1 |
Hu P, Zhang Y, Zhou S, Chen T, Wang D, Liu T, Wang Y, Chen J, Wang Z, Xu J, Fu J. A highly stretchable, fast self-healing elastomer with fast, tough, repeatable adhesion. Chemical Engineering Journal 2023;464:142543. [DOI: 10.1016/j.cej.2023.142543] [Reference Citation Analysis]
|
2 |
Xin Y, Liang J, Ren L, Gao W, Qiu W, Li Z, Qu B, Peng A, Ye Z, Fu J, Zeng G, He X. Tough, Healable, and Sensitive Strain Sensor Based on Multiphysically Cross-Linked Hydrogel for Ionic Skin. Biomacromolecules 2023;24:1287-98. [PMID: 36745900 DOI: 10.1021/acs.biomac.2c01335] [Reference Citation Analysis]
|
3 |
Dong S, Li L, Wu Y, Huang X, Wang X. Preparation and Study of Polyvinyl Alcohol Gel Structures with Acrylamide and 2-Acrylamido-2-methyl-1-propanesulfonic Acid for Application in Saline Oil Reservoirs for Profile Modification. ACS Appl Mater Interfaces 2023. [PMID: 36883961 DOI: 10.1021/acsami.2c22911] [Reference Citation Analysis]
|
4 |
Liang Q, Shen Z, Sun X, Yu D, Liu K, Mugo SM, Chen W, Wang D, Zhang Q. Electron Conductive and Transparent Hydrogels for Recording Brain Neural Signals and Neuromodulation. Adv Mater 2023;35:e2211159. [PMID: 36563409 DOI: 10.1002/adma.202211159] [Reference Citation Analysis]
|
5 |
Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2023;229:105-22. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Reference Citation Analysis]
|
6 |
Lu Y, Yue Y, Ding Q, Mei C, Xu X, Jiang S, He S, Wu Q, Xiao H, Han J. Environment‐tolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InfoMat 2023. [DOI: 10.1002/inf2.12409] [Reference Citation Analysis]
|
7 |
Andriukonis E, Butkevicius M, Simonis P, Ramanavicius A. Development of a Disposable Polyacrylamide Hydrogel-Based Semipermeable Membrane for Micro Ag/AgCl Reference Electrode. Sensors (Basel) 2023;23. [PMID: 36904713 DOI: 10.3390/s23052510] [Reference Citation Analysis]
|
8 |
Yu JY, Moon SE, Kim JH, Kang SM. Ultrasensitive and Highly Stretchable Multiple-Crosslinked Ionic Hydrogel Sensors with Long-Term Stability. Nanomicro Lett 2023;15:51. [PMID: 36790572 DOI: 10.1007/s40820-023-01015-7] [Reference Citation Analysis]
|
9 |
Huang Y, Peng C, Li Y, Yang Y, Feng W. Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications. Aggregate 2023. [DOI: 10.1002/agt2.319] [Reference Citation Analysis]
|
10 |
Zhang X. High-sensitivity antidrying hydrogel sensor with interpenetrating network crosslinking structure. J Mater Sci: Mater Electron 2023;34:540. [DOI: 10.1007/s10854-023-10006-8] [Reference Citation Analysis]
|
11 |
Zhu S, Kumar Biswas S, Qiu Z, Yue Y, Fu Q, Jiang F, Han J. Transparent wood-based functional materials via a top-down approach. Progress in Materials Science 2023;132:101025. [DOI: 10.1016/j.pmatsci.2022.101025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Zha X, Li J, Liang G, Pu J, Zhang Z, Wang B, Huang J, Jia J, Zhao X, Pan K, Dong M, Ke K, Kang Y, Yang W. Anti-fatigue ionic gels for long-term multimodal respiratory abnormality monitoring. Journal of Materials Science & Technology 2023. [DOI: 10.1016/j.jmst.2022.12.031] [Reference Citation Analysis]
|
13 |
Chen X, Zhang D, Luan H, Yang C, Yan W, Liu W. Flexible Pressure Sensors Based on Molybdenum Disulfide/Hydroxyethyl Cellulose/Polyurethane Sponge for Motion Detection and Speech Recognition Using Machine Learning. ACS Appl Mater Interfaces 2023;15:2043-53. [PMID: 36571453 DOI: 10.1021/acsami.2c16730] [Reference Citation Analysis]
|
14 |
Dong L, Zhou X, Zheng S, Luo Z, Nie Y, Feng X, Zhu J, Wang Z, Lu X, Mu L. Liquid Metal @ Mxene Spring Supports Ionic Gel with Excellent Mechanical Properties for High-Sensitivity Wearable Strain Sensor. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141370] [Reference Citation Analysis]
|
15 |
