BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gu L, German L, Li T, Li J, Shao Y, Long Y, Wang J, Wang X. Energy Harvesting Floor from Commercial Cellulosic Materials for a Self-Powered Wireless Transmission Sensor System. ACS Appl Mater Interfaces 2021;13:5133-41. [DOI: 10.1021/acsami.0c20703] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang L, Liu C, Yuan W, Meng C, Dutta A, Chen X, Guo L, Niu G, Cheng H. Fully stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 2022;103:107807. [DOI: 10.1016/j.nanoen.2022.107807] [Reference Citation Analysis]
2 Ramar P, Samanta D. Functionalization of Nitrocellulose Film by AB-Type Click Polymerization: Methods and Property Enhancements. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01305] [Reference Citation Analysis]
3 Bai Y, Feng H, Li Z. Theory and applications of high-voltage triboelectric nanogenerators. Cell Reports Physical Science 2022;3:101108. [DOI: 10.1016/j.xcrp.2022.101108] [Reference Citation Analysis]
4 Wei Z, Wang J, Liu Y, Yuan J, Liu T, Du G, Zhu S, Nie S. Sustainable Triboelectric Materials for Smart Active Sensing Systems. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202208277] [Reference Citation Analysis]
5 Yang Y, Shi Q, Zhang Z, Shan X, Salam B, Lee C. Robust triboelectric information‐mat enhanced by multi‐modality deep learning for smart home. InfoMat. [DOI: 10.1002/inf2.12360] [Reference Citation Analysis]
6 Edberg J, Mulla MY, Hosseinaei O, Alvi NUH, Beni V. A Forest‐Based Triboelectric Energy Harvester. Global Challenges. [DOI: 10.1002/gch2.202200058] [Reference Citation Analysis]
7 Shi Q, Yang Y, Sun Z, Lee C. Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Mater Au 2022;2:394-435. [DOI: 10.1021/acsmaterialsau.2c00001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 He W, Shan C, Wu H, Fu S, Li Q, Li G, Zhang X, Du Y, Wang J, Wang X, Hu C. Capturing Dissipation Charge in Charge Space Accumulation Area for Enhancing Output Performance of Sliding Triboelectric Nanogenerator. Advanced Energy Materials. [DOI: 10.1002/aenm.202201454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Jiang D, Du M, Qu X, Gai Y, Sun W, Xue J, Li Y, Li Z, Wang ZL. Self‐Powered Intelligent Voice Navigation Tactile Pavement Based on High‐Output Hybrid Nanogenerator. Adv Materials Technologies. [DOI: 10.1002/admt.202200270] [Reference Citation Analysis]
10 Zhong X, Wang H, Chen L, Guan M. Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure. Micromachines 2022;13:736. [DOI: 10.3390/mi13050736] [Reference Citation Analysis]
11 Wu S, Li G, Liu W, Yu D, Li G, Liu X, Song Z, Wang H, Liu H. Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy 2022;93:106859. [DOI: 10.1016/j.nanoen.2021.106859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Liu X, Sun X, Luo C, Ma H, Yu H, Shao Y, Yang M, Yin B. Improvement in the output performance of polyethylene oxide-based triboelectric nanogenerators by introducing core–shell Ag@SiO 2 particles. J Mater Chem C 2021;10:265-73. [DOI: 10.1039/d1tc04831g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Yu H, Shao Y, Luo C, Li Y, Ma H, Zhang Y, Yin B, Shen J, Yang M. Bacterial cellulose nanofiber triboelectric nanogenerator based on dielectric particles hybridized system. Composites Part A: Applied Science and Manufacturing 2021;151:106646. [DOI: 10.1016/j.compositesa.2021.106646] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 Zhou J, Wang H, Du C, Zhang D, Lin H, Chen Y, Xiong J. Cellulose for Sustainable Triboelectric Nanogenerators. Adv Energy and Sustain Res 2022;3:2100161. [DOI: 10.1002/aesr.202100161] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
15 Liu L, Guo X, Liu W, Lee C. Recent Progress in the Energy Harvesting Technology-From Self-Powered Sensors to Self-Sustained IoT, and New Applications. Nanomaterials (Basel) 2021;11:2975. [PMID: 34835739 DOI: 10.3390/nano11112975] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
16 Shi Q, Zhang Z, Yang Y, Shan X, Salam B, Lee C. Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Applications. ACS Nano 2021. [PMID: 34723468 DOI: 10.1021/acsnano.1c07579] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
17 Niu Z, Cheng W, Cao M, Wang D, Wang Q, Han J, Long Y, Han G. Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 2021;87:106175. [DOI: 10.1016/j.nanoen.2021.106175] [Cited by in Crossref: 50] [Cited by in F6Publishing: 60] [Article Influence: 50.0] [Reference Citation Analysis]