BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng H, Lin N, He Y, Zuo B. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS Appl Mater Interfaces 2021;13:40013-31. [PMID: 34375080 DOI: 10.1021/acsami.1c08395] [Cited by in Crossref: 36] [Cited by in F6Publishing: 44] [Article Influence: 18.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang L, Wang K, Weng S, Jiang X. Super strong and tough anisotropic hydrogels through synergy of directional freeze-casting, metal complexation and salting out. Chemical Engineering Journal 2023;463:142414. [DOI: 10.1016/j.cej.2023.142414] [Reference Citation Analysis]
2 Xu L, Liu S, Zhu L, Liu Y, Li N, Shi X, Jiao T, Qin Z. Hydroxypropyl methyl cellulose reinforced conducting polymer hydrogels with ultra-stretchability and low hysteresis as highly sensitive strain sensors for wearable health monitoring. Int J Biol Macromol 2023;236:123956. [PMID: 36898462 DOI: 10.1016/j.ijbiomac.2023.123956] [Reference Citation Analysis]
3 Seong M, Kondaveeti S, Choi G, Kim S, Kim J, Kang M, Jeong HE. 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. ACS Appl Mater Interfaces 2023;15:11042-52. [PMID: 36788742 DOI: 10.1021/acsami.2c21704] [Reference Citation Analysis]
4 Kang B, Gao M, Zhao R, Zhao Z, Song S. Multi-environmentally stable and underwater adhesive DNA ionogels enabling flexible strain sensor. Polymer 2023. [DOI: 10.1016/j.polymer.2023.125844] [Reference Citation Analysis]
5 Zhou X, Luo G, Wang H, Xu D, Zeng K, Wu X, Ren D. Development of a novel bamboo cellulose nanofibrils hybrid aerogel with high thermal-insulating performance for fresh strawberry cold-chain logistics. Int J Biol Macromol 2023;229:452-62. [PMID: 36596373 DOI: 10.1016/j.ijbiomac.2022.12.316] [Reference Citation Analysis]
6 Huang Y, Peng C, Li Y, Yang Y, Feng W. Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications. Aggregate 2023. [DOI: 10.1002/agt2.319] [Reference Citation Analysis]
7 Wu Y, Tang J, Ma S, Zhang K, Yan T, Pan Z. A Review of Flexible Strain Sensors Based on Natural Fiber Materials. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201503] [Reference Citation Analysis]
8 Wang S, Li F, Li S, Cao J, Li S, He Z, Xiao H, Wu Y, Shang J, Liu Y, Li R. Strain-induced Conductive Network and Memory Effect of Maximum Strain in Liquid Metal Hierarchical Structure. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.142055] [Reference Citation Analysis]
9 Long Q, Zhang Y, Zhang Q, Xu K, Cao L. Application of poly (dimethyl diallyl ammonium chloride) −reinforced multifunctional poly (vinyl alcohol)/ polyaniline hydrogels as flexible sensor materials. Biochemical Engineering Journal 2023. [DOI: 10.1016/j.bej.2023.108845] [Reference Citation Analysis]
10 Li Y, Yao M, Luo Y, Li J, Wang Z, Liang C, Qin C, Huang C, Yao S. Polydopamine-Reinforced Hemicellulose-Based Multifunctional Flexible Hydrogels for Human Movement Sensing and Self-Powered Transdermal Drug Delivery. ACS Appl Mater Interfaces 2023;15:5883-96. [PMID: 36689627 DOI: 10.1021/acsami.2c19949] [Reference Citation Analysis]
11 Yu Y, Zhao X, Ye L. A Novel Biocompatible Wearable Sensors Based on Poly (vinyl alcohol)/Graphene Oxide Hydrogel with Superior Self-adhesion, Flexibility and Sensitivity. Composite Structures 2023. [DOI: 10.1016/j.compstruct.2023.116768] [Reference Citation Analysis]
12 Nie Z, Peng K, Lin L, Yang J, Cheng Z, Gan Q, Chen Y, Feng C. A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors. Chemical Engineering Journal 2023;454:139843. [DOI: 10.1016/j.cej.2022.139843] [Reference Citation Analysis]
