BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singh E, Meyyappan M, Nalwa HS. Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Appl Mater Interfaces 2017;9:34544-86. [PMID: 28876901 DOI: 10.1021/acsami.7b07063] [Cited by in Crossref: 327] [Cited by in F6Publishing: 201] [Article Influence: 65.4] [Reference Citation Analysis]
Number Citing Articles
1 Wu Y, Li C, Meng M, Lv P, Liu X, Yan Y. Fabrication and evaluation of GO/TiO2-based molecularly imprinted nanocomposite membranes by developing a reformative filtering strategy: Application to selective adsorption and separation membrane. Separation and Purification Technology 2019;212:245-54. [DOI: 10.1016/j.seppur.2018.11.042] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
2 Aparicio-martínez E, Ibarra A, Estrada-moreno IA, Osuna V, Dominguez RB. Flexible electrochemical sensor based on laser scribed Graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sensors and Actuators B: Chemical 2019;301:127101. [DOI: 10.1016/j.snb.2019.127101] [Cited by in Crossref: 36] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
3 Lu S, Ma J, Ma K, Wang X, Wang S, Yang X, Tang H. Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending. Appl Phys A 2019;125. [DOI: 10.1007/s00339-019-2765-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
4 Choi S, Lee D, Yu H, Jang J, Kim M, Kang J, Jeong HS, Kim I. All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics. Sensors and Actuators B: Chemical 2019;290:293-301. [DOI: 10.1016/j.snb.2019.03.134] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
5 Cai J, Lv C, Aoyagi E, Ogawa S, Watanabe A. Laser Direct Writing of a High-Performance All-Graphene Humidity Sensor Working in a Novel Sensing Mode for Portable Electronics. ACS Appl Mater Interfaces 2018;10:23987-96. [DOI: 10.1021/acsami.8b07373] [Cited by in Crossref: 39] [Cited by in F6Publishing: 15] [Article Influence: 9.8] [Reference Citation Analysis]
6 Jeong S, Kim J, Lee J. Rational Design of Semiconductor‐Based Chemiresistors and their Libraries for Next‐Generation Artificial Olfaction. Adv Mater 2020;32:2002075. [DOI: 10.1002/adma.202002075] [Cited by in Crossref: 39] [Cited by in F6Publishing: 16] [Article Influence: 19.5] [Reference Citation Analysis]
7 Lee SW, Lee W, Kim I, Lee D, Park D, Kim W, Park J, Lee JH, Lee G, Yoon DS. Bio-Inspired Electronic Textile Yarn-Based NO2 Sensor Using Amyloid-Graphene Composite. ACS Sens 2021;6:777-85. [PMID: 33253539 DOI: 10.1021/acssensors.0c01582] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kukkar D, Vellingiri K, Kaur R, Bhardwaj SK, Deep A, Kim K. Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res 2019;12:225-46. [DOI: 10.1007/s12274-018-2207-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 6.3] [Reference Citation Analysis]
9 Sakamoto R, Fukui N, Maeda H, Matsuoka R, Toyoda R, Nishihara H. The Accelerating World of Graphdiynes. Adv Mater 2019;31:1804211. [DOI: 10.1002/adma.201804211] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 13.7] [Reference Citation Analysis]
10 Liu Q, Sun Q, Wei C, Li X, Yu S, Li J, Chen Y. High-performance and wearable hazardous gases sensor based on n-n heterojunction film of NGO and tetrakis(1-pyrenyl)porphyrin. J Hazard Mater 2021;419:126460. [PMID: 34216970 DOI: 10.1016/j.jhazmat.2021.126460] [Reference Citation Analysis]
11 Lee SW, Jung HG, Kim I, Lee D, Kim W, Kim SH, Lee JH, Park J, Lee JH, Lee G, Yoon DS. Highly Conductive and Flexible Dopamine-Graphene Hybrid Electronic Textile Yarn for Sensitive and Selective NO2 Detection. ACS Appl Mater Interfaces 2020;12:46629-38. [PMID: 32914616 DOI: 10.1021/acsami.0c11435] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Guo X, Yang H, Bo Z, Yan J, Cen K. Sensing mechanism of the nano-confined space constructed by graphene. Nanotechnology 2021;32. [PMID: 34062513 DOI: 10.1088/1361-6528/ac06f2] [Reference Citation Analysis]
13 Jiang Y, Ma J, Lv J, Ma H, Xia H, Wang J, Yang C, Xue M, Li G, Zhu N. Facile Wearable Vapor/Liquid Amphibious Methanol Sensor. ACS Sens 2019;4:152-60. [DOI: 10.1021/acssensors.8b01111] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
14 Gao Y, Chen J, Chen G, Fan C, Liu X. Recent Progress in the Transfer of Graphene Films and Nanostructures. Small Methods 2021;5:e2100771. [PMID: 34928026 DOI: 10.1002/smtd.202100771] [Reference Citation Analysis]
15 Pargoletti E, Cappelletti G. Breakthroughs in the Design of Novel Carbon-Based Metal Oxides Nanocomposites for VOCs Gas Sensing. Nanomaterials (Basel) 2020;10:E1485. [PMID: 32751173 DOI: 10.3390/nano10081485] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
16 Saravanan RK, Naqvi TK, Patil S, Dwivedi PK, Verma S. Purine-blended nanofiber woven flexible nanomats for SERS-based analyte detection. Chem Commun 2020. [DOI: 10.1039/d0cc00648c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Yang L, Yi N, Zhu J, Cheng Z, Yin X, Zhang X, Zhu H, Cheng H. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J Mater Chem A 2020;8:6487-500. [DOI: 10.1039/c9ta07855j] [Cited by in Crossref: 42] [Cited by in F6Publishing: 2] [Article Influence: 21.0] [Reference Citation Analysis]
18 Kim JH, Mirzaei A, Bang JH, Kim HW, Kim SS. Achievement of self-heated sensing of hazardous gases by WS2 (core)-SnO2 (shell) nanosheets. J Hazard Mater 2021;412:125196. [PMID: 33517060 DOI: 10.1016/j.jhazmat.2021.125196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Qureshi S, Stojanović GM, Simić M, Jeoti V, Lashari N, Sher F. Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications. Materials (Basel) 2021;14:7813. [PMID: 34947407 DOI: 10.3390/ma14247813] [Reference Citation Analysis]
20 Şen B, Demirkan B, Savk A, Kartop R, Nas MS, Alma MH, Sürdem S, Şen F. High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction. Journal of Molecular Liquids 2018;268:807-12. [DOI: 10.1016/j.molliq.2018.07.117] [Cited by in Crossref: 32] [Article Influence: 8.0] [Reference Citation Analysis]
21 Nie J, Wu Y, Huang Q, Joshi N, Li N, Meng X, Zheng S, Zhang M, Mi B, Lin L. Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control. ACS Appl Mater Interfaces 2019;11:1699-705. [PMID: 30563323 DOI: 10.1021/acsami.8b18538] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 6.3] [Reference Citation Analysis]
22 Lim C, Park J. Wearable transcutaneous oxygen sensor for health monitoring. Sensors and Actuators A: Physical 2019;298:111607. [DOI: 10.1016/j.sna.2019.111607] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Peng H, Li F, Hua Z, Yang K, Yin F, Yuan W. Highly sensitive and selective room-temperature nitrogen dioxide sensors based on porous graphene. Sensors and Actuators B: Chemical 2018;275:78-85. [DOI: 10.1016/j.snb.2018.08.036] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
24 Pandhi T, Kreit E, Aga R, Fujimoto K, Sharbati MT, Khademi S, Chang AN, Xiong F, Koehne J, Heckman EM, Estrada D. Electrical Transport and Power Dissipation in Aerosol-Jet-Printed Graphene Interconnects. Sci Rep 2018;8:10842. [PMID: 30022151 DOI: 10.1038/s41598-018-29195-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
25 Macedo LJA, Iost RM, Hassan A, Balasubramanian K, Crespilho FN. Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem 2019;6:31-59. [DOI: 10.1002/celc.201800934] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
26 Snitka V, Batiuskaite D, Bruzaite I, Lafont U, Butenko Y, Semprimoschnig C. Surface-enhanced Raman scattering sensors for biomedical and molecular detection applications in space. CEAS Space J 2021;:1-12. [PMID: 34777619 DOI: 10.1007/s12567-021-00356-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zaidi SA, Shahzad F, Batool S. Progress in cancer biomarkers monitoring strategies using graphene modified support materials. Talanta 2020;210:120669. [PMID: 31987212 DOI: 10.1016/j.talanta.2019.120669] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
28 Li Y, Zhang Z, Su M, Huang Z, Li Z, Li F, Pan Q, Ren W, Hu X, Li L, Song Y. A general strategy for printing colloidal nanomaterials into one-dimensional micro/nanolines. Nanoscale 2018;10:22374-80. [DOI: 10.1039/c8nr06543h] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
29 Stanford MG, Yang K, Chyan Y, Kittrell C, Tour JM. Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. ACS Nano 2019;13:3474-82. [DOI: 10.1021/acsnano.8b09622] [Cited by in Crossref: 88] [Cited by in F6Publishing: 37] [Article Influence: 29.3] [Reference Citation Analysis]