Gao M, Zhao R, Kang B, Zhao Z, Song S. High-performance ionic conductive double-network hydrogel enabling a long-term flexible strain sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023. [DOI: 10.1016/j.colsurfa.2023.131051] [Reference Citation Analysis]
|
16 |
Luo G, Xie J, Liu J, Zhang Q, Luo Y, Li M, Zhou W, Chen K, Li Z, Yang P, Zhao L, Siong Teh K, Wang X, Dong L, Maeda R, Jiang Z. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. Chemical Engineering Journal 2023;451:138549. [DOI: 10.1016/j.cej.2022.138549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
17 |
Guo X, Lu Y, Fu D, Yu C, Yang X, Zhong W. Ultrahigh ionic conductivity and alkaline tolerance of poly(amidoxime)-based hydrogel for high performance piezoresistive sensor. Chemical Engineering Journal 2023;452:139208. [DOI: 10.1016/j.cej.2022.139208] [Reference Citation Analysis]
|
18 |
Zhang X. Dry and frost resistance conductive hydrogels based on carbon nanotubes hybrids for use as flexible strain sensor. Sensors and Actuators A: Physical 2023. [DOI: 10.1016/j.sna.2022.114143] [Reference Citation Analysis]
|
19 |
Hou W, Yu X, Li Y, Wei Y, Ren J. Ultrafast Self-Healing, Highly Stretchable, Adhesive, and Transparent Hydrogel by Polymer Cluster Enhanced Double Networks for Both Strain Sensors and Environmental Remediation Application. ACS Appl Mater Interfaces 2022;14:57387-98. [PMID: 36512607 DOI: 10.1021/acsami.2c17773] [Reference Citation Analysis]
|
20 |
Xinmin Huang, Wang C, Ao X, Li C, Yang L. Preparation and Properties of Cellulose Nanofiber-Reinforced Ionic Conductive Hydrogels Sensor. Polym Sci Ser A 2022. [DOI: 10.1134/s0965545x22700420] [Reference Citation Analysis]
|
21 |
Xie X, Xi J, Dai Y, Yuan T, Li Y, Wang X. Improving Biomass-Degradation Properties and Nano-Mechanics of Moso Bamboo via a Simple Nitrogen Heat Treatment. Forests 2022;13:2059. [DOI: 10.3390/f13122059] [Reference Citation Analysis]
|
22 |
Li D, Zhan W, Zuo W, Li L, Zhang J, Cai G, Tian Y. Elastic, tough and switchable swelling hydrogels with high entanglements and low crosslinks for water remediation. Chemical Engineering Journal 2022;450:138417. [DOI: 10.1016/j.cej.2022.138417] [Reference Citation Analysis]
|
23 |
Chen S, Li Z, Huang J, Sha L, Lu Z. Electrically Conductive Yet Insulating Aramid Nanofiber Janus Films via Gel-Gel Assembling for Flexible Motion Sensing and Joule Heating. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141021] [Reference Citation Analysis]
|
24 |
Deng X, Wang W, Wei N, Luo C. From grape seed extract to highly sensitive sensors with adhesive, self-healable and biocompatible properties. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111751] [Reference Citation Analysis]
|
25 |
Lei Z, Sathish C, Geng X, Guan X, Liu Y, Wang L, Qiao L, Vinu A, Yi J. Manipulation of ferromagnetism in intrinsic two-dimensional magnetic and nonmagnetic materials. Matter 2022;5:4212-4273. [DOI: 10.1016/j.matt.2022.11.017] [Reference Citation Analysis]
|
26 |
Guan Y, Liu X, Xu X, Wei D. Ultrasonic dispersion of multi-walled carbon nanotubes aided by pyrene-polyether dispersants and Al2O3 particles. J Mater Sci 2022. [DOI: 10.1007/s10853-022-07966-3] [Reference Citation Analysis]
|
27 |
Xiong L, Jin S, Zhang F, Li K, Li J, Mei C, Han J, Xiao H, Seidi F. Bioinspired fabrication of self-recovery, adhesive, and flexible conductive hydrogel sensor driven by dynamic borate ester bonds and tannic acid-mediated noncovalent network. European Polymer Journal 2022;180:111636. [DOI: 10.1016/j.eurpolymj.2022.111636] [Reference Citation Analysis]
|
28 |
Lv Z, Cao L, Ren J, Ling S. Understanding the mechanical “shakedown” of hydrogel ionotronics for realizing their highly functional stability. Polymer 2022. [DOI: 10.1016/j.polymer.2022.125498] [Reference Citation Analysis]