13 Wang R, Chen P, Zhou X, Sun L, Wang G, Liu Y, Gao C. An Eutectic Gel Based on Polymerizable Deep Eutectic Solvent with Self‐Adhesive, Self‐adaptive Cold and High Temperature Environments. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201509] [Reference Citation Analysis]
14 Hou W, Yu X, Li Y, Wei Y, Ren J. Ultrafast Self-Healing, Highly Stretchable, Adhesive, and Transparent Hydrogel by Polymer Cluster Enhanced Double Networks for Both Strain Sensors and Environmental Remediation Application. ACS Appl Mater Interfaces 2022;14:57387-98. [PMID: 36512607 DOI: 10.1021/acsami.2c17773] [Reference Citation Analysis]
15 Zhang H, Xu D, Zhang Y, Li M, Chai R. Silk fibroin hydrogels for biomedical applications. Smart Medicine 2022. [DOI: 10.1002/smmd.20220011] [Reference Citation Analysis]
16 Dai C, Ye C, Ren J, Yang S, Cao L, Yu H, Liu S, Shao Z, Li J, Chen W, Ling S. Humanoid Ionotronic Skin for Smart Object Recognition and Sorting. ACS Materials Lett 2022. [DOI: 10.1021/acsmaterialslett.2c00783] [Reference Citation Analysis]
17 Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids and Surfaces B: Biointerfaces 2022;220:112973. [DOI: 10.1016/j.colsurfb.2022.112973] [Reference Citation Analysis]
18 Yu D, Teng Y, Zhou N, Xu Y, Wang X, Lin X, Wang Q, Xue C. A Low-modulus, Adhesive, and Highly Transparent Hydrogel for Multi-use Flexible Wearable Sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130752] [Reference Citation Analysis]
19 Liu Y, Shen S, Wu Y, Wang M, Cheng Y, Xia H, Jia R, Liu C, Wang Y, Xia Y, Cheng X, Yue Y, Xie Z. Percutaneous Electroosmosis of Berberine-Loaded Ca(2+) Crosslinked Gelatin/Alginate Mixed Hydrogel. Polymers (Basel) 2022;14. [PMID: 36501495 DOI: 10.3390/polym14235101] [Reference Citation Analysis]
20 Zhang Y, Yang F, Huang H, Zhao R, Huang J, Li L, Yu X. Synthesis and characterization of multi-responsive poly(N-isopropylacrylamide)-sodium alginate-graphene oxide composite hydrogels. Polym Bull 2022. [DOI: 10.1007/s00289-022-04581-9] [Reference Citation Analysis]
21 Yang M, Wang Z, Li M, Yin Z, Butt HA. The synthesis, mechanisms, and additives for bio‐compatible polyvinyl alcohol hydrogels: A review on current advances, trends, and future outlook. Vinyl Additive Technology 2022. [DOI: 10.1002/vnl.21962] [Reference Citation Analysis]
22 Chen Z, Cai K, Zhang X, Lv N. An Easy-to-Prepare Conductive Hydrogel for Smart Wearable Materials Based on Acrylic Derivatives and Acrylamide. Applied Sciences 2022;12:11404. [DOI: 10.3390/app122211404] [Reference Citation Analysis]
23 Li W, Tao L, Kang M, Li C, Luo C, He G, Sang T, Wang P. Tunable mechanical, self-healing hydrogels driven by sodium alginate and modified carbon nanotubes for health monitoring. Carbohydrate Polymers 2022;295:119854. [DOI: 10.1016/j.carbpol.2022.119854] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Xu C, Guan S, Dong X, Qi M. Super Strong Gelatin/Cellulose Nanofiber Hybrid Hydrogels without Covalent Cross-Linking for Strain Sensor and Supercapacitor. Composites Part A: Applied Science and Manufacturing 2022. [DOI: 10.1016/j.compositesa.2022.107287] [Reference Citation Analysis]
25 Zhao Y, Guo X, Hong W, Zhu T, Zhang T, Yan Z, Zhu K, Wang J, Zheng G, Mao S, Wang K, Wang Y, Jin C, Tang G, Shao S, Xia Y, Xing G, Hong Q, Xu Y, Wu J. Biologically imitated capacitive flexible sensor with ultrahigh sensitivity and ultralow detection limit based on frog leg structure composites via 3D printing. Composites Science and Technology 2022. [DOI: 10.1016/j.compscitech.2022.109837] [Reference Citation Analysis]
26 Lu S, Samandari M, Li C, Li H, Song D, Zhang Y, Tamayol A, Wang X. Multimodal sensing and therapeutic systems for wound healing and management: A review. Sensors and Actuators Reports 2022;4:100075. [DOI: 10.1016/j.snr.2022.100075] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