30 Chen S, Wang Y, Yang L, Karouta F, Sun K. Electron-Induced Perpendicular Graphene Sheets Embedded Porous Carbon Film for Flexible Touch Sensors. Nanomicro Lett 2020;12:136. [PMID: 34138121 DOI: 10.1007/s40820-020-00480-8] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
31 Antonova I, Nebogatikova N, Zerrouki N, Kurkina I, Ivanov A. Flexibility of Fluorinated Graphene-Based Materials. Materials (Basel) 2020;13:E1032. [PMID: 32106413 DOI: 10.3390/ma13051032] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Wang K, Wu C, Wang F, Jing N, Jiang G. Co/Co 3 O 4 Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electrochemical Sensing of Acetaminophen. ACS Sustainable Chem Eng 2019;7:18582-92. [DOI: 10.1021/acssuschemeng.9b04813] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
33 Bae G, Kim M, Song W, Myung S, Lee SS, An KS. Impact of a Diverse Combination of Metal Oxide Gas Sensors on Machine Learning-Based Gas Recognition in Mixed Gases. ACS Omega 2021;6:23155-62. [PMID: 34549116 DOI: 10.1021/acsomega.1c02721] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Han S, Yang Z, Li Z, Zhuang X, Akinwande D, Yu J. Improved Room Temperature NO 2 Sensing Performance of Organic Field-Effect Transistor by Directly Blending a Hole-Transporting/Electron-Blocking Polymer into the Active Layer. ACS Appl Mater Interfaces 2018;10:38280-6. [DOI: 10.1021/acsami.8b07838] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
35 Sollami Delekta S, Östling M, Li J. Wet Transfer of Inkjet Printed Graphene for Microsupercapacitors on Arbitrary Substrates. ACS Appl Energy Mater 2019;2:158-63. [DOI: 10.1021/acsaem.8b01225] [Cited by in Crossref: 15] [Article Influence: 3.8] [Reference Citation Analysis]
36 Doan THP, Ta QTH, Sreedhar A, Hang NT, Yang W, Noh JS. Highly Deformable Fabric Gas Sensors Integrating Multidimensional Functional Nanostructures. ACS Sens 2020;5:2255-62. [PMID: 32597174 DOI: 10.1021/acssensors.0c01083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Khan S, Ali S, Bermak A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors (Basel) 2019;19:E1230. [PMID: 30862062 DOI: 10.3390/s19051230] [Cited by in Crossref: 75] [Cited by in F6Publishing: 30] [Article Influence: 25.0] [Reference Citation Analysis]
38 Cho SY, Yu H, Choi J, Kang H, Park S, Jang JS, Hong HJ, Kim ID, Lee SK, Jeong HS, Jung HT. Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors. ACS Nano 2019;13:9332-41. [PMID: 31369239 DOI: 10.1021/acsnano.9b03971] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 11.3] [Reference Citation Analysis]
39 Yang K, Yuan W, Hua Z, Tang Y, Yin F, Xia D. Triazine-Based Two-Dimensional Organic Polymer for Selective NO2 Sensing with Excellent Performance. ACS Appl Mater Interfaces 2020;12:3919-27. [PMID: 31891479 DOI: 10.1021/acsami.9b17450] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 9.5] [Reference Citation Analysis]
40 Bae G, Song DS, Lim YR, Jeon IS, Jang M, Yoon Y, Jeon C, Song W, Myung S, Lee SS, Park CY, An KS. Chemical Patterning of Graphene via Metal-Assisted Highly Energetic Electron Irradiation for Graphene Homojunction-Based Gas Sensors. ACS Appl Mater Interfaces 2020;12:47802-10. [PMID: 32985173 DOI: 10.1021/acsami.0c12063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Khan K, Tareen AK, Wang L, Aslam M, Ma C, Mahmood N, Ouyang Z, Zhang H, Guo Z. Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. Adv Funct Mater 2021;31:2005957. [DOI: 10.1002/adfm.202005957] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
42 Wu X, Feng P, Guo Z, Wei X. Water-Stable 1D Double-Chain Cu Metal–Organic Framework-based Electrochemical Biosensor for Detecting l -Tyrosine. Langmuir 2020;36:14123-9. [DOI: 10.1021/acs.langmuir.0c02799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano 2021;15:18708-41. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Reference Citation Analysis]
44 Sasaki K, Furusawa H, Nagamine K, Tokito S. Detection of Odorant Molecules in the Gaseous Phase Using α-, β-, and γ-Cyclodextrin Films on a Quartz Crystal Microbalance. Technologies 2018;6:63. [DOI: 10.3390/technologies6030063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
45 Kitadai H, Yuan M, Ma Y, Ling X. Graphene-Based Environmental Sensors: Electrical and Optical Devices. Molecules 2021;26:2165. [PMID: 33918751 DOI: 10.3390/molecules26082165] [Reference Citation Analysis]
46 Ding H, Wei Y, Wu Z, Tao K, Ding M, Xie X, Wu J. Recent Advances in Gas and Humidity Sensors Based on 3D Structured and Porous Graphene and Its Derivatives. ACS Materials Lett 2020;2:1381-411. [DOI: 10.1021/acsmaterialslett.0c00355] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
47 Hang T, Wu J, Xiao S, Li B, Li H, Yang C, Yang C, Hu N, Xu Y, Zhang Y, Xie X. Anti-biofouling NH3 gas sensor based on reentrant thorny ZnO/graphene hybrid nanowalls. Microsyst Nanoeng 2020;6:41. [PMID: 34567654 DOI: 10.1038/s41378-020-0151-5] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
48 Costa JC, Spina F, Lugoda P, Garcia-garcia L, Roggen D, Münzenrieder N. Flexible Sensors—From Materials to Applications. Technologies 2019;7:35. [DOI: 10.3390/technologies7020035] [Cited by in Crossref: 61] [Cited by in F6Publishing: 5] [Article Influence: 20.3] [Reference Citation Analysis]
49 Singh N, Umar A, Singh N, Fouad H, Alothman OY, Haque FZ. Highly sensitive optical ammonia gas sensor based on Sn Doped V2O5 Nanoparticles. Materials Research Bulletin 2018;108:266-74. [DOI: 10.1016/j.materresbull.2018.09.008] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
50 Guo R, Wang H, Sun X, Yao S, Chang H, Wang H, Liu J, Zhang Y. Semiliquid Metal Enabled Highly Conductive Wearable Electronics for Smart Fabrics. ACS Appl Mater Interfaces 2019;11:30019-27. [PMID: 31342753 DOI: 10.1021/acsami.9b08067] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 6.7] [Reference Citation Analysis]
51 Yu S, Liu X, Wu M, Dong H, Wang X, Li L. All-Solution-Processed Molybdenum Oxide-Encapsulated Silver Nanowire Flexible Transparent Conductors with Improved Conductivity and Adhesion. ACS Appl Mater Interfaces 2021;13:14470-8. [PMID: 33733722 DOI: 10.1021/acsami.0c22324] [Reference Citation Analysis]
52 Kim T, Kaur M, Kim WS. Humanoid Robot Actuation through Precise Chemical Sensing Signals. Adv Mater Technol 2019;4:1900570. [DOI: 10.1002/admt.201900570] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
53 Zhang P, Xiao Y, Zhang J, Liu B, Ma X, Wang Y. Highly sensitive gas sensing platforms based on field effect Transistor-A review. Anal Chim Acta 2021;1172:338575. [PMID: 34119019 DOI: 10.1016/j.aca.2021.338575] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Zhang C, Hou Z, Zhang B, Fang H, Bi S. High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites. Carbon 2018;137:467-74. [DOI: 10.1016/j.carbon.2018.05.055] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
55 Li T, He C, Zhang W. Primitive and O-Functionalized R-Graphyne-like BN Sheet: Candidates for SO 2 Sensor with High Sensitivity and Selectivity at Room Temperature. ACS Appl Electron Mater 2019;1:34-43. [DOI: 10.1021/acsaelm.8b00003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
56 Li H, Lee C, Kim DH, Lee J. Flexible Room-Temperature NH 3 Sensor for Ultrasensitive, Selective, and Humidity-Independent Gas Detection. ACS Appl Mater Interfaces 2018;10:27858-67. [DOI: 10.1021/acsami.8b09169] [Cited by in Crossref: 80] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
57 Morales-Narváez E, Merkoçi A. Graphene Oxide as an Optical Biosensing Platform: A Progress Report. Adv Mater 2019;31:e1805043. [PMID: 30549101 DOI: 10.1002/adma.201805043] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
58 Nasrollahpour H, Khalilzadeh B, Naseri A, Sillanpää M, Chia CH. Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments? Anal Chem 2021. [PMID: 34878242 DOI: 10.1021/acs.analchem.1c03909] [Reference Citation Analysis]
59 Guo R, Zhang H, Cao S, Cui X, Yan Z, Sang S. A self-powered stretchable sensor fabricated by serpentine PVDF film for multiple dynamic monitoring. Materials & Design 2019;182:108025. [DOI: 10.1016/j.matdes.2019.108025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
