BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Guo J, Yu Y, Zhang H, Sun L, Zhao Y. Elastic MXene Hydrogel Microfiber-Derived Electronic Skin for Joint Monitoring. ACS Appl Mater Interfaces 2021;13:47800-6. [PMID: 34590841 DOI: 10.1021/acsami.1c10311] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Li K, Yang X, Dong X, Cao H, Zhuang S, Gu X. Easy regulation of chitosan-based hydrogel microstructure with citric acid as an efficient buffer. Carbohydrate Polymers 2023;300:120258. [DOI: 10.1016/j.carbpol.2022.120258] [Reference Citation Analysis]
2 Guo J, Luo Z, Wang F, Gu H, Li M. Responsive hydrogel microfibers for biomedical engineering. Smart Medicine 2022. [DOI: 10.1002/smmd.20220003] [Reference Citation Analysis]
3 Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, Hou C, Cao Y, Zhou W, Liu H, Cuniberti G. Toward Smart Sensing by MXene. Small 2022. [DOI: 10.1002/smll.202206126] [Reference Citation Analysis]
4 Chen S, Huang W. A review related to MXene preparation and its sensor arrays of electronic skins. Analyst 2022. [PMID: 36468668 DOI: 10.1039/d2an01143c] [Reference Citation Analysis]
5 Pang J, Peng S, Hou C, Wang X, Wang T, Cao Y, Zhou W, Sun D, Wang K, Rümmeli MH, Cuniberti G, Liu H. Applications of MXenes in human-like sensors and actuators. Nano Res 2022. [DOI: 10.1007/s12274-022-5272-8] [Reference Citation Analysis]
6 Liang J, He J, Xin Y, Gao W, Zeng G, He X. MXene Reinforced PAA/PEDOT:PSS/MXene Conductive Hydrogel for Highly Sensitive Strain Sensors. Macro Materials & Eng 2022. [DOI: 10.1002/mame.202200519] [Reference Citation Analysis]
7 Igwe Idumah C. Recent trends in MXene polymeric Hydrogel bionanoarchitectures and applications. Cleaner Materials 2022;5:100103. [DOI: 10.1016/j.clema.2022.100103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ye Y, Jiang F. Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications. Nano Energy 2022;99:107374. [DOI: 10.1016/j.nanoen.2022.107374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang X, Wang X, Yin J, Li N, Zhang Z, Xu Y, Zhang L, Qin Z, Jiao T. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Composites Part B: Engineering 2022;241:110052. [DOI: 10.1016/j.compositesb.2022.110052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. Adv Mater 2022;34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Bai Y, Bi S, Wang W, Ding N, Lu Y, Jiang M, Ding C, Zhao W, Liu N, Bian J, Liu S, Zhao Q. Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Materials. [DOI: 10.1080/1539445x.2022.2081580] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Cao W, Wang Z, Liu X, Zhou Z, Zhang Y, He S, Cui D, Chen F. Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing. Nanomicro Lett 2022;14:119. [PMID: 35505260 DOI: 10.1007/s40820-022-00838-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
13 Huang C, Luo Q, Miao Q, He Z, Fan P, Chen Y, Zhang Q, He X, Li L, Liu X. MXene-based double-network organohydrogel with excellent stretchability, high toughness, anti-drying and wide sensing linearity for strain sensor. Polymer 2022. [DOI: 10.1016/j.polymer.2022.124993] [Reference Citation Analysis]
14 Wang Y, Chen Z, Li N, Zhang H, Wei J. Programmable photo-responsive self-healing hydrogels for optical information coding and encryption. European Polymer Journal 2022;166:111025. [DOI: 10.1016/j.eurpolymj.2022.111025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
15 Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H. Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. ACS Appl Mater Interfaces 2022;14:9126-37. [PMID: 35157422 DOI: 10.1021/acsami.1c23176] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
16 Wen X, Wang H, Ren E, Wang S, Xu J. A robust and sensitive flexible strain sensor based on polyurethane cross-linked composite hydrogels for the detection of human motion. New J Chem . [DOI: 10.1039/d2nj03740h] [Reference Citation Analysis]
17 Yu Y, Wang X, Yang C, Shang L. Twisted fiber batteries for wearable electronic devices. Smart Materials in Medicine 2022;3:1-3. [DOI: 10.1016/j.smaim.2021.11.001] [Reference Citation Analysis]