27 Zhou B, Li Y, Chen Y, Gao C, Li J, Bai Z, Guo J. In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chemical Engineering Journal 2022;446:137405. [DOI: 10.1016/j.cej.2022.137405] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
28 Zheng H, Chen M, Sun Y, Zuo B. Self-Healing, Wet-Adhesion silk fibroin conductive hydrogel as a wearable strain sensor for underwater applications. Chemical Engineering Journal 2022;446:136931. [DOI: 10.1016/j.cej.2022.136931] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
29 Dong Y, Wang C, Hu Z, Mao S, Wei X, Fu Y, Li J, Han J. A sandwich‐structure, low‐temperature sensitive and recyclable liquid metal organic hydrogel for a wearable strain sensor. J of Applied Polymer Sci. [DOI: 10.1002/app.53174] [Reference Citation Analysis]
30 Zhang L, Hu O, Zhang J, Hou L, Ye D, Jiang X, Xiao G. Preparation of tough and ionic conductive PVA/carboxymethyl chitosan bio-based organohydrogels with long-term stability for strain sensor. Cellulose. [DOI: 10.1007/s10570-022-04844-8] [Reference Citation Analysis]
31 Fan X, Zhao L, Ling Q, Liu J, Gu H. Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors. Polymer 2022;256:125270. [DOI: 10.1016/j.polymer.2022.125270] [Reference Citation Analysis]
32 He Y, Liu K, Zhang C, Guo S, Chang R, Guan F, Yao M. Facile preparation of PVA hydrogels with adhesive, self-healing, antimicrobial, and on-demand removable capabilities for rapid hemostasis. Biomater Sci 2022. [PMID: 35989642 DOI: 10.1039/d2bm00891b] [Reference Citation Analysis]
33 He Z, Zhou Z, Yuan W. Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators. ACS Appl Mater Interfaces 2022. [PMID: 35952384 DOI: 10.1021/acsami.2c10292] [Reference Citation Analysis]
34 Zhang D, Chen J, Liu X, Cheng Z, Feng Y, Wei J, Liu Y. A general tape-coating strategy to construct multifunctional superhydrophobic surfaces with self-adhesion, self-healing, and conductivity on various substrates. Chemical Engineering Journal 2022;441:135935. [DOI: 10.1016/j.cej.2022.135935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Lee W, Cho K, Kim A, Kim G. Injectable Click Fibroin Bioadhesive Derived from Spider Silk for Accelerating Wound Closure and Healing Bone Fracture. Materials 2022;15:5269. [DOI: 10.3390/ma15155269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, Abedi A, Izadifar Z, Mohammadinejad R, Varma RS, Shavandi A. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B 2022. [PMID: 35880440 DOI: 10.1039/d2tb01056a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Yin Y, Guo C, Li H, Yang H, Xiong F, Chen D. The Progress of Research into Flexible Sensors in the Field of Smart Wearables. Sensors 2022;22:5089. [DOI: 10.3390/s22145089] [Reference Citation Analysis]
38 Sun Y, Zhang P, Zhang F, Pu M, Zhong W, Zhang Y, Shen Y, Zuo B. Injectable PEG-induced silk nanofiber hydrogel for vancomycin delivery. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103596] [Reference Citation Analysis]
39 Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Hu O, Lu J, Weng S, Hou L, Zhang X, Jiang X. An adhesive, anti-freezing, and environment stable zwitterionic organohydrogel for flexible all-solid-state supercapacitor. Polymer 2022;254:125109. [DOI: 10.1016/j.polymer.2022.125109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Chen Q, Zhao J, Chen Z, Jin Y, Chen J. High voltage and self-healing zwitterionic double-network hydrogels as electrolyte for zinc-ion hybrid supercapacitor/battery. International Journal of Hydrogen Energy 2022;47:23909-18. [DOI: 10.1016/j.ijhydene.2022.05.195] [Reference Citation Analysis]