60 Das S, Pal M. Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J Electrochem Soc 2020;167:037562. [DOI: 10.1149/1945-7111/ab67a6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 10] [Article Influence: 24.5] [Reference Citation Analysis]
61 Zhao T, Wang Q, Du A. Self-Powered Flexible Sour Sensor for Detecting Ascorbic Acid Concentration Based on Triboelectrification/Enzymatic-Reaction Coupling Effect. Sensors (Basel) 2021;21:E373. [PMID: 33430394 DOI: 10.3390/s21020373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Shah KW, Li W. A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings. Nanomaterials (Basel) 2019;9:E910. [PMID: 31234598 DOI: 10.3390/nano9060910] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 8.7] [Reference Citation Analysis]
63 Behi S, Bohli N, Casanova-Cháfer J, Llobet E, Abdelghani A. Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds. Sensors (Basel) 2020;20:E3413. [PMID: 32560414 DOI: 10.3390/s20123413] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
64 Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem 2019;91:548-68. [DOI: 10.1021/acs.analchem.8b04049] [Cited by in Crossref: 93] [Cited by in F6Publishing: 66] [Article Influence: 23.3] [Reference Citation Analysis]
65 Zhang J, Fahrenthold EP. Graphene-Based Sensing of Gas-Phase Explosives. ACS Appl Nano Mater 2019;2:1445-56. [DOI: 10.1021/acsanm.8b02330] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
66 Sliz R, Huttunen O, Jansson E, Kemppainen J, Schroderus J, Kurkinen M, Fabritius T. Reliability of R2R-printed, flexible electrodes for e-clothing applications. npj Flex Electron 2020;4. [DOI: 10.1038/s41528-020-0076-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
67 Zeng Y, Wu W. Synthesis of 2D Ti3C2Tx MXene and MXene-based composites for flexible strain and pressure sensors. Nanoscale Horiz 2021;6:893-906. [PMID: 34611677 DOI: 10.1039/d1nh00317h] [Reference Citation Analysis]
68 Yang H, Xue T, Li F, Liu W, Song Y. Graphene: Diversified Flexible 2D Material for Wearable Vital Signs Monitoring. Adv Mater Technol 2018. [DOI: 10.1002/admt.201800574] [Cited by in Crossref: 27] [Cited by in F6Publishing: 5] [Article Influence: 6.8] [Reference Citation Analysis]
69 Kadumudi FB, Trifol J, Jahanshahi M, Zsurzsan TG, Mehrali M, Zeqiraj E, Shaki H, Alehosseini M, Gundlach C, Li Q, Dong M, Akbari M, Knott A, Almdal K, Dolatshahi-Pirouz A. Flexible and Green Electronics Manufactured by Origami Folding of Nanosilicate-Reinforced Cellulose Paper. ACS Appl Mater Interfaces 2020;12:48027-39. [PMID: 33035422 DOI: 10.1021/acsami.0c15326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
70 Rebber M, Willa C, Koziej D. Organic-inorganic hybrids for CO2 sensing, separation and conversion. Nanoscale Horiz 2020;5:431-53. [PMID: 32118212 DOI: 10.1039/c9nh00380k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
71 Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021;6:3841-81. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Reference Citation Analysis]
72 Kumar R, Goel N, Hojamberdiev M, Kumar M. Transition metal dichalcogenides-based flexible gas sensors. Sensors and Actuators A: Physical 2020;303:111875. [DOI: 10.1016/j.sna.2020.111875] [Cited by in Crossref: 26] [Cited by in F6Publishing: 3] [Article Influence: 13.0] [Reference Citation Analysis]
73 Dai J, Ogbeide O, Macadam N, Sun Q, Yu W, Li Y, Su B, Hasan T, Huang X, Huang W. Printed gas sensors. Chem Soc Rev 2020;49:1756-89. [DOI: 10.1039/c9cs00459a] [Cited by in Crossref: 52] [Cited by in F6Publishing: 8] [Article Influence: 26.0] [Reference Citation Analysis]
74 Zhao T, Ren Y, Jia G, Zhao Y, Fan Y, Yang J, Zhang X, Jiang W, Wang L, Luo W. Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. Chinese Chemical Letters 2019;30:2032-8. [DOI: 10.1016/j.cclet.2019.05.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
75 Chen C, Guo Y, Chen P, Peng H. Recent advances of tissue-interfaced chemical biosensors. J Mater Chem B 2020;8:3371-81. [DOI: 10.1039/c9tb02476j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
76 Wu C, Han L, Zhang J, Wang Y, Wang R, Chen L. Capacitive Ammonia Sensor Based on Graphene Oxide/Polyaniline Nanocomposites. Adv Materials Technologies. [DOI: 10.1002/admt.202101247] [Reference Citation Analysis]
77 Mukhopadhyaya T, Wagner JS, Fan H, Katz HE. Design and Synthesis of Air-Stable p-Channel-Conjugated Polymers for High Signal-to-Drift Nitrogen Dioxide and Ammonia Sensing. ACS Appl Mater Interfaces 2020;12:21974-84. [DOI: 10.1021/acsami.0c04810] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
78 Chen Z, Wang J, Wang Y. Strategies for the performance enhancement of graphene-based gas sensors: A review. Talanta 2021;235:122745. [PMID: 34517613 DOI: 10.1016/j.talanta.2021.122745] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Angizi S, Yu EYC, Dalmieda J, Saha D, Selvaganapathy PR, Kruse P. Defect Engineering of Graphene to Modulate pH Response of Graphene Devices. Langmuir 2021;37:12163-78. [PMID: 34624190 DOI: 10.1021/acs.langmuir.1c02088] [Reference Citation Analysis]
80 Wang Z, Zhang T, Han T, Fei T, Liu S, Lu G. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sensors and Actuators B: Chemical 2018;266:812-22. [DOI: 10.1016/j.snb.2018.03.169] [Cited by in Crossref: 64] [Cited by in F6Publishing: 29] [Article Influence: 16.0] [Reference Citation Analysis]
81 Miao P, Wang J, Zhang C, Sun M, Cheng S, Liu H. Graphene Nanostructure-Based Tactile Sensors for Electronic Skin Applications. Nanomicro Lett 2019;11:71. [PMID: 34138011 DOI: 10.1007/s40820-019-0302-0] [Cited by in Crossref: 47] [Cited by in F6Publishing: 10] [Article Influence: 15.7] [Reference Citation Analysis]
82 You Z, Qiu Q, Chen H, Feng Y, Wang X, Wang Y, Ying Y. Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosensors and Bioelectronics 2020;150:111896. [DOI: 10.1016/j.bios.2019.111896] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
83 Zhu J, Cho M, Li Y, He T, Ahn J, Park J, Ren T, Lee C, Park I. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 2021;86:106035. [DOI: 10.1016/j.nanoen.2021.106035] [Cited by in Crossref: 10] [Article Influence: 10.0] [Reference Citation Analysis]
84 da Luz FS, Garcia Filho FDC, Del-Río MTG, Nascimento LFC, Pinheiro WA, Monteiro SN. Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview. Polymers (Basel) 2020;12:E1601. [PMID: 32708475 DOI: 10.3390/polym12071601] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 9.5] [Reference Citation Analysis]
85 Singh R, Singh E, Nalwa HS. Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv 2017;7:48597-630. [DOI: 10.1039/c7ra07191d] [Cited by in Crossref: 90] [Cited by in F6Publishing: 3] [Article Influence: 18.0] [Reference Citation Analysis]
86 Xin X, Zhang Y, Guan X, Cao J, Li W, Long X, Tan X. Enhanced Performances of PbS Quantum-Dots-Modified MoS 2 Composite for NO 2 Detection at Room Temperature. ACS Appl Mater Interfaces 2019;11:9438-47. [DOI: 10.1021/acsami.8b20984] [Cited by in Crossref: 45] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
87 Liu H, Wang L, Lin G, Feng Y. Recent progress in the fabrication of flexible materials for wearable sensors. Biomater Sci 2021. [PMID: 34797359 DOI: 10.1039/d1bm01136g] [Reference Citation Analysis]
88 Raghu AV, Karuppanan KK, Nampoothiri J, Pullithadathil B. Wearable, Flexible Ethanol Gas Sensor Based on TiO 2 Nanoparticles-Grafted 2D-Titanium Carbide Nanosheets. ACS Appl Nano Mater 2019;2:1152-63. [DOI: 10.1021/acsanm.8b01975] [Cited by in Crossref: 37] [Cited by in F6Publishing: 11] [Article Influence: 12.3] [Reference Citation Analysis]
89 Liu L, Liu S. Oxygen Vacancies as an Efficient Strategy for Promotion of Low Concentration SO 2 Gas Sensing: The Case of Au-Modified SnO 2. ACS Sustainable Chem Eng 2018;6:13427-34. [DOI: 10.1021/acssuschemeng.8b03205] [Cited by in Crossref: 40] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
90 Tang H, Sacco LN, Vollebregt S, Ye H, Fan X, Zhang G. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives. J Mater Chem A 2020;8:24943-76. [DOI: 10.1039/d0ta08190f] [Cited by in Crossref: 16] [Article Influence: 8.0] [Reference Citation Analysis]
91 Yuan S, Zhang S. Recent progress on gas sensors based on graphene-like 2D/2D nanocomposites. J Semicond 2019;40:111608. [DOI: 10.1088/1674-4926/40/11/111608] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
