1 |
Langari MM, Nikzad M, Labidi J. Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydr Polym 2023;304:120509. [PMID: 36641173 DOI: 10.1016/j.carbpol.2022.120509] [Reference Citation Analysis]
|
2 |
Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2023;229:105-22. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Reference Citation Analysis]
|
3 |
Seydibeyoğlu MÖ, Dogru A, Wang J, Rencheck M, Han Y, Wang L, Seydibeyoğlu EA, Zhao X, Ong K, Shatkin JA, Shams Es-Haghi S, Bhandari S, Ozcan S, Gardner DJ. Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers (Basel) 2023;15. [PMID: 36850267 DOI: 10.3390/polym15040984] [Reference Citation Analysis]
|
4 |
Li N, Huang G, Liu Y, Qu C, Li M, Xiao H. Performance Deficiency Improvement of CNT-Based Strain Sensors by Magnetic-Induced Patterning. ACS Appl Mater Interfaces 2023;15:5774-86. [PMID: 36689203 DOI: 10.1021/acsami.2c18036] [Reference Citation Analysis]
|
5 |
Zhu S, Kumar Biswas S, Qiu Z, Yue Y, Fu Q, Jiang F, Han J. Transparent wood-based functional materials via a top-down approach. Progress in Materials Science 2023;132:101025. [DOI: 10.1016/j.pmatsci.2022.101025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Li S, Hwang T, Seo J, Ko E, Tsogbayar D, Khan MRR, Lee HS. An Effective Methodology for Achieving Highly Reliable Physical Sensors with High Sensitivity and Low Hysteresis through Parallel‐Structured Piezoresistors. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201773] [Reference Citation Analysis]
|
7 |
Zeng W, Deng L, Yang G. Self-Healable Elastomeric Network with Dynamic Disulfide, Imine, and Hydrogen Bonds for Flexible Strain Sensor. Chemistry 2023;:e202203478. [PMID: 36694013 DOI: 10.1002/chem.202203478] [Reference Citation Analysis]
|
8 |
Wu S, Moody K, Kollipara A, Zhu Y. Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS Appl Mater Interfaces 2023;15:1798-807. [PMID: 36548931 DOI: 10.1021/acsami.2c16741] [Reference Citation Analysis]
|
9 |
Luo G, Xie J, Liu J, Zhang Q, Luo Y, Li M, Zhou W, Chen K, Li Z, Yang P, Zhao L, Siong Teh K, Wang X, Dong L, Maeda R, Jiang Z. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. Chemical Engineering Journal 2023;451:138549. [DOI: 10.1016/j.cej.2022.138549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
10 |
Zhang X. Dry and frost resistance conductive hydrogels based on carbon nanotubes hybrids for use as flexible strain sensor. Sensors and Actuators A: Physical 2023. [DOI: 10.1016/j.sna.2022.114143] [Reference Citation Analysis]
|
11 |
Liu Y, Zhang L, Nie H, Sheng H, Li H. Balanced Mechanical and Biotribological Properties of Polymer Composites Reinforced by a 3D Interlocked Si3N4 Nanowire Membrane. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c19535] [Reference Citation Analysis]
|
12 |
Li S, Fu Q, Pan C. A multi-functional wearable sensor based on carbon nanomaterials reinforced TPU fiber with high sensitivity. Journal of Alloys and Compounds 2022;927:167041. [DOI: 10.1016/j.jallcom.2022.167041] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
13 |
Shan C, Che M, Cholewinski A, Ki Kunihiro J, Yim EK, Su R, Zhao B. Adhesive hydrogels tailored with cellulose nanofibers and ferric ions for highly sensitive strain sensors. Chemical Engineering Journal 2022;450:138256. [DOI: 10.1016/j.cej.2022.138256] [Reference Citation Analysis]
|
14 |
Chen S, Li Z, Huang J, Sha L, Lu Z. Electrically Conductive Yet Insulating Aramid Nanofiber Janus Films via Gel-Gel Assembling for Flexible Motion Sensing and Joule Heating. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141021] [Reference Citation Analysis]
|
15 |
Zhu S, Lu Y, Wang S, Sun H, Yue Y, Xu X, Mei C, Xiao H, Fu Q, Han J. Interface design of stretchable and environment-tolerant strain sensors with hierarchical nanocellulose-supported graphene nanocomplexes. Composites Part A: Applied Science and Manufacturing 2022. [DOI: 10.1016/j.compositesa.2022.107313] [Reference Citation Analysis]
|
16 |
