang G, Wang Y, Zhou Y, Zhang L. Green synthesis of biocompatible trypsin-conjugated Ag nanocomposite with antibacterial activity. Applied Surface Science 2019;469:528-36. [DOI: 10.1016/j.apsusc.2018.11.057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
40 Rajaboopathi S, Thambidurai S. Synthesis of bio-surfactant based Ag/ZnO nanoparticles for better thermal, photocatalytic and antibacterial activity. Materials Chemistry and Physics 2019;223:512-22. [DOI: 10.1016/j.matchemphys.2018.11.034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
41 Donnadio A, Cardinali G, Latterini L, Roscini L, Ambrogi V. Nanostructured zinc oxide on silica surface: Preparation, physicochemical characterization and antimicrobial activity. Materials Science and Engineering: C 2019;104:109977. [DOI: 10.1016/j.msec.2019.109977] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
42 Zhang Y, Zhang X, Zhao Y, Zhang X, Ding X, Ding X, Yu B, Duan S, Xu F. Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties. Biomater Sci 2020;8:997-1006. [DOI: 10.1039/c9bm01666j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
43 Costa M, Lima R, Melo-fonseca F, Bartolomeu F, Alves N, Miranda A, Gasik M, Silva F, Silva N, Miranda G. Development of β-TCP-Ti6Al4V structures: Driving cellular response by modulating physical and chemical properties. Materials Science and Engineering: C 2019;98:705-16. [DOI: 10.1016/j.msec.2019.01.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
44 Ren Y, Han Y, Li Z, Liu X, Zhu S, Liang Y, Yeung KWK, Wu S. Ce and Er Co-doped TiO2 for rapid bacteria- killing using visible light. Bioact Mater 2020;5:201-9. [PMID: 32123773 DOI: 10.1016/j.bioactmat.2020.02.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
45 Li Y, Liu X, Li B, Zheng Y, Han Y, Chen D, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant Staphylococcus aureus Biofilm Infection on Bone Implant. ACS Nano 2020;14:8157-70. [DOI: 10.1021/acsnano.0c01486] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 14.5] [Reference Citation Analysis]
46 Biao L, Tan S, Zhang X, Gao J, Liu Z, Fu Y. Synthesis and characterization of proanthocyanidins-functionalized Ag nanoparticles. Colloids and Surfaces B: Biointerfaces 2018;169:438-43. [DOI: 10.1016/j.colsurfb.2018.05.050] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
47 Li Y, He J, Ye H, Zhao C, Zhu W, Lu X, Ren F. Atomic layer deposition of zinc oxide onto 3D porous iron scaffolds for bone repair: in vitro degradation, antibacterial activity and cytocompatibility evaluation. Rare Met 2022;41:546-58. [DOI: 10.1007/s12598-021-01852-8] [Reference Citation Analysis]
48 Li B, Tan L, Liu X, Li Z, Cui Z, Liang Y, Zhu S, Yang X, Kwok Yeung KW, Wu S. Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing. Journal of Hazardous Materials 2019;380:120818. [DOI: 10.1016/j.jhazmat.2019.120818] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 10.3] [Reference Citation Analysis]
49 Yu P, Han Y, Han D, Liu X, Liang Y, Li Z, Zhu S, Wu S. In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization. Journal of Hazardous Materials 2020;390:122126. [DOI: 10.1016/j.jhazmat.2020.122126] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
50 Melo-fonseca F, Lima R, Costa M, Bartolomeu F, Alves N, Miranda A, Gasik M, Silva F, Silva N, Miranda G. 45S5 BAG-Ti6Al4V structures: The influence of the design on some of the physical and chemical interactions that drive cellular response. Materials & Design 2018;160:95-105. [DOI: 10.1016/j.matdes.2018.08.056] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
51 Fu J, Liu X, Tan L, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Yeung KWK, Feng X, Wang X, Wu S. Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS Nano 2019;13:13581-94. [DOI: 10.1021/acsnano.9b08115] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
52 Ma L, Feng X, Liang H, Wang K, Song Y, Tan L, Wang B, Luo R, Liao Z, Li G, Liu X, Wu S, Yang C. A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration. Materials Today 2020;36:48-62. [DOI: 10.1016/j.mattod.2019.12.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 13.5] [Reference Citation Analysis]