92 Sun C, Shi Q, Hasan D, Yazici MS, Zhu M, Ma Y, Dong B, Liu Y, Lee C. Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy 2019;58:612-23. [DOI: 10.1016/j.nanoen.2019.01.096] [Cited by in Crossref: 47] [Cited by in F6Publishing: 20] [Article Influence: 15.7] [Reference Citation Analysis]
93 Zhao L, Niu G, Gao F, Lu K, Sun Z, Li H, Stenzel M, Liu C, Jiang Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS Omega 2021;6:33149-58. [PMID: 34901666 DOI: 10.1021/acsomega.1c05529] [Reference Citation Analysis]
94 Moncea O, Casanova-Chafer J, Poinsot D, Ochmann L, Mboyi CD, Nasrallah HO, Llobet E, Makni I, El Atrous M, Brandès S, Rousselin Y, Domenichini B, Nuns N, Fokin AA, Schreiner PR, Hierso JC. Diamondoid Nanostructures as sp3 -Carbon-Based Gas Sensors. Angew Chem Int Ed Engl 2019;58:9933-8. [PMID: 31087744 DOI: 10.1002/anie.201903089] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
95 Corzo D, Tostado-blázquez G, Baran D. Flexible Electronics: Status, Challenges and Opportunities. Front Electron 2020;1:594003. [DOI: 10.3389/felec.2020.594003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
96 Mamun MAA, Yuce MR. Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Adv Funct Mater 2020;30:2005703. [DOI: 10.1002/adfm.202005703] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 6.5] [Reference Citation Analysis]
97 Xie J, Chen Q, Shen H, Li G. Review—Wearable Graphene Devices for Sensing. J Electrochem Soc 2020;167:037541. [DOI: 10.1149/1945-7111/ab67a4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
98 Vargas-Bernal R. Electrical Properties of Two-Dimensional Materials Used in Gas Sensors. Sensors (Basel) 2019;19:E1295. [PMID: 30875827 DOI: 10.3390/s19061295] [Cited by in Crossref: 28] [Article Influence: 9.3] [Reference Citation Analysis]
99 Loh HA, Marchi C, Magagnin L, Sierros KA. Graphene Flake Self-Assembly Enhancement via Stretchable Platforms and External Mechanical Stimuli. ACS Omega 2021;6:30607-17. [PMID: 34805689 DOI: 10.1021/acsomega.1c04368] [Reference Citation Analysis]
100 Agarwal K, Dai C, Joung D, Cho JH. Nano-Architecture Driven Plasmonic Field Enhancement in 3D Graphene Structures. ACS Nano 2019;13:1050-9. [PMID: 30588797 DOI: 10.1021/acsnano.8b08145] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
101 Lv C, Hu C, Luo J, Liu S, Qiao Y, Zhang Z, Song J, Shi Y, Cai J, Watanabe A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials (Basel) 2019;9:E422. [PMID: 30871077 DOI: 10.3390/nano9030422] [Cited by in Crossref: 46] [Cited by in F6Publishing: 12] [Article Influence: 15.3] [Reference Citation Analysis]
102 Lee E, Kim D. Review— Recent Exploration of Two-Dimensional MXenes for Gas Sensing: From a Theoretical to an Experimental View. J Electrochem Soc 2020;167:037515. [DOI: 10.1149/2.0152003jes] [Cited by in Crossref: 19] [Article Influence: 9.5] [Reference Citation Analysis]
103 Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. Nanotechnology 2021;32. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Reference Citation Analysis]
104 Yoon HJ, Lee JY, Yoon TH. Millstone Exfoliation: a True Shear Exfoliation for Large-Size Few-Layer Graphene Oxide. Nanoscale Res Lett 2018;13:186. [PMID: 29926274 DOI: 10.1186/s11671-018-2598-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Pathak A, Gupta BD. Fiber-Optic Plasmonic Sensor Utilizing CTAB-Functionalized ZnO Nanoparticle-Decorated Carbon Nanotubes on Silver Films for the Detection of Catechol in Wastewater. ACS Appl Nano Mater 2020;3:2582-93. [DOI: 10.1021/acsanm.0c00001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
106 Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem Rev 2019;119:5461-533. [PMID: 30689360 DOI: 10.1021/acs.chemrev.8b00573] [Cited by in Crossref: 327] [Cited by in F6Publishing: 210] [Article Influence: 109.0] [Reference Citation Analysis]
107 Jakovac J, Marušić L, Andrade-Guevara D, Chacón-Torres JC, Despoja V. Infra-Red Active Dirac Plasmon Serie in Potassium Doped-Graphene (KC8) Nanoribbons Array on Al2O3 Substrate. Materials (Basel) 2021;14:4256. [PMID: 34361450 DOI: 10.3390/ma14154256] [Reference Citation Analysis]
108 Borges AC, Köhler MH, Bordin JR. CO 2 and SO 2 Pressure-Driven Adsorption by 3D Graphene Nanoslits: A Molecular Dynamics Study. Journal of Nanomaterials 2019;2019:1-7. [DOI: 10.1155/2019/9594816] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Xu H, Xiang JX, Lu YF, Zhang MK, Li JJ, Gao BB, Zhao YJ, Gu ZZ. Multifunctional Wearable Sensing Devices Based on Functionalized Graphene Films for Simultaneous Monitoring of Physiological Signals and Volatile Organic Compound Biomarkers. ACS Appl Mater Interfaces 2018;10:11785-93. [DOI: 10.1021/acsami.8b00073] [Cited by in Crossref: 44] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
110 Chang Y, Hasan D, Dong B, Wei J, Ma Y, Zhou G, Ang KW, Lee C. All-Dielectric Surface-Enhanced Infrared Absorption-Based Gas Sensor Using Guided Resonance. ACS Appl Mater Interfaces 2018;10:38272-9. [PMID: 30360088 DOI: 10.1021/acsami.8b16623] [Cited by in Crossref: 50] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
111 Hwang S, Park Y, Hur S, Chae HG. Pt Nanoparticle-Decorated Reduced Graphene Oxide Hydrogel for High-Performance Strain Sensor: Tailoring Piezoresistive Property by Controlled Microstructure of Hydrogel. ACS Appl Nano Mater 2018;1:2836-43. [DOI: 10.1021/acsanm.8b00483] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
112 Choi S, Kim I. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electron Mater Lett 2018;14:221-60. [DOI: 10.1007/s13391-018-0044-z] [Cited by in Crossref: 93] [Cited by in F6Publishing: 44] [Article Influence: 23.3] [Reference Citation Analysis]
113 Xia Y, Zhang Q, Wu XE, Kirk TV, Chen XD. Practical and Durable Flexible Strain Sensors Based on Conductive Carbon Black and Silicone Blends for Large Scale Motion Monitoring Applications. Sensors (Basel) 2019;19:E4553. [PMID: 31635124 DOI: 10.3390/s19204553] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
114 Cao Z, Yao B, Qin C, Yang R, Guo Y, Zhang Y, Wu Y, Bi L, Chen Y, Xie Z, Peng G, Huang SW, Wong CW, Rao Y. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light Sci Appl 2019;8:107. [PMID: 31798846 DOI: 10.1038/s41377-019-0213-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 8.7] [Reference Citation Analysis]
115 Pi X, Sun F, Gao J, Qu Z, Wang A, Qie Z, Wang L, Liu H. A new insight into the SO 2 adsorption behavior of oxidized carbon materials using model adsorbents and DFT calculations. Phys Chem Chem Phys 2019;21:9181-8. [DOI: 10.1039/c8cp07782g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 5.7] [Reference Citation Analysis]
116 Tran NA, Lee C, Lee DH, Cho K, Joo S. Water Molecules on the Epoxide Groups of Graphene Oxide Surfaces: Water Molecules on the Epoxide Groups. Bull Korean Chem Soc 2018;39:1320-3. [DOI: 10.1002/bkcs.11600] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
117 Shin JH, Kim SH, Kwon SS, Park WI. Direct CVD growth of graphene on three-dimensionally-shaped dielectric substrates. Carbon 2018;129:785-9. [DOI: 10.1016/j.carbon.2017.12.097] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
118 Zhang F, Liu H, Tao F, Wang X, Cao X, Hu W. Tunable Electric and Magnetic Properties of Transition Metal@Nx Cy -Graphene Materials by Different Metal and Defect Types. Chem Asian J 2021;16:3230-5. [PMID: 34411460 DOI: 10.1002/asia.202100752] [Reference Citation Analysis]
119 Wang H, Ma J, Zhang J, Feng Y, Vijjapu MT, Yuvaraja S, Surya SG, Salama KN, Dong C, Wang Y, Kuang Q, Tshabalala ZP, Motaung DE, Liu X, Yang J, Fu H, Yang X, An X, Zhou S, Zi B, Liu Q, Urso M, Zhang B, Akande AA, Prasad AK, Hung CM, Van Duy N, Hoa ND, Wu K, Zhang C, Kumar R, Kumar M, Kim Y, Wu J, Wu Z, Yang X, Vanalakar SA, Luo J, Kan H, Li M, Jang HW, Orlandi MO, Mirzaei A, Kim HW, Kim SS, Uddin ASMI, Wang J, Xia Y, Wongchoosuk C, Nag A, Mukhopadhyay S, Saxena N, Kumar P, Do JS, Lee JH, Hong S, Jeong Y, Jung G, Shin W, Park J, Bruzzi M, Zhu C, Gerald RE 2nd, Huang J. Gas sensing materials roadmap. J Phys Condens Matter 2021;33. [PMID: 33794513 DOI: 10.1088/1361-648X/abf477] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Wasilewski T, Gębicki J. Emerging strategies for enhancing detection of explosives by artificial olfaction. Microchemical Journal 2021;164:106025. [DOI: 10.1016/j.microc.2021.106025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