|
29 |
Xu C, Guan S, Dong X, Qi M. Super Strong Gelatin/Cellulose Nanofiber Hybrid Hydrogels without Covalent Cross-Linking for Strain Sensor and Supercapacitor. Composites Part A: Applied Science and Manufacturing 2022. [DOI: 10.1016/j.compositesa.2022.107287] [Reference Citation Analysis]
|
30 |
Bian Z, Li Y, Sun H, Shi M, Zheng Y, Liu H, Liu C, Shen C. Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120300] [Reference Citation Analysis]
|
31 |
E Y, Ju Y, Wang Z, Chang Z, Jiang J, Li P, Lei F, Yao X, Wang K. Tunable and Self-Healing Properties of Polysaccharide-Based Hydrogels through Polymer Architecture Modulation. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c05125] [Reference Citation Analysis]
|
32 |
He P, Dai L, Wei J, Zhu X, Li J, Chen Z, Ni Y. Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. Int J Biol Macromol 2022:S0141-8130(22)02153-5. [PMID: 36179866 DOI: 10.1016/j.ijbiomac.2022.09.214] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
33 |
Jiang Y, Feng W, Chen Y, Gu J, Wang W, Yu D. Adhesive conductive hydrogels with wrinkled Janus surface and ultra-high sensitivity used as strain sensors. Cellulose. [DOI: 10.1007/s10570-022-04846-6] [Reference Citation Analysis]
|
34 |
Wang S, Zhang D, He X, Zhou J, Zhou Y, Wang X, Wang Z, Liu S, Zheng SY, Yang J. Anti-Swelling Zwitterionic Hydrogels as Multi-Modal Underwater Sensors and All-in-One Supercapacitors. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01202] [Reference Citation Analysis]
|
35 |
Pan M, Wu M, Shui T, Xiang L, Yang W, Wang W, Liu X, Wang J, Chen X, Zeng H. Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. Journal of Colloid and Interface Science 2022;622:612-24. [DOI: 10.1016/j.jcis.2022.04.119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
36 |
Zhang H, Zhang M, Li J, Bai Y, Tan X. Preparation of novel composite aerogel with conductive and antibacterial via constructing three-dimensional crosslinked structure. Reactive and Functional Polymers 2022;178:105361. [DOI: 10.1016/j.reactfunctpolym.2022.105361] [Reference Citation Analysis]
|
37 |
Li W, Zhang J, Niu J, Jin X, Qian X, Xiao C, Wang W. Self-powered and high sensitivity ionic skins by using versatile organogel. Nano Energy 2022;99:107359. [DOI: 10.1016/j.nanoen.2022.107359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
38 |
Kumar S, Ngasainao MR, Sharma D, Sengar M, Gahlot APS, Shukla S, Kumari P. Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Wang D, Zhang J, Fan C, Xing J, Wei A, Xu W, Feng Q, Wei Q. A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Composites Part B: Engineering 2022;243:110116. [DOI: 10.1016/j.compositesb.2022.110116] [Reference Citation Analysis]
|
40 |
Jin X, Wang S, Sang C, Yue Y, Xu X, Mei C, Xiao H, Lou Z, Han J. Patternable Nanocellulose/Ti3C2Tx Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS Appl Mater Interfaces 2022. [PMID: 35861436 DOI: 10.1021/acsami.2c11567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Ling Z, Ma J, Zhang S, Shao L, Wang C, Ma J. Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application. Int J Biol Macromol 2022:S0141-8130(22)01398-8. [PMID: 35788003 DOI: 10.1016/j.ijbiomac.2022.06.185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
42 |
Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose. [DOI: 10.1007/s10570-022-04667-7] [Reference Citation Analysis]
|
43 |
Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Journal of Colloid and Interface Science 2022;615:215-26. [DOI: 10.1016/j.jcis.2022.01.117] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
|
44 |
Jia L, Wu S, Yuan R, Xiang T, Zhou S. Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity. ACS Appl Mater Interfaces 2022. [PMID: 35642788 DOI: 10.1021/acsami.2c04614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