53 zhang X, Wang B, Ma L, Xie L, Yang H, Li Y, Wang S, Qiao H, Lin H, Lan J, Huang Y. Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: A potential multifunctional biological coating. Ceramics International 2020;46:27758-73. [DOI: 10.1016/j.ceramint.2020.07.275] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
54 Goldschmidt GM, Krok-Borkowicz M, Zybała R, Pamuła E, Telle R, Conrads G, Schickle K. Biomimetic in situ precipitation of calcium phosphate containing silver nanoparticles on zirconia ceramic materials for surface functionalization in terms of antimicrobial and osteoconductive properties. Dent Mater 2021;37:10-8. [PMID: 33248807 DOI: 10.1016/j.dental.2020.09.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Liu K, Zhang F, Wei Y, Hu Q, Luo Q, Chen C, Wang J, Yang L, Luo R, Wang Y. Dressing Blood-Contacting Materials by a Stable Hydrogel Coating with Embedded Antimicrobial Peptides for Robust Antibacterial and Antithrombus Properties. ACS Appl Mater Interfaces 2021;13:38947-58. [PMID: 34433245 DOI: 10.1021/acsami.1c05167] [Reference Citation Analysis]
56 Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. Adv Sci (Weinh) 2021;8:e2004393. [PMID: 34166584 DOI: 10.1002/advs.202004393] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021;9:783816. [PMID: 34950645 DOI: 10.3389/fbioe.2021.783816] [Reference Citation Analysis]
58 Song X, Shi X. Biosynthesis of Ag/reduced graphene oxide nanocomposites using Shewanella oneidensis MR-1 and their antibacterial and catalytic applications. Applied Surface Science 2019;491:682-9. [DOI: 10.1016/j.apsusc.2019.06.154] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
59 Yuan Z, Liu P, Hao Y, Ding Y, Cai K. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Colloids and Surfaces B: Biointerfaces 2018;171:597-605. [DOI: 10.1016/j.colsurfb.2018.07.064] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
60 Cao F, Zeng B, Zhu Y, Yu F, Wang M, Song X, Cheng X, Chen L, Wang X. Porous ZnO modified silk sutures with dual light defined antibacterial, healing promotion and controlled self-degradation capabilities. Biomater Sci 2020;8:250-5. [DOI: 10.1039/c9bm01422e] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
61 Qiao H, Song G, Huang Y, Yang H, Han S, Zhang X, Wang Z, Ma J, Bu X, Fu L. Si, Sr, Ag co-doped hydroxyapatite/TiO 2 coating: enhancement of its antibacterial activity and osteoinductivity. RSC Adv 2019;9:13348-64. [DOI: 10.1039/c9ra01168d] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
62 Mehnath S, Arjama M, Rajan M, Premkumar K, Karthikeyan K, Jeyaraj M. Mineralization of bioactive marine sponge and electrophoretic deposition on Ti-6Al-4V implant for osteointegration. Surface and Coatings Technology 2020;392:125727. [DOI: 10.1016/j.surfcoat.2020.125727] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
63 Xu X, Liu X, Tan L, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung KWK, Chu PK, Wu S. Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater 2018;77:352-64. [PMID: 30030176 DOI: 10.1016/j.actbio.2018.07.030] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 18.0] [Reference Citation Analysis]
64 Guo Y, Xie K, Jiang W, Wang L, Li G, Zhao S, Wu W, Hao Y. In Vitro and in Vivo Study of 3D-Printed Porous Tantalum Scaffolds for Repairing Bone Defects. ACS Biomater Sci Eng 2019;5:1123-33. [DOI: 10.1021/acsbiomaterials.8b01094] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
65 Bottagisio M, Coman C, Lovati AB. Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections. J Med Microbiol 2019;68:506-37. [PMID: 30875284 DOI: 10.1099/jmm.0.000952] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
66 Velsankar K, Sudhahar S, Parvathy G, Kaliammal R. Effect of cytotoxicity and aAntibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Materials Chemistry and Physics 2020;239:121976. [DOI: 10.1016/j.matchemphys.2019.121976] [Cited by in Crossref: 29] [Cited by in F6Publishing: 11] [Article Influence: 14.5] [Reference Citation Analysis]