121 Gupta PK, Chauhan D, Khan ZH, Solanki PR. ZrO 2 Nanoflowers Decorated with Graphene Quantum Dots for Electrochemical Immunosensing. ACS Appl Nano Mater 2020;3:2506-16. [DOI: 10.1021/acsanm.9b02598] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
122 Jolly A, Miao D, Daigle M, Morin JF. Emerging Bottom-Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Angew Chem Int Ed Engl 2020;59:4624-33. [PMID: 31265750 DOI: 10.1002/anie.201906379] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
123 Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021. [PMID: 34787136 DOI: 10.1039/d1cs00600b] [Reference Citation Analysis]
124 Smith MK, Mirica KA. Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for Simultaneous Sensing, Capture, and Filtration of Gases. J Am Chem Soc 2017;139:16759-67. [DOI: 10.1021/jacs.7b08840] [Cited by in Crossref: 115] [Cited by in F6Publishing: 76] [Article Influence: 23.0] [Reference Citation Analysis]
125 Kosar N, Ayub K, Mahmood T. Surface functionalization of twisted graphene C32H15 and C104H52 derivatives with alkalis and superalkalis for NLO response; a DFT study. J Mol Graph Model 2021;102:107794. [PMID: 33212383 DOI: 10.1016/j.jmgm.2020.107794] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
126 Zhu Y, Lu W, Guo Y, Chen Y, Wu Y, Lu H. Biocompatible, stretchable and mineral PVA–gelatin–nHAP hydrogel for highly sensitive pressure sensors. RSC Adv 2018;8:36999-7007. [DOI: 10.1039/c8ra06193a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 4.8] [Reference Citation Analysis]
127 Wen F, He T, Liu H, Chen H, Zhang T, Lee C. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 2020;78:105155. [DOI: 10.1016/j.nanoen.2020.105155] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 16.5] [Reference Citation Analysis]
128 Ratha S, Bankar P, Gangan AS, More MA, Late DJ, Behera JN, Chakraborty B, Rout CS. VSe2-reduced graphene oxide as efficient cathode material for field emission. Journal of Physics and Chemistry of Solids 2019;128:384-90. [DOI: 10.1016/j.jpcs.2018.02.020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
129 Pang Y, Jian J, Tu T, Yang Z, Ling J, Li Y, Wang X, Qiao Y, Tian H, Yang Y, Ren T. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors and Bioelectronics 2018;116:123-9. [DOI: 10.1016/j.bios.2018.05.038] [Cited by in Crossref: 123] [Cited by in F6Publishing: 68] [Article Influence: 30.8] [Reference Citation Analysis]
130 Han T, Kundu S, Nag A, Xu Y. 3D Printed Sensors for Biomedical Applications: A Review. Sensors (Basel) 2019;19:E1706. [PMID: 30974757 DOI: 10.3390/s19071706] [Cited by in Crossref: 61] [Cited by in F6Publishing: 19] [Article Influence: 20.3] [Reference Citation Analysis]
131 Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S. Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics. Applied Surface Science 2018;452:481-6. [DOI: 10.1016/j.apsusc.2018.04.272] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
132 Al Faruque MA, Syduzzaman M, Sarkar J, Bilisik K, Naebe M. A Review on the Production Methods and Applications of Graphene-Based Materials. Nanomaterials (Basel) 2021;11:2414. [PMID: 34578730 DOI: 10.3390/nano11092414] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Huang Q, Lin X, Tong L, Tong Q. Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells. ACS Sustainable Chem Eng 2020;8:1644-50. [DOI: 10.1021/acssuschemeng.9b06623] [Cited by in Crossref: 49] [Cited by in F6Publishing: 8] [Article Influence: 24.5] [Reference Citation Analysis]
134 Hou J, Zhang B, Li D, Fu Y, Liu G, Chen Y. Enabling superior stretchable resistive switching memory via polymer-functionalized graphene oxide nanosheets. J Mater Chem C 2019;7:14664-71. [DOI: 10.1039/c9tc05593b] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
135 Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019;119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Cited by in Crossref: 206] [Cited by in F6Publishing: 113] [Article Influence: 68.7] [Reference Citation Analysis]
136 Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW 3rd, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018;3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Cited by in Crossref: 71] [Cited by in F6Publishing: 47] [Article Influence: 17.8] [Reference Citation Analysis]
137 Cao X, Halder A, Tang Y, Hou C, Wang H, Duus JØ, Chi Q. Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Mater Chem Front 2018;2:1944-86. [DOI: 10.1039/c8qm00356d] [Cited by in Crossref: 34] [Cited by in F6Publishing: 1] [Article Influence: 8.5] [Reference Citation Analysis]
138 Jolly A, Miao D, Daigle M, Morin J. Emerging Bottom‐Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Angew Chem 2020;132:4652-61. [DOI: 10.1002/ange.201906379] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
139 Yang Y, Deng ZD. Stretchable sensors for environmental monitoring. Applied Physics Reviews 2019;6:011309. [DOI: 10.1063/1.5085013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 12] [Article Influence: 11.7] [Reference Citation Analysis]
140 Zulkefli A, Mukherjee B, Sahara R, Hayakawa R, Iwasaki T, Wakayama Y, Nakaharai S. Enhanced Selectivity in Volatile Organic Compound Gas Sensors Based on ReS2-FETs under Light-Assisted and Gate-Bias Tunable Operation. ACS Appl Mater Interfaces 2021;13:43030-8. [PMID: 34463490 DOI: 10.1021/acsami.1c10054] [Reference Citation Analysis]
141 Haroon Rashid M, Koel A, Rang T. First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons. Sensors (Basel) 2019;19:E2731. [PMID: 31216657 DOI: 10.3390/s19122731] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
142 Choi JH, Lee J, Byeon M, Hong TE, Park H, Lee CY. Graphene-Based Gas Sensors with High Sensitivity and Minimal Sensor-to-Sensor Variation. ACS Appl Nano Mater 2020;3:2257-65. [DOI: 10.1021/acsanm.9b02378] [Cited by in Crossref: 21] [Cited by in F6Publishing: 2] [Article Influence: 10.5] [Reference Citation Analysis]
143 Wei C, Kang C, Liu Q. Ag nanosheets grown on Cu nanowire-based flexible films for sensitive non-enzymatic glucose sensors. Nanotechnology 2020;31:115501. [PMID: 31751969 DOI: 10.1088/1361-6528/ab59ea] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
144 Demirci S, Can M, Sahiner N. Graphene Aerogels for In Situ Synthesis of Conductive Poly(para-phenylenediamine) Polymers, and Their Sensor Application. Micromachines (Basel) 2020;11:E626. [PMID: 32605054 DOI: 10.3390/mi11070626] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
145 Yadav RK, Lee JO, Kumar A, Park NJ, Yadav D, Kim JY, Baeg JO. Highly Improved Solar Energy Harvesting for Fuel Production from CO2 by a Newly Designed Graphene Film Photocatalyst. Sci Rep 2018;8:16741. [PMID: 30425293 DOI: 10.1038/s41598-018-35135-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
146 Fazilaty M, Pourahmadi M, Reza Shayesteh M, Hashemian S. χ3–borophene-based detection of hydrogen sulfide via gas nanosensors. Chemical Physics Letters 2020;741:137066. [DOI: 10.1016/j.cplett.2019.137066] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
147 Zhang Z, Zhang P, Zhang D, Lin H, Chen Y. A new strategy for the preparation of flexible macroscopic graphene fibers as supercapacitor electrodes. Materials & Design 2018;157:170-8. [DOI: 10.1016/j.matdes.2018.07.043] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
148 Bag A, Moon D, Park K, Cho C, Lee N. Room-temperature-operated fast and reversible vertical-heterostructure-diode gas sensor composed of reduced graphene oxide and AlGaN/GaN. Sensors and Actuators B: Chemical 2019;296:126684. [DOI: 10.1016/j.snb.2019.126684] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
149 Wu J, Wu Z, Ding H, Wei Y, Huang W, Yang X, Li Z, Qiu L, Wang X. Three-Dimensional Graphene Hydrogel Decorated with SnO2 for High-Performance NO2 Sensing with Enhanced Immunity to Humidity. ACS Appl Mater Interfaces 2020;12:2634-43. [PMID: 31894956 DOI: 10.1021/acsami.9b18098] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
150 Huang X, Li B, Wang L, Lai X, Xue H, Gao J. Superhydrophilic, Underwater Superoleophobic, and Highly Stretchable Humidity and Chemical Vapor Sensors for Human Breath Detection. ACS Appl Mater Interfaces 2019;11:24533-43. [DOI: 10.1021/acsami.9b04304] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 11.7] [Reference Citation Analysis]
