1 |
Zhou Z, Chen Z, Ma D, Wang J. Porous WO3·2H2O film with large optical modulation and high coloration efficiency for electrochromic smart window. Solar Energy Materials and Solar Cells 2023;253:112226. [DOI: 10.1016/j.solmat.2023.112226] [Reference Citation Analysis]
|
2 |
Tang D, Wang J, Liu XA, Tong Z, Ji H, Qu HY. Low-Spin Fe Redox-Based Prussian Blue with excellent selective dual-band electrochromic modulation and energy-saving applications. J Colloid Interface Sci 2023;636:351-62. [PMID: 36638574 DOI: 10.1016/j.jcis.2023.01.017] [Reference Citation Analysis]
|
3 |
Qu X, Liu Z, Zhou L, Chu D, Wang J, Yang Y. Porous polyoxotungstate/MXene hybrid films allowing for visualization of the energy storage status in high-performance electrochromic supercapacitors. Dalton Trans 2023. [PMID: 36939077 DOI: 10.1039/d2dt03937k] [Reference Citation Analysis]
|
4 |
Ding Y, Wang M, Mei Z, Diao X. Flexible Inorganic All-Solid-State Electrochromic Devices toward Visual Energy Storage and Two-Dimensional Color Tunability. ACS Appl Mater Interfaces 2023. [PMID: 36926798 DOI: 10.1021/acsami.2c20986] [Reference Citation Analysis]
|
5 |
Sarmah S, Kashyap SS, Bera MK. Dual Redox-Responsive Os/Ru-Based Alternated Heterobimetallic Supramolecular Polymer as a Multicolor Electrochromic Material for Camouflage Devices. ACS Appl Electron Mater 2023. [DOI: 10.1021/acsaelm.2c01765] [Reference Citation Analysis]
|
6 |
Zhang W, Zhang C, Liu J, Wang X, Zhu S. Fabrication of nanostructured polythiophene derivative films and their applications in large-size electrochromic devices. Solar Energy Materials and Solar Cells 2023;251:112146. [DOI: 10.1016/j.solmat.2022.112146] [Reference Citation Analysis]
|
7 |
Guo J, Liang Y, Zhang S, Ma D, Yang T, Zhang W, Li H, Cao S, Zou B. Recent progress in improving strategies of metal oxide-based electrochromic smart window. Green Energy and Resources 2023. [DOI: 10.1016/j.gerr.2023.100007] [Reference Citation Analysis]
|
8 |
Xu M, Wang S, Zhou S, Ding Z, Xu H, Zhao J, Li Y. Fast‐Switching Speed and Ultralong Lifespan Au/Prussian Blue Electrochromic Film for Iris Devices Applications. Adv Materials Inter 2023. [DOI: 10.1002/admi.202201765] [Reference Citation Analysis]
|
9 |
Song J, Huang B, Xu Y, Yang K, Li Y, Mu Y, Du L, Yun S, Kang L. A Low Driving-Voltage Hybrid-Electrolyte Electrochromic Window with Only Ferreous Redox Couples. Nanomaterials (Basel) 2023;13. [PMID: 36616123 DOI: 10.3390/nano13010213] [Reference Citation Analysis]
|
10 |
Zhao S, Wang B, Zhu N, Huang Y, Wang F, Li R, Zhao Y, Jiang Q, Wu X, Zhang R. Dual‐band electrochromic materials for energy‐saving smart windows. Carbon Neutralization 2022. [DOI: 10.1002/cnl2.38] [Reference Citation Analysis]
|
11 |
Chen R, Ma H, Ma X, Ai T, Chai Y, Zhang H, Li F, Wang X, Li C, Ji J, Xue M. Polymer Crystallization Regulation in Liquid Phase Enables Wearable Full-Featured Thermoplastic-Based Smart Janus Film. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141163] [Reference Citation Analysis]
|
12 |
Su Y, Wang Y, Lu Z, Tian M, Wang F, Wang M, Diao X, Zhong X. A dual-function device with high coloring efficiency based on a highly stable electrochromic nanocomposite material. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141075] [Reference Citation Analysis]
|
13 |
Zhang H, Sun F, Feng J, Ling H, Zhou D, Cao G, Wang S, Su F, Tian Y, Tian Y. A stable, self-regulating, flexible, ITO-free electrochromic smart window for energy-efficient buildings. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.101193] [Reference Citation Analysis]
|
14 |
Corrales J, Acosta J, Castro S, Riascos H, Serna-Galvis E, Torres-Palma RA, Ávila-Torres Y. Manganese Dioxide Nanoparticles Prepared by Laser Ablation as Materials with Interesting Electronic, Electrochemical, and Disinfecting Properties in Both Colloidal Suspensions and Deposited on Fluorine-Doped Tin Oxide. Nanomaterials (Basel) 2022;12. [PMID: 36432347 DOI: 10.3390/nano12224061] [Reference Citation Analysis]
|
15 |
Jin S, Gao C, Guo J, Fang M, Gao Q, Ren X, Chao M, Liang E. Effects of crystal structure and morphology on the electrochromic properties of Cs WO3. Solid State Ionics 2022;385:116011. [DOI: 10.1016/j.ssi.2022.116011] [Reference Citation Analysis]
|
16 |
Xie H, Wang Y, Liu H, Wang H, Li Y, Qi X, Liang T, Zeng J. Electrochromic electrode with high optical contrast and long cyclic life using nest-like porous doped-Sm WO3 films. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.10.347] [Reference Citation Analysis]
|
17 |
Xu M, Li K, Wang S, Zhou S, Zhang H, Xu H, Zhao J, Li Y. Designing TiO2/Au/Prussian blue heterostructures nanorod arrays for ultra-stable cycle and ultra-fast response electrochromism. Nano Res . [DOI: 10.1007/s12274-022-4928-8] [Reference Citation Analysis]
|
18 |
Ding Y, Wang M, Mei Z, Diao X. Novel Prussian White@MnO2-Based Inorganic Electrochromic Energy Storage Devices with Integrated Flexibility, Multicolor, and Long Life. ACS Appl Mater Interfaces 2022. [PMID: 36269142 DOI: 10.1021/acsami.2c12484] [Reference Citation Analysis]
|
19 |
Li C, Zhen M, Sun B, Hong Y, Xiong J, Xue W, Li X, Guo Z, Liu L. Towards two-dimensional color tunability of all-solid-state electrochromic devices using carbon dots. Front Chem 2022;10:1001531. [DOI: 10.3389/fchem.2022.1001531] [Reference Citation Analysis]
|
20 |
Zhao L, Chen Z, Peng Y, Yang L, Ai J, Zhou J, Miao L. High-performance complementary electrochromic energy storage device based on tungsten trioxide and manganese dioxide films. Sustainable Materials and Technologies 2022;32:e00445. [DOI: 10.1016/j.susmat.2022.e00445] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|