BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koudrina A, McConnell EM, Zurakowski JA, Cron GO, Chen S, Tsai EC, DeRosa MC. Exploring the Unique Contrast Properties of Aptamer-Gadolinium Conjugates in Magnetic Resonance Imaging for Targeted Imaging of Thrombi. ACS Appl Mater Interfaces 2021;13:9412-24. [PMID: 33395250 DOI: 10.1021/acsami.0c16666] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Mushtaq A, Zhang H, Cui M, Lin X, Huang S, Tang Z, Hou Y, Zubair Iqbal M, Kong X. ROS-Responsive Chlorin e6 and Silk Fibroin Loaded Ultrathin Magnetic Hydroxyapatite Nanorods for T1-Magnetic Resonance Imaging Guided Photodynamic Therapy In Vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130513] [Reference Citation Analysis]
2 Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022;10:1002285. [DOI: 10.3389/fbioe.2022.1002285] [Reference Citation Analysis]
3 Rehman ZU, Iqbal MZ, Hou J, Butt FK, Alfaify S, Haq BU, Tariq Z, Rehman SU, Bilal M, Akram M, Farooq MU. Graphitic carbon nitride–manganese oxide nanoflowers as promising T1 magnetic resonance imaging contrast material. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-06038-2] [Reference Citation Analysis]
4 Digilio G, Lacerda S, Lavin Plaza B, Phinikaridou A. Extracellular Matrix Targeted MRI Probes. Analysis & Sensing 2022. [DOI: 10.1002/anse.202200039] [Reference Citation Analysis]
5 Dong X, Ye J, Wang Y, Xiong H, Jiang H, Lu H, Liu X, Wang X. Ultra-Small and Metabolizable Near-Infrared Au/Gd Nanoclusters for Targeted FL/MRI Imaging and Cancer Theranostics. Biosensors 2022;12:558. [DOI: 10.3390/bios12080558] [Reference Citation Analysis]
6 Koudrina A, Chartrand C, Cron GO, O'Brien J, Tsai EC, DeRosa MC. Fibrinogen aptamer functionalized gold-coated iron-oxide nanoparticles for targeted imaging of thrombi. Chem Commun (Camb) 2022;58:2870-3. [PMID: 35132974 DOI: 10.1039/d1cc03817f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Thevendran R, Citartan M. Assays to Estimate the Binding Affinity of Aptamers. Talanta 2022;238:122971. [PMID: 34857318 DOI: 10.1016/j.talanta.2021.122971] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
8 Wei R, Liu K, Zhang K, Fan Y, Lin H, Gao J. Zwitterion-Coated Ultrasmall MnO Nanoparticles Enable Highly Sensitive T1-Weighted Contrast-Enhanced Brain Imaging. ACS Appl Mater Interfaces 2022;14:3784-91. [PMID: 35019261 DOI: 10.1021/acsami.1c20617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2021.107902] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
10 Zhang L, Wang M, Zhu Z, Chen S, Wu H, Yang Y, Che F, Li Q, Li H. A GD2-aptamer-mediated, self-assembling nanomedicine for targeted multiple treatments in neuroblastoma theranostics. Mol Ther Nucleic Acids 2021;26:732-48. [PMID: 34703655 DOI: 10.1016/j.omtn.2021.08.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C. Aptamer Applications in Emerging Viral Diseases. Pharmaceuticals (Basel) 2021;14:622. [PMID: 34203242 DOI: 10.3390/ph14070622] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]