151 Cruz-Martínez H, Rojas-Chávez H, Montejo-Alvaro F, Peña-Castañeda YA, Matadamas-Ortiz PT, Medina DI. Recent Developments in Graphene-Based Toxic Gas Sensors: A Theoretical Overview. Sensors (Basel) 2021;21:1992. [PMID: 33799914 DOI: 10.3390/s21061992] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
152 Nagar B, Balsells M, de la Escosura-muñiz A, Gomez-romero P, Merkoçi A. Fully printed one-step biosensing device using graphene/AuNPs composite. Biosensors and Bioelectronics 2019;129:238-44. [DOI: 10.1016/j.bios.2018.09.073] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
153 Perfecto TM, Zito CA, Mazon T, Volanti DP. Flexible room-temperature volatile organic compound sensors based on reduced graphene oxide–WO 3 ·0.33H 2 O nano-needles. J Mater Chem C 2018;6:2822-9. [DOI: 10.1039/c8tc00324f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 4.8] [Reference Citation Analysis]
154 Azzouz A, Vikrant K, Kim K, Ballesteros E, Rhadfi T, Malik AK. Advances in colorimetric and optical sensing for gaseous volatile organic compounds. TrAC Trends in Analytical Chemistry 2019;118:502-16. [DOI: 10.1016/j.trac.2019.06.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 7.3] [Reference Citation Analysis]
155 Liu X, Huang Y, Zhang N, Zhou S. Synthesis of CoNi/SiO2 core-shell nanoparticles decorated reduced graphene oxide nanosheets for enhanced electromagnetic wave absorption properties. Ceramics International 2018;44:22189-97. [DOI: 10.1016/j.ceramint.2018.08.337] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 5.8] [Reference Citation Analysis]
156 Xiao Z, Kong LB, Ruan S, Li X, Yu S, Li X, Jiang Y, Yao Z, Ye S, Wang C, Zhang T, Zhou K, Li S. Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B: Chemical 2018;274:235-67. [DOI: 10.1016/j.snb.2018.07.040] [Cited by in Crossref: 65] [Cited by in F6Publishing: 16] [Article Influence: 16.3] [Reference Citation Analysis]
157 Mohan A, Rajendran V, Mishra RK, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC Trends in Analytical Chemistry 2020;131:116024. [DOI: 10.1016/j.trac.2020.116024] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
158 Shi Q, Dong B, He T, Sun Z, Zhu J, Zhang Z, Lee C. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InfoMat 2020;2:1131-62. [DOI: 10.1002/inf2.12122] [Cited by in Crossref: 71] [Cited by in F6Publishing: 17] [Article Influence: 35.5] [Reference Citation Analysis]
159 Çıtak E, İstanbullu B, Şakalak H, Gürsoy M, Karaman M. All‐Dry Hydrophobic Functionalization of Paper Surfaces for Efficient Transfer of CVD Graphene. Macromol Chem Phys 2019;220:1900277. [DOI: 10.1002/macp.201900277] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
160 Wang J, Sheng T, Zhu X, Li Q, Wu Y, Zhang J, Liu J, Zhang Y. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications. Mater Chem Front 2021;5:1743-70. [DOI: 10.1039/d0qm00910e] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
161 Safaei A, Chandra S, Leuenberger MN, Chanda D. Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large-Area Nanopatterned Graphene. ACS Nano 2019;13:421-8. [PMID: 30525437 DOI: 10.1021/acsnano.8b06601] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
162 Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020;12:3535-59. [PMID: 32003390 DOI: 10.1039/c9nr10178k] [Cited by in Crossref: 83] [Cited by in F6Publishing: 7] [Article Influence: 41.5] [Reference Citation Analysis]
163 Gao R, Yang X, Yang Q, Wu Y, Wang F, Xia Q, Bao SJ. Design of an amperometric glucose oxidase biosensor with added protective and adhesion layers. Mikrochim Acta 2021;188:312. [PMID: 34458949 DOI: 10.1007/s00604-021-04977-w] [Reference Citation Analysis]
164 Ni D, Chen Y, Song H, Liu C, Yang X, Cai K. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J Mater Chem A 2019;7:1323-33. [DOI: 10.1039/c8ta08814d] [Cited by in Crossref: 59] [Cited by in F6Publishing: 1] [Article Influence: 19.7] [Reference Citation Analysis]
165 Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019;9:8778-881. [DOI: 10.1039/c8ra09577a] [Cited by in Crossref: 228] [Cited by in F6Publishing: 5] [Article Influence: 76.0] [Reference Citation Analysis]
166 Alzate-Carvajal N, Park J, Pykal M, Lazar P, Rautela R, Scarfe S, Scarfe L, Ménard JM, Otyepka M, Luican-Mayer A. Graphene Field Effect Transistors: A Sensitive Platform for Detecting Sarin. ACS Appl Mater Interfaces 2021;13:61751-7. [PMID: 34910450 DOI: 10.1021/acsami.1c17770] [Reference Citation Analysis]
167 Penza M. Low-cost sensors for outdoor air quality monitoring. Advanced Nanomaterials for Inexpensive Gas Microsensors. Elsevier; 2020. pp. 235-88. [DOI: 10.1016/b978-0-12-814827-3.00012-8] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
168 Zhang Z, Zhang D, Lin H, Chen Y. Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers. Journal of Power Sources 2019;433:226711. [DOI: 10.1016/j.jpowsour.2019.226711] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 6.7] [Reference Citation Analysis]
169 Jadoon T, Mahmood T, Ayub K. Silver-graphene quantum dots based electrochemical sensor for trinitrotoluene and p-nitrophenol. Journal of Molecular Liquids 2020;306:112878. [DOI: 10.1016/j.molliq.2020.112878] [Cited by in Crossref: 40] [Cited by in F6Publishing: 11] [Article Influence: 20.0] [Reference Citation Analysis]
170 Hasan MM, Zhu F, Ahmed A, Khoso NA, Deb H, Yuchao L, Islam MZ, Sun H, Yu B. Functionalization of polypropylene nonwoven fabrics using cold plasma (O2) for developing graphene-based wearable sensors. Sensors and Actuators A: Physical 2019;300:111637. [DOI: 10.1016/j.sna.2019.111637] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
171 Aziz S, Chang S. Smart-fabric sensor composed of single-walled carbon nanotubes containing binary polymer composites for health monitoring. Composites Science and Technology 2018;163:1-9. [DOI: 10.1016/j.compscitech.2018.05.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
172 Veronesi S, Pfusterschmied G, Fabbri F, Leitgeb M, Arif O, Esteban DA, Bals S, Schmid U, Heun S. 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC. Carbon 2022;189:210-8. [DOI: 10.1016/j.carbon.2021.12.042] [Reference Citation Analysis]
173 Gupta S, Banu R, Ameta C, Ameta R, Punjabi PB. Emerging Trends in the Syntheses of Heterocycles Using Graphene-based Carbocatalysts: An Update. Top Curr Chem (Cham) 2019;377:13. [PMID: 31054016 DOI: 10.1007/s41061-019-0238-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
174 Jiang H, Cao L, Li Y, Li W, Ye X, Deng W, Jiang X, Wang G, Xu G. Organic "receptor" fully covered few-layer organic-metal chalcogenides for high-performance chemiresistive gas sensing at room temperature. Chem Commun (Camb) 2020;56:5366-9. [PMID: 32289817 DOI: 10.1039/d0cc01092h] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
175 Qi P, Zhang T, Shao J, Yang B, Fei T, Wang R. A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sensors and Actuators A: Physical 2019;287:93-101. [DOI: 10.1016/j.sna.2019.01.009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
176 Han T, Nag A, Simorangkir RBVB, Afsarimanesh N, Liu H, Mukhopadhyay SC, Xu Y, Zhadobov M, Sauleau R. Multifunctional Flexible Sensor Based on Laser-Induced Graphene. Sensors (Basel) 2019;19:E3477. [PMID: 31395810 DOI: 10.3390/s19163477] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
177 Li H, Singh A, Bayram F, Childress AS, Rao AM, Koley G. Impact of oxygen plasma treatment on carrier transport and molecular adsorption in graphene. Nanoscale 2019;11:11145-51. [PMID: 31143919 DOI: 10.1039/c9nr02251a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
178 Nalwa HS. A review of molybdenum disulfide (MoS 2 ) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv 2020;10:30529-602. [DOI: 10.1039/d0ra03183f] [Cited by in Crossref: 47] [Article Influence: 23.5] [Reference Citation Analysis]
179 Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samorì P. Chemical sensing with 2D materials. Chem Soc Rev 2018;47:4860-908. [DOI: 10.1039/c8cs00417j] [Cited by in Crossref: 228] [Cited by in F6Publishing: 24] [Article Influence: 57.0] [Reference Citation Analysis]
180 Du X, Zhou J. Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci 2018;118:444-8. [PMID: 29730246 DOI: 10.1016/j.rvsc.2018.04.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