42 Ren J, Li M, Li R, Wang X, Li Y, Yang W. Transparent, highly stretchable, adhesive, and sensitive ionic conductive hydrogel strain sensor for human motion monitoring. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.129795] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Sun X, Zhong W, Zhang Z, Liao H, Zhang C. Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays. J Mater Sci 2022;57:12511-21. [DOI: 10.1007/s10853-022-07379-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Quan L, Xin Y, Wu X, Ao Q. Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers (Basel) 2022;14:2184. [PMID: 35683857 DOI: 10.3390/polym14112184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Lu J, Hu O, Gu J, Chen G, Ye D, Hou L, Zhang X, Jiang X. Tough and anti-fatigue double network gelatin/polyacrylamide/DMSO/Na2SO4 ionic conductive organohydrogel for flexible strain sensor. European Polymer Journal 2022;168:111099. [DOI: 10.1016/j.eurpolymj.2022.111099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
46 Jin Y, Zhang W, Zhang Y, Yang Y, Fang Z, Song J, Qian Y, Yuan WE. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomater Adv 2022;135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Fan X, Geng J, Wang Y, Gu H. PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor. Polymer 2022;246:124769. [DOI: 10.1016/j.polymer.2022.124769] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
48 Wang T, Song J, Liu R, Chan SY, Wang K, Su Y, Li P, Huang W. Motion Detecting, Temperature Alarming, and Wireless Wearable Bioelectronics Based on Intrinsically Antibacterial Conductive Hydrogels. ACS Appl Mater Interfaces 2022;14:14596-606. [PMID: 35293735 DOI: 10.1021/acsami.2c00713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
49 Zhou Z, Liu K, Ban Z, Yuan W. Highly adhesive, self-healing, anti-freezing and anti-drying organohydrogel with self-power and mechanoluminescence for multifunctional flexible sensor. Composites Part A: Applied Science and Manufacturing 2022;154:106806. [DOI: 10.1016/j.compositesa.2022.106806] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
50 Sun C, Luo J, Jia T, Hou C, Li Y, Zhang Q, Wang H. Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. Chemical Engineering Journal 2022;431:134012. [DOI: 10.1016/j.cej.2021.134012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
51 Qin J, Chen F, Wu P, Sun G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front Bioeng Biotechnol 2022;10:841583. [DOI: 10.3389/fbioe.2022.841583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H. Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. ACS Appl Mater Interfaces 2022;14:9126-37. [PMID: 35157422 DOI: 10.1021/acsami.1c23176] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
53 Zhang J, Zhang Q, Liu X, Xia S, Gao Y, Gao G. Flexible and wearable strain sensors based on conductive hydrogels. Journal of Polymer Science. [DOI: 10.1002/pol.20210935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Park K, Choi H, Kang K, Shin M, Son D. Soft Stretchable Conductive Carboxymethylcellulose Hydrogels for Wearable Sensors. Gels 2022;8:92. [DOI: 10.3390/gels8020092] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
55 Liu J, Ge X, Liu L, Xu W, Shao R. Challenges and opportunities of silk protein hydrogels in biomedical applications. Mater Adv 2022;3:2291-308. [DOI: 10.1039/d1ma00960e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
56 Chen CK, Chen PW, Wang HJ, Yeh MY. Alkyl Chain Length Effects of Imidazolium Ionic Liquids on Electrical and Mechanical Performances of Polyacrylamide/Alginate-Based Hydrogels. Gels 2021;7:164. [PMID: 34698178 DOI: 10.3390/gels7040164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]