BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Beola L, Asín L, Roma-Rodrigues C, Fernández-Afonso Y, Fratila RM, Serantes D, Ruta S, Chantrell RW, Fernandes AR, Baptista PV, de la Fuente JM, Grazú V, Gutiérrez L. The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment. ACS Appl Mater Interfaces 2020;12:43474-87. [PMID: 32870658 DOI: 10.1021/acsami.0c12900] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Advanced Drug Delivery Reviews 2022;191:114584. [DOI: 10.1016/j.addr.2022.114584] [Reference Citation Analysis]
2 Acar M, Solak K, Yildiz S, Unver Y, Mavi A. Comparative heating efficiency and cytotoxicity of magnetic silica nanoparticles for magnetic hyperthermia treatment on human breast cancer cells. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03377-y] [Reference Citation Analysis]
3 Thirumurugan S, Dash P, Liu X, Tseng YY, Huang WJ, Li Y, Zhao G, Lin C, Murugan K, Dhawan U, Chung RJ. Angiopep-2-decorated titanium-alloy core-shell magnetic nanoparticles for nanotheranostics and medical imaging. Nanoscale 2022. [PMID: 36184995 DOI: 10.1039/d2nr03683e] [Reference Citation Analysis]
4 Fernández-Afonso Y, Asín L, Beola L, Moros M, M de la Fuente J, Fratila RM, Grazú V, Gutiérrez L. Iron Speciation in Animal Tissues Using AC Magnetic Susceptibility Measurements: Quantification of Magnetic Nanoparticles, Ferritin, and Other Iron-Containing Species. ACS Appl Bio Mater 2022. [PMID: 35179873 DOI: 10.1021/acsabm.1c01200] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Curcio A, Van de Walle A, Péchoux C, Abou-Hassan A, Wilhelm C. In Vivo Assimilation of CuS, Iron Oxide and Iron Oxide@CuS Nanoparticles in Mice: A 6-Month Follow-Up Study. Pharmaceutics 2022;14:179. [PMID: 35057074 DOI: 10.3390/pharmaceutics14010179] [Reference Citation Analysis]
6 Laha SS, Thorat ND, Singh G, Sathish CI, Yi J, Dixit A, Vinu A. Rare-Earth Doped Iron Oxide Nanostructures for Cancer Theranostics: Magnetic Hyperthermia and Magnetic Resonance Imaging. Small 2021;:e2104855. [PMID: 34874618 DOI: 10.1002/smll.202104855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Serantes D, Baldomir D. Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance. Nanomaterials (Basel) 2021;11:2786. [PMID: 34835551 DOI: 10.3390/nano11112786] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
8 Gavilán H, Simeonidis K, Myrovali E, Mazarío E, Chubykalo-Fesenko O, Chantrell R, Balcells L, Angelakeris M, Morales MP, Serantes D. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Nanoscale 2021;13:15631-46. [PMID: 34596185 DOI: 10.1039/d1nr03484g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
9 Freis B, Cotin G, Perton F, Mertz D, Boutry S, Laurent S, Begin‐colin S. The Size, Shape, and Composition Design of Iron Oxide Nanoparticles to Combine, MRI, Magnetic Hyperthermia, and Photothermia. Magnetic Nanoparticles in Human Health and Medicine 2021. [DOI: 10.1002/9781119754725.ch17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kiamohammadi L, Asadi L, Shirvalilou S, Khoei S, Khoee S, Soleymani M, Minaei SE. Physical and Biological Properties of 5-Fluorouracil Polymer-Coated Magnetite Nanographene Oxide as a New Thermosensitizer for Alternative Magnetic Hyperthermia and a Magnetic Resonance Imaging Contrast Agent: In Vitro and In Vivo Study. ACS Omega 2021;6:20192-204. [PMID: 34395970 DOI: 10.1021/acsomega.1c01763] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
11 Ximendes E, Marin R, Shen Y, Ruiz D, Gómez-Cerezo D, Rodríguez-Sevilla P, Lifante J, Viveros-Méndez PX, Gámez F, García-Soriano D, Salas G, Zalbidea C, Espinosa A, Benayas A, García-Carrillo N, Cussó L, Desco M, Teran FJ, Juárez BH, Jaque D. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. Adv Mater 2021;33:e2100077. [PMID: 34117667 DOI: 10.1002/adma.202100077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
12 Gupta R, Tomar R, Chakraverty S, Sharma D. Effect of manganese doping on the hyperthermic profile of ferrite nanoparticles using response surface methodology. RSC Adv 2021;11:16942-54. [PMID: 35479670 DOI: 10.1039/d1ra02376d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Beola L, Grazú V, Fernández-Afonso Y, Fratila RM, de Las Heras M, de la Fuente JM, Gutiérrez L, Asín L. Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution. ACS Appl Mater Interfaces 2021;13:12982-96. [PMID: 33709682 DOI: 10.1021/acsami.1c02338] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
14 Liu S, Shi D, Chen L, Yan Y, Wang X, Song Y, Pu S, Liang Y, Zhao Y, Zhang Y, Xie J. Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. Nanoscale 2021;13:3613-26. [PMID: 33537695 DOI: 10.1039/d0nr08197c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]