181 Majhi SM, Mirzaei A, Kim HW, Kim SS, Kim TW. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021;79:105369. [PMID: 32959010 DOI: 10.1016/j.nanoen.2020.105369] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 11.5] [Reference Citation Analysis]
182 Singh Bhati V, Nathani A, Nigam A, Sharma CS, Kumar M. PAN/(PAN-b-PMMA) derived nanoporous carbon nanofibers loaded on ZnO nanostructures for hydrogen detection. Sensors and Actuators B: Chemical 2019;299:126980. [DOI: 10.1016/j.snb.2019.126980] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 4.7] [Reference Citation Analysis]
183 Song Z, Huang Z, Liu J, Hu Z, Zhang J, Zhang G, Yi F, Jiang S, Lian J, Yan J, Zang J, Liu H. Fully Stretchable and Humidity-Resistant Quantum Dot Gas Sensors. ACS Sens 2018;3:1048-55. [PMID: 29737152 DOI: 10.1021/acssensors.8b00263] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
184 Castilho CJ, Li D, Xie Y, Gao H, Hurt RH. Shear Failure in Supported Two-Dimensional Nanosheet Van der Waals Thin Films. Carbon N Y 2021;173:410-8. [PMID: 33223559 DOI: 10.1016/j.carbon.2020.10.079] [Reference Citation Analysis]
185 Wang W, Shi Y, Zakharov AA, Syväjärvi M, Yakimova R, Uhrberg RIG, Sun J. Flat-Band Electronic Structure and Interlayer Spacing Influence in Rhombohedral Four-Layer Graphene. Nano Lett 2018;18:5862-6. [PMID: 30136852 DOI: 10.1021/acs.nanolett.8b02530] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
186 Mao R, Yao W, Qadir A, Chen W, Gao W, Xu Y, Hu H. 3-D graphene aerogel sphere-based flexible sensors for healthcare applications. Sensors and Actuators A: Physical 2020;312:112144. [DOI: 10.1016/j.sna.2020.112144] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
187 Noroozi AA, Abdi Y. A graphene/Si Schottky diode for the highly sensitive detection of protein. RSC Adv 2019;9:19613-9. [DOI: 10.1039/c9ra03765a] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
188 Zhang L, Liu D, Wu Z, Lei W. Micro-supercapacitors powered integrated system for flexible electronics. Energy Storage Materials 2020;32:402-17. [DOI: 10.1016/j.ensm.2020.05.025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
189 Castilho CJ, Li D, Liu M, Liu Y, Gao H, Hurt RH. Mosquito bite prevention through graphene barrier layers. Proc Natl Acad Sci U S A 2019;116:18304-9. [PMID: 31451645 DOI: 10.1073/pnas.1906612116] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
190 Lan Q, Ren C, Lambert A, Zhang G, Li J, Cheng Q, Hu X, Yang Z. Platinum Nanoparticle-decorated Graphene Oxide@Polystyrene Nanospheres for Label-free Electrochemical Immunosensing of Tumor Markers. ACS Sustainable Chem Eng 2020;8:4392-9. [DOI: 10.1021/acssuschemeng.9b06858] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
191 Zhu P, Li S, Zhao C, Zhang Y, Yu J. 3D synergistical rGO/Eu(TPyP)(Pc) hybrid aerogel for high-performance NO2 gas sensor with enhanced immunity to humidity. J Hazard Mater 2020;384:121426. [PMID: 31635817 DOI: 10.1016/j.jhazmat.2019.121426] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
192 Wei-Hao Li M, Ghosh A, Venkatasubramanian A, Sharma R, Huang X, Fan X. High-Sensitivity Micro-Gas Chromatograph-Photoionization Detector for Trace Vapor Detection. ACS Sens 2021;6:2348-55. [PMID: 34028248 DOI: 10.1021/acssensors.1c00482] [Reference Citation Analysis]
193 Kim M, Lee SM, Jeon JW, Movaghgharnezhad S, Jeong H, Moghaddam F, Mitchell D, Kang P, Kim BG. Photothermochemical Nanoassembly of 3D Porous Graphene and Palladium Nanoparticles for High-Performance Hydrogen Detection. ACS Appl Mater Interfaces 2021;13:49128-36. [PMID: 34597029 DOI: 10.1021/acsami.1c11922] [Reference Citation Analysis]
194 Trivedi S, Lobo K, Ramakrishna Matte H. Synthesis, Properties, and Applications of Graphene. Fundamentals and Sensing Applications of 2D Materials. Elsevier; 2019. pp. 25-90. [DOI: 10.1016/b978-0-08-102577-2.00003-8] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
195 Yin F, Lu H, Pan H, Ji H, Pei S, Liu H, Huang J, Gu J, Li M, Wei J. Highly Sensitive and Transparent Strain Sensors with an Ordered Array Structure of AgNWs for Wearable Motion and Health Monitoring. Sci Rep 2019;9:2403. [PMID: 30787401 DOI: 10.1038/s41598-019-38931-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
196 Rodriguez R, Murastov G, Lipovka A, Fatkullin M, Nozdrina O, Pavlov S, Postnikov P, Chehimi M, Chen J, Sheremet E. High-power laser-patterning graphene oxide: A new approach to making arbitrarily-shaped self-aligned electrodes. Carbon 2019;151:148-55. [DOI: 10.1016/j.carbon.2019.05.049] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
197 Wu C, Zhang X, Wang R, Chen LJ, Nie M, Zhang Z, Huang X, Han L. Low-dimensional material based wearable sensors. Nanotechnology 2021;33. [PMID: 34706353 DOI: 10.1088/1361-6528/ac33d1] [Reference Citation Analysis]
198 Furlan de Oliveira R, Montes-García V, Ciesielski A, Samorì P. Harnessing selectivity in chemical sensing via supramolecular interactions: from functionalization of nanomaterials to device applications. Mater Horiz 2021;8:2685-708. [PMID: 34605845 DOI: 10.1039/d1mh01117k] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
199 Xia Y, Li R, Chen R, Wang J, Xiang L. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review. Sensors (Basel) 2018;18:E1456. [PMID: 29735951 DOI: 10.3390/s18051456] [Cited by in Crossref: 54] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
200 Tabish TA, Abbas A, Narayan RJ. Graphene nanocomposites for transdermal biosensing. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1699. [PMID: 33480118 DOI: 10.1002/wnan.1699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
201 Seekaew Y, Wongchoosuk C. A novel graphene-based electroluminescent gas sensor for carbon dioxide detection. Applied Surface Science 2019;479:525-31. [DOI: 10.1016/j.apsusc.2019.02.100] [Cited by in Crossref: 31] [Cited by in F6Publishing: 7] [Article Influence: 10.3] [Reference Citation Analysis]
202 Biasotto G, Costa JPC, Costa PI, Zaghete MA. ZnO nanorods-gold nanoparticle-based biosensor for detecting hepatitis C. Appl Phys A 2019;125. [DOI: 10.1007/s00339-019-3128-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
203 Jung WT, Jeon JW, Jang H, Kim DY, Lee H, Kim BH. Commercial silk-based electronic textiles for NO2 sensing. Sensors and Actuators B: Chemical 2020;307:127596. [DOI: 10.1016/j.snb.2019.127596] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
204 Lou Z, Wang L, Jiang K, Wei Z, Shen G. Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering: R: Reports 2020;140:100523. [DOI: 10.1016/j.mser.2019.100523] [Cited by in Crossref: 61] [Cited by in F6Publishing: 17] [Article Influence: 30.5] [Reference Citation Analysis]
205 Li W, Chen R, Qi W, Cai L, Sun Y, Sun M, Li C, Yang X, Xiang L, Xie D, Ren T. Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO 2 E-Textile Gas Sensor. ACS Sens 2019;4:2809-18. [DOI: 10.1021/acssensors.9b01509] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 13.7] [Reference Citation Analysis]
206 Rajitha G, Dash RK. Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors. Sensors and Actuators A: Physical 2018;277:26-34. [DOI: 10.1016/j.sna.2018.04.040] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
207 Li M, Liu J, Shang C, Liu K, Qi Y, Miao R, Fang Y. Porous Particle‐Based Inkjet Printing of Flexible Fluorescent Films: Enhanced Sensing Performance and Advanced Encryption. Adv Mater Technol 2019;4:1900109. [DOI: 10.1002/admt.201900109] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
208 Wang Y, Yang M, Liu W, Dong L, Chen D, Peng C. Gas sensors based on assembled porous graphene multilayer frameworks for DMMP detection. J Mater Chem C 2019;7:9248-56. [DOI: 10.1039/c9tc02299f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
209 Yun SM, Kim M, Kwon YW, Kim H, Kim MJ, Park Y, Park J. Recent Advances in Wearable Devices for Non-Invasive Sensing. Applied Sciences 2021;11:1235. [DOI: 10.3390/app11031235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
210 Zhao M, Shi J, Cai W, Liu K, Shen K, Li Z, Wang Y, Hu D. Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing. Int J Nanomedicine 2021;16:2647-65. [PMID: 33854313 DOI: 10.2147/IJN.S300326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
211 Chen S, Gao N, Bunes BR, Zang L. Tunable nanofibril heterojunctions for controlling interfacial charge transfer in chemiresistive gas sensors. J Mater Chem C 2019;7:13709-35. [DOI: 10.1039/c9tc04659c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