Wu S, Liu P, Tong W, Li J, Xu G, Teng F, Liu J, Feng H, Hu R, Yang A, Liu C, Xing K, Yang X, Tian H, Song A, Yang X, Huang Y. An ultra-sensitive core-sheath fiber strain sensor based on double strain layered structure with cracks and modified MWCNTs/silicone rubber for wearable medical electronics. Composites Science and Technology 2022. [DOI: 10.1016/j.compscitech.2022.109816] [Reference Citation Analysis]
|
17 |
Zhao R, Songfeng E, Ning D, Ma Q, Geng B, Lu Z. Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions. Composites Communications 2022;35:101322. [DOI: 10.1016/j.coco.2022.101322] [Reference Citation Analysis]
|
18 |
Sun H, Lu Y, Chen Y, Yue Y, Jiang S, Xu X, Mei C, Xiao H, Han J. Flexible environment-tolerant electroluminescent devices based on nanocellulose-mediated transparent electrodes. Carbohydrate Polymers 2022;296:119891. [DOI: 10.1016/j.carbpol.2022.119891] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
E Y, Ju Y, Wang Z, Chang Z, Jiang J, Li P, Lei F, Yao X, Wang K. Tunable and Self-Healing Properties of Polysaccharide-Based Hydrogels through Polymer Architecture Modulation. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c05125] [Reference Citation Analysis]
|
20 |
Wang W, Li Z, Xu H, Qiao L, Zhang X, Zhao Y, Dong Z, Huang H, Zhao X, Guo B. Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability. Materials & Design 2022;222:111041. [DOI: 10.1016/j.matdes.2022.111041] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
21 |
Zhang X, Li Z, Liu C, Shan J, Guo X, Zhao X, Ding J, Yang H. Silver Nanowire/Silver/Poly(dimethylsiloxane) as Strain Sensors for Motion Monitoring. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03901] [Reference Citation Analysis]
|
22 |
Wang S, Zhang D, He X, Zhou J, Zhou Y, Wang X, Wang Z, Liu S, Zheng SY, Yang J. Anti-Swelling Zwitterionic Hydrogels as Multi-Modal Underwater Sensors and All-in-One Supercapacitors. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01202] [Reference Citation Analysis]
|
23 |
Jiang Y, Zhang Y, Wang Z, An Q, Xiao Z, Xiao L, Zhai S. Cotton-derived green sustainable membrane with tailored wettability interface: Synergy of lignin and ethyl cellulose. Industrial Crops and Products 2022;183:114993. [DOI: 10.1016/j.indcrop.2022.114993] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Zhang H, Zhang M, Li J, Bai Y, Tan X. Preparation of novel composite aerogel with conductive and antibacterial via constructing three-dimensional crosslinked structure. Reactive and Functional Polymers 2022;178:105361. [DOI: 10.1016/j.reactfunctpolym.2022.105361] [Reference Citation Analysis]
|
25 |
Kumar S, Ngasainao MR, Sharma D, Sengar M, Gahlot APS, Shukla S, Kumari P. Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Tipu JAK, Rafiq U, Arif M, Feroze T, Waqar H, Masood Chaudry U, Jun T, Aslam Noon A. Development of Multiscale Composite with Hybrid Natural Nanofibers. Materials 2022;15:4622. [DOI: 10.3390/ma15134622] [Reference Citation Analysis]
|
27 |
Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose. [DOI: 10.1007/s10570-022-04667-7] [Reference Citation Analysis]
|
28 |
Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Journal of Colloid and Interface Science 2022;615:215-26. [DOI: 10.1016/j.jcis.2022.01.117] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
|
29 |
Jia L, Wu S, Yuan R, Xiang T, Zhou S. Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity. ACS Appl Mater Interfaces 2022. [PMID: 35642788 DOI: 10.1021/acsami.2c04614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
30 |
Yu X, Zhang H, Wang Y, Fan X, Li Z, Zhang X, Liu T. Highly Stretchable, Ultra‐Soft, and Fast Self‐Healable Conductive Hydrogels Based on Polyaniline Nanoparticles for Sensitive Flexible Sensors. Adv Funct Materials. [DOI: 10.1002/adfm.202204366] [Reference Citation Analysis]
|
31 |
Yu M, Liu W, Zhang H, Liu G, Luo F, Cao D. Construction of high-performance polymer hydrogel composite materials for artificial bionic organs. Journal of Experimental Nanoscience 2022;17:339-50. [DOI: 10.1080/17458080.2022.2073999] [Reference Citation Analysis]
|
32 |
Haq B, Aziz MA, Al Shehri D, Muhammed NS, Basha SI, Hakeem AS, Qasem MAA, Lardhi M, Iglauer S. Date-Leaf Carbon Particles for Green Enhanced Oil Recovery. Nanomaterials 2022;12:1245. [DOI: 10.3390/nano12081245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|