45 |
Yu X, Zhang H, Wang Y, Fan X, Li Z, Zhang X, Liu T. Highly Stretchable, Ultra‐Soft, and Fast Self‐Healable Conductive Hydrogels Based on Polyaniline Nanoparticles for Sensitive Flexible Sensors. Adv Funct Materials. [DOI: 10.1002/adfm.202204366] [Reference Citation Analysis]
|
46 |
Yu M, Liu W, Zhang H, Liu G, Luo F, Cao D. Construction of high-performance polymer hydrogel composite materials for artificial bionic organs. Journal of Experimental Nanoscience 2022;17:339-50. [DOI: 10.1080/17458080.2022.2073999] [Reference Citation Analysis]
|
47 |
Feng Q, Zhang C, Yin R, Yin A, Chen Y, Wang H, Yang Z, Li K, Zhao W. Self-Powered Multifunctional Electronic Skin Based on Carbon Nanotubes/Poly(dimethylsiloxane) for Health Monitoring. ACS Appl Mater Interfaces 2022;14:21406-17. [PMID: 35476393 DOI: 10.1021/acsami.1c25077] [Reference Citation Analysis]
|
48 |
Li X, Yang C, Chen Z, Liu S, Li J, Li S. Multipurpose Solar-Thermal Hydrogel Platform for Desalination of Seawater and Subsequent Collection of Atmospheric Water. ACS EST Water 2022. [DOI: 10.1021/acsestwater.2c00067] [Reference Citation Analysis]
|
49 |
Zai Z, Yan M, Shi C, Zhang L, Lu H, Xiong Z, Ma J. Cellulose nanofibrils (CNFs) in uniform diameter: Capturing the impact of carboxyl group on dispersion and Re-dispersion of CNFs suspensions. International Journal of Biological Macromolecules 2022;207:23-30. [DOI: 10.1016/j.ijbiomac.2022.03.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
50 |
Li M, Chen D, Sun X, Xu Z, Yang Y, Song Y, Jiang F. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Carbohydrate Polymers 2022;284:119199. [DOI: 10.1016/j.carbpol.2022.119199] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
|
51 |
Awasthi S, Gaur JK, Bobji MS, Srivastava C. Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. J Mater Sci. [DOI: 10.1007/s10853-022-07146-3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
52 |
Haq B, Aziz MA, Al Shehri D, Muhammed NS, Basha SI, Hakeem AS, Qasem MAA, Lardhi M, Iglauer S. Date-Leaf Carbon Particles for Green Enhanced Oil Recovery. Nanomaterials 2022;12:1245. [DOI: 10.3390/nano12081245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
53 |
Zainul Armir NA, Mohd Salleh K, Zulkifli A, Zakaria S. pH-responsive ampholytic regenerated cellulose hydrogel integrated with carrageenan and chitosan. Industrial Crops and Products 2022;178:114588. [DOI: 10.1016/j.indcrop.2022.114588] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
54 |
Horta-velázquez A, Morales-narváez E. Nanocellulose in wearable sensors. Green Analytical Chemistry 2022;1:100009. [DOI: 10.1016/j.greeac.2022.100009] [Reference Citation Analysis]
|
55 |
Wei Y, Qian Y, Zhu P, Xiang L, Lei C, Qiu G, Wang C, Liu Y, Liu Y, Chen G. Nanocellulose-templated carbon nanotube enhanced conductive organohydrogel for highly-sensitive strain and temperature sensors. Cellulose. [DOI: 10.1007/s10570-022-04516-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
Wang M, Chen H, Li X, Wang G, Peng C, Wang W, Zhang F, Wang J, Liu H, Yan G, Qin H. An extremely transparent and multi-responsive healable hydrogel strain sensor. J Mater Chem A 2022. [DOI: 10.1039/d2ta06218f] [Reference Citation Analysis]
|
57 |
Zulaikha W, Hassan MZ, Ismail Z. Recent development of natural fibre for nanocellulose extraction and application. Materials Today: Proceedings 2022;66:2265-2273. [DOI: 10.1016/j.matpr.2022.06.221] [Reference Citation Analysis]
|
58 |
Zhu S, Sun H, Lu Y, Wang S, Yue Y, Xu X, Mei C, Xiao H, Fu Q, Han J. Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Appl Mater Interfaces 2021;13:59142-53. [PMID: 34851617 DOI: 10.1021/acsami.1c19482] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
|