212 Márquez-Sánchez S, Campero-Jurado I, Robles-Camarillo D, Rodríguez S, Corchado-Rodríguez JM. BeSafe B2.0 Smart Multisensory Platform for Safety in Workplaces. Sensors (Basel) 2021;21:3372. [PMID: 34066186 DOI: 10.3390/s21103372] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Yi R, Peng B, Zhao Y, Nie D, Chen L, Zhang L. Quartz Crystal Microbalance Humidity Sensors Based on Structured Graphene Oxide Membranes with Magnesium Ions: Design, Mechanism and Performance. Membranes 2022;12:125. [DOI: 10.3390/membranes12020125] [Reference Citation Analysis]
214 Tyagi A, Liu X, Abidi IH, Gao Z, Park BM, Zeng X, Ou X, Cagang AA, Zhuang M, Hossain MD, Zhang K, Weng L, Sun F, Luo Z. Modular functionalization of crystalline graphene by recombinant proteins: a nanoplatform for probing biomolecules. Nanoscale 2018;10:22572-82. [DOI: 10.1039/c8nr06225k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
215 Pandhi T, Chandnani A, Subbaraman H, Estrada D. A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors. Sensors (Basel) 2020;20:E5642. [PMID: 33023160 DOI: 10.3390/s20195642] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
216 Zhu S, Wang M, Qiang Z, Song J, Wang Y, Fan Y, You Z, Liao Y, Zhu M, Ye C. Multi-functional and highly conductive textiles with ultra-high durability through ‘green’ fabrication process. Chemical Engineering Journal 2021;406:127140. [DOI: 10.1016/j.cej.2020.127140] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 20.0] [Reference Citation Analysis]
217 Guo X, Li J, Yu Y, Zafar A, Ni Z. Thermally enhanced optical contrast of graphene oxide for thickness identification. Nanotechnology 2019;30:295704. [PMID: 30965309 DOI: 10.1088/1361-6528/ab1780] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
218 Fan R, Andrew TL. Perspective—Challenges in Developing Wearable Electrochemical Sensors for Longitudinal Health Monitoring. J Electrochem Soc 2020;167:037542. [DOI: 10.1149/1945-7111/ab67b0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
219 Collomb D, Li P, Bending S. Frontiers of graphene-based Hall-effect sensors. J Phys Condens Matter 2021;33. [PMID: 33853045 DOI: 10.1088/1361-648X/abf7e2] [Reference Citation Analysis]
220 Dong Q, Xiao M, Chu Z, Li G, Zhang Y. Recent Progress of Toxic Gas Sensors Based on 3D Graphene Frameworks. Sensors (Basel) 2021;21:3386. [PMID: 34067948 DOI: 10.3390/s21103386] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
221 Zhang H, Li G, Liao C, Cai Y, Jiang G. Bio-related applications of porous organic frameworks (POFs). J Mater Chem B 2019;7:2398-420. [DOI: 10.1039/c8tb03192d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
222 Shao B, Liu Y, Zhuang X, Hou S, Han S, Yu X, Yu J. Crystallinity and grain boundary control of TIPS-pentacene in organic thin-film transistors for the ultra-high sensitive detection of NO 2. J Mater Chem C 2019;7:10196-202. [DOI: 10.1039/c9tc01219b] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
223 Pekdemir F, Koçak İ, Şengül A. Copper(II) and Cobalt(II) Tridentate Complexes on Modified Graphene Oxide as Electrochemical Biosensors for Simultaneously Detecting Biomolecules. Electrocatalysis. [DOI: 10.1007/s12678-022-00706-w] [Reference Citation Analysis]
224 Bag A, Lee N. Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. J Mater Chem C 2019;7:13367-83. [DOI: 10.1039/c9tc04132j] [Cited by in Crossref: 67] [Article Influence: 22.3] [Reference Citation Analysis]
225 Ren H, Gu C, Joo SW, Zhao J, Sun Y, Huang J. Effective hydrogen gas sensor based on NiO@rGO nanocomposite. Sensors and Actuators B: Chemical 2018;266:506-13. [DOI: 10.1016/j.snb.2018.03.130] [Cited by in Crossref: 70] [Cited by in F6Publishing: 22] [Article Influence: 17.5] [Reference Citation Analysis]
226 Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. Small 2021;:e2102683. [PMID: 34549513 DOI: 10.1002/smll.202102683] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
227 Cho H, Shakil A, Polycarpou AA, Kim S. Enabling Selectively Tunable Mechanical Properties of Graphene Oxide/Silk Fibroin/Cellulose Nanocrystal Bionanofilms. ACS Nano 2021;15:19546-58. [PMID: 34807563 DOI: 10.1021/acsnano.1c06573] [Reference Citation Analysis]
228 Wang R, Ren X, Yan Z, Jiang L, Sha WEI, Shan G. Graphene based functional devices: A short review. Front Phys 2019;14. [DOI: 10.1007/s11467-018-0859-y] [Cited by in Crossref: 54] [Cited by in F6Publishing: 13] [Article Influence: 13.5] [Reference Citation Analysis]
229 Buckley DJ, Black NCG, Castanon EG, Melios C, Hardman M, Kazakova O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater 2020;7:032002. [DOI: 10.1088/2053-1583/ab7bc5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
230 Bai S, Sun X, Han N, Shu X, Pan J, Guo H, Liu S, Feng Y, Luo R, Li D, Chen A. rGO modified nanoplate-assembled ZnO/CdO junction for detection of NO2. J Hazard Mater 2020;394:121832. [PMID: 32336537 DOI: 10.1016/j.jhazmat.2019.121832] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
231 Yu R, García de Abajo FJ. Chemical identification through two-dimensional electron energy-loss spectroscopy. Sci Adv 2020;6:eabb4713. [PMID: 32923595 DOI: 10.1126/sciadv.abb4713] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
232 Ollé EP, Farré-Lladós J, Casals-Terré J. Advancements in Microfabricated Gas Sensors and Microanalytical Tools for the Sensitive and Selective Detection of Odors. Sensors (Basel) 2020;20:E5478. [PMID: 32987904 DOI: 10.3390/s20195478] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
233 Li B, Lopez-beltran H, Siu C, Skorenko KH, Zhou H, Bernier WE, Whittingham MS, Jones WE. Vaper Phase Polymerized PEDOT/Cellulose Paper Composite for Flexible Solid-State Supercapacitor. ACS Appl Energy Mater 2020;3:1559-68. [DOI: 10.1021/acsaem.9b02044] [Cited by in Crossref: 26] [Article Influence: 13.0] [Reference Citation Analysis]
234 Kalsoom U, Waheed S, Paull B. Fabrication of Humidity Sensor Using 3D Printable Polymer Composite Containing Boron-Doped Diamonds and LiCl. ACS Appl Mater Interfaces 2020;12:4962-9. [PMID: 31904928 DOI: 10.1021/acsami.9b22519] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
235 Vasilescu A, Hrinczenko B, Swain GM, Peteu SF. Exhaled breath biomarker sensing. Biosens Bioelectron 2021;182:113193. [PMID: 33799031 DOI: 10.1016/j.bios.2021.113193] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
236 Rodriguez RD, Khalelov A, Postnikov PS, Lipovka A, Dorozhko E, Amin I, Murastov GV, Chen J, Sheng W, Trusova ME, Chehimi MM, Sheremet E. Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics. Mater Horiz 2020;7:1030-41. [DOI: 10.1039/c9mh01950b] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
237 Raza W, Krupanidhi SB. Engineering Defects in Graphene Oxide for Selective Ammonia and Enzyme-Free Glucose Sensing and Excellent Catalytic Performance for para-Nitrophenol Reduction. ACS Appl Mater Interfaces 2018;10:25285-94. [PMID: 30035528 DOI: 10.1021/acsami.8b05162] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
238 Wu J, Wu Z, Ding H, Wei Y, Yang X, Li Z, Yang B, Liu C, Qiu L, Wang X. Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater. ACS Appl Mater Interfaces 2019;11:43383-92. [DOI: 10.1021/acsami.9b16336] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 8.7] [Reference Citation Analysis]
239 Tuo W, Bouquet J, Taran F, Le Gall T. A FRET probe for the detection of alkylating agents. Chem Commun 2019;55:8655-8. [DOI: 10.1039/c9cc04391h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
240 Bilisik K, Akter M. Graphene nanocomposites: A review on processes, properties, and applications. Journal of Industrial Textiles. [DOI: 10.1177/15280837211024252] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
241 Haddara YM, Howlader MMR. Integration of Heterogeneous Materials for Wearable Sensors. Polymers (Basel) 2018;10:E60. [PMID: 30966123 DOI: 10.3390/polym10010060] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
242 Guo S, Yang D, Zhang S, Dong Q, Li B, Tran N, Li Z, Xiong Y, Zaghloul ME. Development of a Cloud‐Based Epidermal MoSe 2 Device for Hazardous Gas Sensing. Adv Funct Mater 2019;29:1900138. [DOI: 10.1002/adfm.201900138] [Cited by in Crossref: 36] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]